This disclosure relates to a medical device and more particularly to an implantable therapeutic substance infusion device, also known as an implantable drug pump, optimized peristaltic pump motor drive circuit.
The medical device industry produces a wide variety of electronic and mechanical devices for treating patient medical conditions. Depending upon medical condition, medical devices can be surgically implanted or connected externally to the patient receiving treatment. Clinicians use medical devices alone or in combination with therapeutic substance therapies and surgery to treat patient medical conditions. For some medical conditions, medical devices provide the best, and sometimes the only, therapy to restore an individual to a more healthful condition and a fuller life. One type of medical device is an implantable therapeutic substance infusion device.
An implantable therapeutic substance infusion device is implanted by a clinician into a patient at a location appropriate for the therapy. Typically, a therapeutic substance infusion catheter is connected to the device outlet and implanted to infuse the therapeutic substance such as a drug or infusate at a programmed infusion rate and predetermined location to treat a condition such as pain, spasticity, cancer, and other medical conditions. Many therapeutic substance infusion devices are configured so the device can be refilled with therapeutic substance through a septum while the device is implanted. Then the time the device can be implanted may not be limited by therapeutic substance stored capacity of the device. An example of an implantable therapeutic substance infusion is shown in Medtronic, Inc. product brochure entitled “SynchroMed.RTM. Infusion System” (1995).
Electrically powered implanted therapeutic substance infusion devices consume energy delivered typically by a battery, also called a power source, and can require replacement once implanted due to depletion of the battery. Typically the most significant power-consuming component in an implantable infusion device is the therapeutic substance metering motor such as a stepper motor.
A stepper motor is an electromechanical device whose rotor rotates a discrete angular amount when an electrical drive pulse is applied to the stator windings. The amplitude and the width of the electrical drive pulse must be tailored to the electromechanical properties of the motor in order to achieve rotation, stability, and optimal energy consumption. Examples of instability include the motor rotating backwards, stepping ahead then “flipping back” to its starting position, and not stepping at all. For a stepper motor to function normally and efficiently over a wide power source voltage range, the motor drive pulse needs to be adjusted proportional to the voltage change of the power source.
If all motor drive pulse parameters are held constant while the power source voltage decreases, a decrease due to normal consumption of power source energy, excess energy above that needed by the motor is delivered at the beginning of the service life of the device. This occurs because the pulse parameters needed for the end of service life, for example, pulse width, are greater than needed at the beginning.
Thus, unless the pulse parameters are appropriately varying as the power source voltage is varying, the excess energy drawn from the power source undesirably reduces the service life of the implantable pump. This may cause an early need to replace the pump which is undesirable.
Since replacement of the implanted device requires an invasive procedure of explanting the existing device and implanting a new device, it is desirable to extend battery life to the greatest extent practicable. Some previous implantable infusion devices have reduced power consumption by varying the pulse width of the motor drive signal, but stepper motors can become unstable or stall under some circumstance when the pulse width is varied from the optimal pulse width that the motor is typically designed to use. An example of a motor drive signal with a varying pulse width is shown in Japanese Patent 11,042,286 “Intracorporealy Embedded Type Liquid Medicine Supplying Apparatus” by Yamazaki (Feb. 16, 1999).
For the foregoing reasons, there is a need for an implantable therapeutic substance infusion device with optimized pump motor drive to increase the infusion device's effective service life. This increased service life reduces the overall cost of the medical therapy and the inconvenience to the patient and clinician for future device replacement surgeries.
In an embodiment, the present invention provides a method for reducing energy consumption in an implantable infusion device having a stepper motor driving an infusion pump and powered by a power source having a power source voltage, the stepper motor being driven by drive pulses. An instruction is received to infuse a therapeutic substance. The power source voltage is measured. A duty cycle of the drive pulses for delivery within a substantially fixed drive interval to operate the stepper motor is calculated. The duty cycle of the drive pulses within the substantially fixed drive interval to operate the stepper motor is increased as the power source voltage decreases. The therapeutic substance is infused when the stepper motor operates the infusion pump to meter the therapeutic substance.
In an embodiment, a fixed drive interval for the drive pulses to be delivered to the stepper motor to operate the infusion pump according to a therapy program is specified and a predetermined number of drive pulses within the drive interval are generated according to the power supply voltage to reduce motor energy consumption.
In an embodiment, the present invention provides a method of controlling an implantable medical device having a power source having a voltage, a therapeutic substance pump driven by a motor, electrically coupled to the power source, supplied with a series of drive pulses having a duty cycle. The voltage of the power source is measured. The duty cycle of drive pulses to the motor are varied by increasing the duty cycle as the voltage of the power source decreases.
In an embodiment, the motor comprises a stepper motor.
In an embodiment, a series of drive pulses is generated in a substantially fixed drive interval.
In an embodiment, the fixed drive interval is specified according to a therapy program and a predetermined number of drive pulses within the drive interval are generated according to the power supply voltage to reduce motor energy consumption.
In an embodiment, the predetermined number of drive pulses is in a range from about 10 to about 25 drive pulses within the substantially fixed drive interval.
In another embodiment, the duty cycle comprises a range from about 75% to about 100% of the drive interval.
In another embodiment, the predetermined number of drive pulses is selected to operate the stepper motor while substantially maintaining motor stability and substantially avoid motor stall.
In another embodiment, the power source voltage is forecasted and the duty cycle is adjusted in response thereto.
In another embodiment, the implantable infusion device has electronics coupled to the motor and to the power source, the electronics having a processor, memory coupled to the processor and an infusion program residing in the memory, the infusion program is modified once the therapeutic infusion device is implanted.
The implantable therapeutic substance delivery device 30 is typically implanted by a surgeon in a sterile surgical procedure performed under local, regional, or general anesthesia Before implanting the therapeutic substance delivery device 30, a catheter 32 is typically implanted with the distal end position at the desired therapeutic substance delivery site 34 and the proximal end tunneled to the location where the therapeutic substance delivery device 30 is to be implanted. The implantable therapeutic substance delivery device 30 is generally implanted subcutaneous about 2.5 cm (1.0 inch) beneath the skin where there is sufficient tissue to support the implanted system. Once the therapeutic substance delivery device 30 is implanted into the patient 38, the incision can be sutured closed and the therapeutic substance delivery device 30 can begin operation.
The therapeutic substance 36 in pump reservoir 44 inside the pump is a substance intended to have a therapeutic effect such as pharmaceutical compositions, genetic materials, biologics, and other substances. Pharmaceutical compositions are chemical formulations intended to have a therapeutic effect such as intrathecal antispasmodics, pain medications, chemotherapeutic agents, and the like. Pharmaceutical compositions are often configured to function in an implanted environment with characteristics such as stability at body temperature to retain therapeutic qualities, concentration to reduce the frequency of replenishment, and the like. Genetic materials are substances intended to have a direct or indirect genetic therapeutic effect such as genetic vectors, genetic regulator elements, genetic structural elements, DNA, and the like. Biologics are substances that are living matter or derived from living matter intended to have a therapeutic effect such as stem cells, platelets, hormones, biologically produced chemicals, and the like. Other substances are substances intended to have a therapeutic effect yet are not easily classified such as saline solution, fluoroscopy agents, and the like.
The therapeutic substance 36 in reservoir 44 can be replenished in some embodiments of the implanted therapeutic substance delivery device 30 by inserting a non-coring needle connected to a syringe filled with therapeutic substance 36 through the patient's skin into a fill port septum 40 on the therapeutic substance delivery device 30 to fill the implanted device. The contents of the syringe are then injected into the pump reservoir 44.
If the therapeutic substance delivery device 30 requires replacement due to conditions such as power source depletion or other condition, an incision is made near the implanted therapeutic substance delivery device 30, and the old therapeutic substance delivery device 30 is removed, also known as explanted. After the old therapeutic substance delivery device 30 has been explanted, typically a new therapeutic substance delivery device 30 is then implanted.
The housing 41 is manufactured from a material that is biocompatible and hermetically sealed such as titanium, tantalum, stainless steel, plastic, ceramic, and the like. The power source 42 is carried in the housing 41. The power source 42, selected to operate the therapeutic substance pump 46 and electronics 48, may be a lithium ion (Li+) battery, a capacitor, and the like.
The therapeutic substance reservoir 44 is carried in the housing 41 and is configured to contain therapeutic substance 36. The therapeutic substance pump assembly 46 is carried in the housing 41, and is fluidly coupled to the therapeutic substance reservoir 44 and electrically coupled to the power source 42. The therapeutic substance pump assembly 46 is a pump sufficient for infusing therapeutic substance 36 such as the peristaltic pump with stepper motor drive that can be found in the SynchroMed& Infusion System available from Medtronic, Inc.
A stepper motor is an electromechanical device whose rotor rotates a discrete angular amount when an electrical drive pulse is applied to the stator windings. The amplitude and the width of the pulse must be tailored to the electromechanical properties of the motor in order to achieve rotation, rotational stability, and optimal energy consumption. An example is a motor that rotates 180 degrees with the application of a 3 volt, 11.2 millisecond, square pulse. A second pulse is then applied at minus 3 volts to rotate an additional 180 degrees making a complete revolution.
The stepper motor is mechanically coupled by gears to the peristaltic roller pump where the rollers rotate in such a way as to squeeze a compressible tube and drive liquid through the tube lumen in one direction. In effect the therapeutic substance 36 from the reservoir 44 flows in the tube and is metered to the patient 38 via catheter 32 to anatomical sight 34.
Examples of instability include the motor rotating backwards, stepping ahead then “flipping back” to its starting position, and not stepping at all. For a stepper motor to function normally and efficiently over a wide power source voltage range, the motor drive pulse parameters need to be adjusted proportional to the voltage change of the power source.
At the processor can be a microprocessor, an application specific integrated circuit (ASIC) state machine, a gate array, a controller, and the like. The electronics 48 are configured to control the therapeutic substance pump 46 infusion rate and can be configured to operate many other features such as patient alarms and the like. The infusion program and other device parameters and patient information reside in memory and are capable of being modified once the therapeutic substance infusion device is implanted. The transceiver circuitry is coupled to the processor for externally receiving and transmitting therapeutic substance infusion device information.
In
The controller 104 outputs electrical pulses to drive the four motor drive switches 111, 112, 113, and 114. Outputs 116 and 118 of the quad switch assembly produce a motor drive pulse train that energizes the motor stator magnet 122, in turn rotating the motor rotor 120. The motor stator coil 124 is wound around the magnetic material stator 122. The rotor 120 is mechanically coupled by-gears 107 to the pump mechanism 108. The rotor 120 of the stepper motor rotates in such a way as to propel and meter the therapeutic infusion substance 36 from the pump 30 to the patient 38.
This invention achieves motor drive energy optimization by dividing the usual long drive pulse into numerous shorter pulses. For example, the long single drive pulse can be performed by 23 shorter pulses applied over the time period t2 in
Many other related functions could be derived from this optimized motor drive invention. For example, if a motor stall is detected, the drive pulse duty cycle could be increased or decreased to overcome the motor stall or to do diagnostics of the stall. An intermittent motor stall might occur due to significant environmental magnetic field interactions such as experienced with magnetic resonance imaging technology.
In addition, if a very large change of power source current is needed, the resultant anticipated power source voltage reduction could be predicted using a power source forecast circuit. The power source forecast circuit identifies that the power source voltage will change abruptly and that the duty cycle must be adjusted. Typically the duty cycle is increased in anticipation of lower power source voltage. Such a dynamic prediction may be needed because of inherent time delays of the power source measuring or processing system. Large power source current changes might occur when the pump infusion rate is abruptly changed from a very low rate to a very high rate or an alarm is activated.
Thus, the implantable therapeutic substance infusion device 30 embodiments with optimized pump motor drive achieves the maximum service life of the power source while maintaining assurance that the stepper motor will function normally over the entire range of power source voltages. An energy efficient motor drive is achieved based on measuring power source voltage and continuously controlling the motor drive pulse parameters to minimize the electrical energy delivered to the pump motor. A predetermined number of drive pulses is selected to operate the stepper motor while substantially maintaining motor stability and avoid motor stall.
Thus, embodiments of the method of controlling an implantable medical device with optimized pump drive are disclosed to increase the infusion devices effective service life. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.
This application is related to the following co-pending applications entitled “Implantable Therapeutic Substance Infusion Device With Motor Stall Detector” by inventors Seifert et al. (attorney docket number P8905.00) and “Implantable Therapeutic Substance Infusion Device With Active Longevity Projection” by inventors Rogers et al. Ser. No. 09/809,809 Filed Mar. 16, 2001 (attorney docket number P8904.00), which are not admitted as prior art with respect to the present invention by its mention in this cross reference section. This application is a divisional of U.S. patent Application Ser. No. 10/125,871, Charles R. Rogers, filed Apr. 22, 2002, published as U.S. patent application Publication No. US 2003/0199855 A1, which is not admitted as prior art with respect to the present invention by its mention in this cross reference section.
Number | Date | Country | |
---|---|---|---|
Parent | 10125871 | Apr 2002 | US |
Child | 11260616 | Oct 2005 | US |