This invention relates to electrically assisted turbochargers and more specifically to the electrical control of such turbochargers throughout the range of operation to obtain predetermined air/fuel (“A/F”) ratio(s) over the operating range of an associated internal combustion engine.
An electrically assisted turbocharger (“EAT”) comprises a conventional exhaust gas driven turbocharger configured with a modified center housing and shaft to facilitate the location and operation of a built-in electric motor. The EAT is also termed herein as an electrically controlled turbocharger (“ECT”). The electric motor, along with its associated controller provide for the application or extraction of electrical energy to/from the turbocharger over its operating range. The disclosed embodiment controls both intake pressure and exhaust pressure at all operating points of the engine within its operating range.
While the related applications referenced above are generally directed to the construction of electrically controlled turbochargers, the disclosed embodiment deals with the control methodology used to regulate the rotation of the turbine and compressor of the turbocharger for optimal fuel efficiency by maintaining the A/F ratio at an optimal range over the operating range of the associated internal combustion engine. In particular, an A/F ratio is selected that provides relatively high fuel efficiency, as well as low NOx and low particulate emissions.
The disclosed embodiment is directed to improvements in controlling the electric motor used in an ECT turbocharger that operates over a wide range of speeds from the very low at engine idle to significantly high speeds, in the range of approximately 200,000 rpms and above.
At the heart of the system is the ECT 210 and its power electronics controller 250. The ECT 210 functions in tandem with the EGR valve 130 and Electronic Throttle 140 to implement the control strategies herein. Both the EGR Valve 130 and Electronic Throttle 140 are selected from commercially available components and are controlled by an EGR controller 120. An off-the-shelf programmable engine ECU may be used for this purpose because of its ability to control systems using existing protocols such as CAN buss and it's robust, vehicle ready design. EGR controller 120 receives input signals from an intake Air Mass Flowmeter 150, EGR Oxygen Sensor 160, EGR Cooler Differential Pressure Sensor 170, and Driver Torque Command 180. A control algorithm processes this information and provides input signals to ECT controller 250, EGR Valve 130, and Electronic Throttle 140.
Also included in the System 100 are various catalysts to reduce emissions as well as to protect the EGR cooler from becoming clogged with soot. The Close Coupled Catalyst (CCC), Diesel Oxidation Catalyst (DOC), and Soot CAT are commercially available components adapted into the system.
Diesel engines have long been plagued by poor emissions. Applicants have discovered that by staging multiple injections, by using high levels of Exhaust Gas Recirculation (EGR) and through intake manifold temperature control, it is possible to operate in the area of low temperature combustion (LTC). Specifically, by maintaining combustion temperatures below 2000° K (˜1750° C.) low NOx are generated. Further control of LTC can generate a reducing exhaust rich injection so that the Lean NOx Trap (LNT) can be regenerated less often. To shift the combustion from conventional to lower temperatures of combustion requires significant adjustment in air/fuel/exhaust gas mixture provided to the engine by the ECT and is achievable with this invention. The ECT control system and methodology can also reduce Particulate Matter (PM) at transient engine operating points, increase low end torque, and assist in cold starting.
The ECT system provides significant reduction in engine emissions in many different operating modes of the engine. To achieve these reductions in emissions the ECT must be controlled according to the engines' speed and operators' torque demand. Therefore the strategies for implementing this control methodology are outlined below according to engine operational mode.
NOx reduction in steady state diesel engine operation has long been a target for engine developers and significant progress has been made in recent years with exotic after treatment solutions. Solutions, such as Selective Catalytic Reduction (SCR), are expensive to implement and require added chemicals which can potentially cause adverse consequences. A more efficient approach to reducing NOx is to increase EGR rates to cool down the combustion process into an area where NOx will not form. Cooling of the fresh charge and EGR are imperatively necessary to lower the combustion temperature and thus engine out emissions.
Typical turbocharged Compression Ignition Direct Injection (CIDI) Engines reduce NOx through EGR dilution. However, the amount of EGR which can be recirculated is limited by; loss of power, along with unacceptable transient behavior, and an increase in Particulate Matter (PM) emissions and BSFC brake specific fuel consumption. Part load Air/Fuel (A/F) ratio on those engines is widely uncontrolled, and thus, varies over a relatively large range.
The ECT system of the disclosed embodiment can be used in conjunction with the EGR Valve and Electronic Throttle to drastically increase EGR rates up to a theoretical 80% under steady state operation. These high EGR rates can be realized using the ECT system because of its ability to control both intake boost and exhaust back pressure to keep the A/F ratio optimal for PM emissions and fuel consumption.
The ECT assisted EGR dilution is explained below using the example of a 2 liter turbocharged CIDI engine operating at about 2000 rpm and at relatively low torque. The same concepts presented in this example can also be extended to larger Diesel engines.
In
Graph “D” in
Graph “F” in
It will be noted that extremely high EGR rates 50%-80% can be achieved by the addition of electrical energy to the ECT. Plot G, which represents the amount of inert EGR for combustion process cooling, exponentially increases with the addition of ECT power. It is this high level of inert EGR which allows the high levels of NOx reduction which the ECT can provide in steady state operation.
The plots in
The following describes how the ECT is used to increase the amount of EGR gases in the cylinder by depicting the various contributions of fuel, fresh air, excess lean air, recirculated air through EGR, and inert gas recirculated through EGR by rectangles representing their respective mass contributions in the cylinder.
Rectangular boxes below each column of engine operating parameters represent the amounts of fresh air and re-circulated exhaust gas in the cylinder. Boxes labeled EGR represent the amount of EGR in the cylinder.
The first (left most) column shows the engine running with a standard turbocharger and 3.5% EGR. Notice that the A/F ratio is at 4.265 which is far too lean as compared with the optimal 2.7 for lowest fuel consumption.
The second (center) column shows how replacing the standard turbocharger with an ECT and slowing the turbocharger down by drawing power from the motor/generator the A/F ratio can be reduced to the optimal 2.7, while also generating 529 W of electrical energy.
The third column (right most) shows how the engine running with a standard turbocharger requires 43% EGR to reach the optimal fuel consumption A/F ratio of 2.7. Furthermore, when using the standard turbocharger, attempting to run higher rates of EGR will result in higher emissions and fuel consumption.
Conventional Diesel powered vehicles such as busses, delivery trucks, and garbage trucks commonly have high levels of PM and other emissions due to the fact that they are engaged in transient operations which involve high frequency of acceleration and deceleration driving schedules. This is because Diesel engines add excess fuel during transient operations to help spool up the turbocharger. A standard turbocharger cannot supply the correct amount of air to fully burn that fuel because it is limited by the fluid dynamics characteristics of its turbine and compressor design. Therefore the excess fuel simply exits the combustion chamber partially combusted into the exhaust stream in the form of PM and other harmful emissions. These emissions need to be removed by downstream devices such as Diesel Oxidation Catalysts (DOC), Particulate Matter filters (PM filters) and other after-treatment systems.
The ECT reduces the emissions leaving the combustion chamber under transient operation by adding electrical energy to the turbocharger to increase boost pressure. This added level of engine control enables the ECT to provide the correct amount of air to the cylinder and thereby reduce the amount of emissions introduced into the exhaust stream by the combustion process. Drastic reductions in PM emissions as high as 50% in pre-after-treatment emissions levels are achievable by the implementation of the ECT system in the transient operating mode.
Furthermore, more complete combustion of the fuel introduced to the combustion chamber as a result of the ECT providing the optimal A/F mixture will result in higher torque in transient operation. The vehicle operator will notice more power during acceleration periods all the while producing lower levels of emissions.
In engine cold start operation, Direct Injection Diesel Engines operate at compression ratios designed to ensure cold start, not for best efficiency (and not for lowest NOx Emissions). That is, the cold start requirements force compression ratios that are higher than otherwise needed and desired. DI Diesel Engines also require high rates of excess fuel to provide a “hydraulic gas seal” for the combustion chamber to generate the compression ratio required for cold start. The excess fuel causes elevated HC, CO, and PM emissions during cold start when the after treatment systems are not at operating temperatures.
Block heaters are also traditionally needed in colder climates to facilitate high enough cylinder inlet air temps for auto ignition to occur. The engine operator must wait for the block to heat up before attempting to start the vehicle.
The ECT adds compression by pre-boosting the engine intake air prior to engine cranking. Therefore the static compression ratio can be optimized for warm engine operation resulting in higher efficiency and reduced NOx. In addition, the boosted air has a higher temperature functioning like an inline air heater without the added complexity and therefore eases starting in cold climates. This effect can be significantly improved by recycling the compressed air several times though a throttle back to the compressor intake, before the engine is started.
Turbocharged Direct Injection Diesel Engines, even with state-of-the-art conventional turbochargers, are generally characterized by a severe lack of low-engine-speed power, that is, in the area where they need to operate most in US traffic. The underlying reason for this problem is the absence of sufficient exhaust gas energy to drive the turbocharger, further aggravated by the flow-restricting behavior of the turbocharger turbine. The problem has lead to unacceptable full load and part load acceleration as well as gradability. The only (very limited) remedy available to the vehicle driver is to predominantly drive in lower gears with a significant penalty in fuel consumption and noise.
Lower Brake Specific Fuel Consumption (BSFC) levels can be achieved if the vehicle can run in higher gears and hence lower engine speed. The added torque provided by ECT boost is what makes this implementation of down-speeding the engine possible thereby allowing lower fuel consumption levels.
The ECT can be used to overcome the deficiency in exhaust gas energy at low engine speeds by adding electrical energy to drive the turbocharger. The addition of electrical energy to the turbocharger can increase low-engine-speed full load power by approximately 38%. Also the ECT system can reduce low-engine-speed transient response by >50%. Of course to compensate for electrical parasitic losses in boosting at low engine speed, the ECT will generate electricity from exhaust gas energy at high speed and full load, and in certain part load areas.
The ECT LPL EGR Diesel system and methodology offer many benefits over existing technologies in its ability to allow extremely high EGR rates and consequential NOX reductions in steady state operation, assist and reduce emissions in engine cold start, and reduce PM emissions and increase performance in transient operation. This comprehensive approach to cleaning up the combustion process across the entire engine map places the technology in a class above even the most complex after treatment systems.
It is also important to note that the ECT LPL EGR Diesel system and methodology can be combined with other after treatment systems and modern turbocharging technologies such as Variable Geometry Turbomachinery (VGT) to provide even further reductions in emissions for Diesel Vehicles.
Priority is claimed for provisional application U.S. 61/271,844, filed Jul. 27, 2009. This application is related to commonly assigned non-provisional application U.S. Ser. No. 12/417,568 filed Apr. 2, 2009, US Pub 2010-0175377; non-provisional application U.S. Ser. No. 12/791,832 filed Jun. 1, 2010; and to PCT/US/10/20707 filed Jan. 12, 2010 publication WO-2010081123, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61271844 | Jul 2009 | US |