Claims
- 1. In a method of controlling cooling of a cast product in a continuous casting installation comprising a mold and a secondary cooling zone including a succession of cooling sections through which the cast product is guided, wherein the cast product is fictitiously divided into elements and flows of cooling water are delivered to successive ones of the cooling sections at respective flow rates, the quantity C of heat to be extracted from each one of the cast product elements by the cooling water and the surface temperature T thereof are periodically determined by means of respective curves C=f(t) and T=g(t) giving the variations of C and T as a function of the age of the elements, a coefficient of thermal exchange is computed for each one of said elements on the basis of determined values C and T and then a specific water flow rate value is computed for each one of said elements, the values of the flow rate of water to be projected on each one of the elements in each successive cooling section is computed, the water flow rate values for the elements in each successive cooling section in the secondary cooling zone are integrated to determine the water flow rate values for each successive cooling section, and the delivery of cooling water to the successive cooling sections is controlled to maintain the water flow rates at the computed values, curve C=f(t) being displaced parallel to a coordinate axis of time before each computation of the values of the water flow rate for each element until the curve passes through a point whose coordinates are, on the one hand, the total dwell time t.sub.1 of the element in the mold and, on the other hand, the quantity C.sub.1 of heat to be extracted from the element during the total dwell time in the mold: the step of determining heat quantity C.sub.1 by periodically determining the total quantity of heat extracted from the cast product in the mold, distributing this total quantity of extracted heat over the used height of the mold according to a predetermined formula, deriving therefrom the quantity of heat to be extracted from each one of the cast product elements present in the mold at that moment, and computing the total quantity of heat to be extracted in the mold from each one of said elements at the point of emergence from the mold by adding the quantities of extracted heat periodically determined during the dwell time of the element in the mold.
- 2. In the method of claim 1, the fictitious speed of the fictitious cast product portion takes account of the lengths of the fictitious elements.
Priority Claims (1)
Number |
Date |
Country |
Kind |
81 18586 |
Oct 1981 |
FRX |
|
Parent Case Info
This is a continuation-in-part of our copending U.S. patent application Ser. No. 242,143, filed Mar. 9, 1981, and the entire disclosure thereof is incorporated herein by way of reference.
US Referenced Citations (3)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
242143 |
Mar 1981 |
|