This application claims the priority under 35 U.S.C. §119 of European patent application no. 10191526.2, filed on Nov. 17, 2010, the contents of which are incorporated by reference herein.
This invention relates to method of controlling electronic ballasts for lighting circuits, and to electronic ballasts for lighting circuits.
There is an increasing interest in energy efficient lighting to replace conventional incandescent bulbs, not least because of environmental concerns. Whereas compact fluorescent lamps (CFL) presently dominate energy efficient lighting, there is an increasing move towards light emitting diode (LED) lighting, since this offers the prospect of a significant reduction in energy consumption, with respect even to CFL.
However, in common with CFL, LED lighting typically takes the form of a high ohmic load. This presents challenges for existing lighting circuits incorporating a dimmer circuit: the most common types of dimmer circuits are phase cut dimmers, in which the mains supply is cut off for part of the mains cycle—either the leading edge of the cycle or half-cycle, or its trailing edge. Most trailing edge dimmers are based on a transistor circuit, whereas most leading edge dimmers are based on a triac circuit. Both transistor and triac dimmers require to see a low ohmic load.
To satisfy this requirement, it is known to provide LED driver circuits (also known as electronic ballasts), with a “bleeder”, which presents a relatively low ohmic load to the dimmer circuit in order to ensure that it operates correctly. However, if the circuit including bleeder is connected to a non-dimmable mains connection, the bleeder operates unnecessarily, resulting in an efficiency drop, which typically can be up to 10%, and potentially increased electromagnetic interference (EMI) problems if the bleeder is dynamically controlled.
An LED driver circuit is known in which the bleeder may be disconnected in the absence of a dimmer circuit. Such a circuit is disclosed for instance in United Kingdom Patent Application publication GB-A-24357264.
It is an object of the present invention to provide method of controlling a electronic ballast for a lighting circuit, and a method of controlling the same, which more effectively avoids bleeder losses when a bleeder is not required. It is a further objective to provide a method for adapting the bleeder losses in dependence on a dimmer circuit when present.
According to the invention there is provided a method of controlling an electronic ballast for a lighting circuit and having a bleeder for use with dimmer circuits, the method comprising: in response to a mains supply being connected to the lighting circuit, determining whether a dimmer circuit is present in the lighting circuit; and in response to determining that a dimmer circuit is not present, disconnecting the bleeder from the lighting circuit at least until the mains supply is disconnected, wherein determining whether a dimmer circuit is present in the lighting circuit comprises checking a parameter indicative of the presence of a dimmer during each of a plurality of mains cycles, and determining whether the dimmer is present in dependence on either the ratio or absolute number of the checks which indicate that a dimmer is present. By checking over a plurality of mains cycles, the reliability is significantly improved, since for instance the effects of noise or spikes on the line can be eliminated.
In embodiments, the plurality of mains cycles is at least the first 8 mains cycles from a moment when the mains supply is connected to the lighting system, and or in the alternative may be no more than the first 25 mains cycles or 15 mains cycles from a moment when the mains supply is connected to the lighting system. It will be appreciated that a smaller number of mains cycles may be used—even as few as 2 cycles, provided only that there is a plurality. A convenient range is between 15 and 25 mains cycles, corresponding to 300 ms to 500 ms, since this generally corresponds to the speed of human interaction. A particularly preferred number of mains cycles, to adapt the bleeder current according to embodiments is 8 or approximately 8 cycles.
In embodiments information relating to whether a dimmer circuit is present is stored at least until the mains supply is disconnected. Thus a single set of measurements may be made when the mains is connected, and the result assumed to hold true all the while the mains is connected. This is appropriate, as it is exceedingly unlikely that a dimmer circuit could be added to, or removed from, the lighting circuit whilst the mains is on and the lighting is operating.
In embodiments, the parameter is a time interval during which the rectified voltage is less than a predetermined voltage threshold, and wherein the time interval being more than a predetermined threshold interval is indicative that a dimmer circuit is present. In other embodiments, the parameter is a voltage at the end of a predetermined delay from a predetermined phase of the mains cycle, and wherein the voltage being more than a predetermined threshold voltage is indicative that a dimmer circuit is present. In further embodiments, the parameter is the second differential, with respect to time, of the mains voltage, and wherein the parameter exceeding a predetermined absolute detection level is indicative that a dimmer circuit is present. In yet other embodiments, the parameter is the first differential, with respect to time, of the mains voltage, and wherein the parameter exceeding a predetermined absolute detection level is indicative that a dimmer circuit is present.
In embodiments, in response to determining that a dimmer circuit is present, a bleed current through the bleeder is adjusted in dependence on the dimmer circuit. This the invention can accommodate differing types of bleeders, and the type need not be known a priori, resulting in a more versatile circuit.
In embodiments, adjusting an impedance of the bleeder comprises setting the bleed current through the bleeder to an initial value, measuring a voltage representative of the voltage across the bleeder, and if the voltage representative of the voltage across the bleeder does not exceed a predetermined limit, decreasing the current through the bleeder.
According to another aspect of the invention, there is provided an electronic ballast for a lighting circuit, comprising a circuit for determining whether a dimmer circuit is present in the lighting circuit, a storage means for storing the determination whether a dimmer circuit is present, and a bleeder for use with dimmer circuits and arranged to be disconnected from the lighting circuit in the absence of a dimmer circuit.
In embodiments, the circuit for determining whether a dimmer circuit is present in the lighting circuit is operable to check a parameter indicative of the presence of a dimmer during each of a plurality of mains cycles, and to determine whether the dimmer circuit is present in dependence on either the ratio or absolute number of checks which indicate that a dimmer circuit is present.
In embodiments, at least one of: (a) the parameter is a time interval during which the rectified voltage is less than a predetermined voltage threshold, such that the time interval being less than a predetermined threshold interval is indicative that a dimmer circuit is present; (b) the parameter is a voltage at the end of a predetermined delay from a predetermined phase of the mains cycle, such that the voltage being more than a predetermined threshold voltage is indicative that a dimmer circuit is present; (c) the parameter is the second differential of the mains voltage, such that the parameter exceeding a predetermined absolute detection level is indicative that a dimmer circuit is present, and (d) the parameter is the second differential of the mains voltage, such that the parameter exceeding a predetermined absolute detection level is indicative that a dimmer circuit is present.
According to another aspect of the invention, there is provided an LED lighting controller comprising an electronic ballast as just described.
These and other aspects of the invention will be apparent from, and elucidated with reference to, the embodiments described hereinafter.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which
It should be noted that the Figures are diagrammatic and not drawn to scale. Relative dimensions and proportions of parts of these Figures have been shown exaggerated or reduced in size, for the sake of clarity and convenience in the drawings. The same reference signs are generally used to refer to corresponding or similar feature in modified and different embodiments
Moreover, the presence of mains disturbances due to other connected equipment, which disturbances can be particularly prevalent in less closely regulated environments, further hamper the accurate detection of the presence of a dimmer.
An alternative detection method is illustrated in
The skilled person will readily understand how to derive the first and second differential of the voltage, as illustrated in
These further methods are based on the fact that at relatively low voltages, for instance between between −100V and +100V, 230V mains supply the mains voltage changes in an approximately linear way, according to a Taylor expansion of the sine function:
This means that the first derivative only shows minor fluctuations and the second derivative is therefore nearly zero, that is to say,
(where h.o.t indicates higher order terms.)
If a transistor dimmer is connected, the absolute value of the second derivative will be substantially higher, because the mains voltage drops to zero much faster than the regular mains without phase-cutting as shown in
Moreover, the first derivative can also be used to detect the presence of a dimmer: in the presence of the dimmer, there is an increase in the absolute magnitude of the first derivative, as can be seen as 124, above that expected for the regular mains voltage without phase-cutting. This method can also be applied to leading edge dimmers—similarly to the second derivative method, in this case the first derivative will be positive.
Thus, from one viewpoint, there has been disclosed a method of controlling an electronic ballast for a lighting circuit, the electronic ballast comprising at least one bleeder, for use with dimmer circuits, is disclosed which method comprises: in response to a mains supply being connected to the lighting circuit, determining whether a dimmer circuit is present in the lighting circuit; and in response to determining that a dimmer circuit is not present, disconnecting the bleeder from the lighting circuit at least until the mains supply is disconnected. The method may be operable during a start-up phase, and the determination as to whether a dimmer circuit is present stored at least until the mains supply is disconnected. The determination, of either a leading or trailing edge phase cut dimmer, may be made by looking for a deviation from the expected sine-wave voltage, either directly through a temporal or voltage deviation, or indirectly by examining the second differential of the voltage with respect to time. An electronic ballast configured to operate such a method, and a lighting controller incorporating such a ballast, are also disclosed.
From reading the present disclosure, other variations and modifications will be apparent to the skilled person. Such variations and modifications may involve equivalent and other features which are already known in the art of phase-cut dimmers, and which may be used instead of, or in addition to, features already described herein.
Although the appended claims are directed to particular combinations of features, it should be understood that the scope of the disclosure of the present invention also includes any novel feature or any novel combination of features disclosed herein either explicitly or implicitly or any generalisation thereof, whether or not it relates to the same invention as presently claimed in any claim and whether or not it mitigates any or all of the same technical problems as does the present invention.
Features which are described in the context of separate embodiments may also be provided in combination in a single embodiment. Conversely, various features which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
The applicant hereby gives notice that new claims may be formulated to such features and/or combinations of such features during the prosecution of the present application or of any further application derived therefrom.
For the sake of completeness it is also stated that the term “comprising” does not exclude other elements or steps, the term “a” or “an” does not exclude a plurality, a single processor or other unit may fulfill the functions of several means recited in the claims and reference signs in the claims shall not be construed as limiting the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
10191526 | Nov 2010 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6175195 | Janczak et al. | Jan 2001 | B1 |
7936132 | Quek et al. | May 2011 | B2 |
20030209997 | St-Germain et al. | Nov 2003 | A1 |
20060192502 | Brown et al. | Aug 2006 | A1 |
20070182347 | Shteynberg et al. | Aug 2007 | A1 |
20080048573 | Ferentz et al. | Feb 2008 | A1 |
20080203934 | Van Meurs | Aug 2008 | A1 |
20090251059 | Veltman | Oct 2009 | A1 |
20090295300 | King | Dec 2009 | A1 |
20100213870 | Koolen | Aug 2010 | A1 |
20110140620 | Lin et al. | Jun 2011 | A1 |
20120126714 | Deppe et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2 205 206 | Nov 1988 | GB |
2 435 724 | Sep 2007 | GB |
2008029108 | Mar 2008 | WO |
2010011971 | Jan 2010 | WO |
2010016002 | Feb 2010 | WO |
2010137002 | Dec 2010 | WO |
WO 2011013060 | Feb 2011 | WO |
Entry |
---|
“SSL2102 Mains LED driver IC for dimmable LED lighting,” NXP Semiconductors, data sheet, 21 pgs. (Jun. 2009). |
“SSL2101 SMPS IC for dimmable LED lighting,” NXP Semiconductors, data sheet, 22 pgs. (Aug. 2009). |
“56W Off-line, 120VAC with PFC, 160V, 350mA Load, Dimmer Switch Compatible LED Driver,” Supertex inc. Design Note DN-H05, 19 pgs. (2009). |
“SSL2103 SMPS controller IC for dimmable LED lighting,” NXP Semiconductors, data sheet, 21 pgs. (Aug. 2011). |
Extended European Search Report for European Patent Appln. No. 10191526.2 (May 25, 2011). |
Number | Date | Country | |
---|---|---|---|
20120119652 A1 | May 2012 | US |