The present invention relates to a method of controlling light diffusion and/or glare from a surface, in particular from a reflective back plane. It furthermore relates to a display with controlled light diffusion and to the use of a nanoparticle film for controlling light diffusion and/or glare from a surface.
Reflective displays usually have a light diffusing back plane or a gain reflector in order to maximize the use of surrounding light. They rely on ambient light for information display and hence are ideal to devices for portable electronic equipment, since the need for backlight illumination is obviated. Nevertheless, reflective displays suffer from inherent difficulties in producing high contrast and high colour images with adequate resolution. There are a number of reflective display technologies, incorporating different modes, for example transmission mode (such as TN display), absorption mode (such as guest host display), selective reflection mode (such as cholesteric LCD mode), and scattering mode (such as polymer dispersed liquid crystals). In all of these, the light diffusion properties of the reflective back plane are limited, which means that the viewing angle of the display is narrow. Furthermore, there is a metal-like glare from the back plane of the display due to the interference of the reflected light. One way of approaching this problem has been to include surface irregularities on the reflective back plane, also referred to as protuberances or microreflective structures. By modifying the height, size and/or location of these protuberances researchers have tried to maximize light diffusion from the reflecting back plane. Various methods exist in order to create such protuberances. For example protuberances can be made by using a stamping method. However, if, for some reason, the diffusion properties are to be changed, the stamp must be redesigned, or a completely new stamp must be used. Another method for producing protuberances is photolithography. Again, if the diffusion properties are to be changed, the lithography mask and/or lamp must be redesigned. Consequently, the optimization/redesign of protuberances require considerable resources in terms of time, finances and logistics.
Accordingly, it was an object of the present invention to provide for alternative ways for maximizing the light diffusion from a back plane in a display and/or to reduce the glare from such a plane. Furthermore it was an object of the present invention to provide for a method to maximize light diffusion from such a plane, which is easy to perform and which does not require extensive financial or logistical effort.
All these objects are solved by a method of controlling light diffusion and/or reducing glare from a surface, in particular a back plane in a display, comprising the steps:
a) providing a surface,
b) preparing a dispersion of particles having an average diameter in the range of from about 1 nm to about 10 μm, preferably a dispersion of nanoparticles,
c) applying said dispersion onto said surface,
thus creating a particle film, preferably a nanoparticle film on said surface.
In one embodiment said method comprises the additional step:
d) drying said dispersion on said surface and/or curing said dispersion, preferably by heat or UV.
The film created by said drying and/or said curing step is herein also referred to as “particle film” or “nanoparticle film”. Hence a “particle film” or “nanoparticle film” may be a film prepared by the method comprising steps a)-c) or by the method comprising steps a)-d).
Preferably, said particles are nanoparticles having an average diameter in the range of from 1 nm to 10 μm preferably 5 nm to 900 nm, more preferably 10 nm to 500 nm, most preferably 10 nm to 300 nm.
In one embodiment, said dispersion of particles, preferably of nanoparticles contains one, two or more types of particles, each type being characterized by an average diameter, with different types of particles having different average diameters, wherein preferably said dispersion contains a first type of nanoparticles having an average diameter of 10 nm and a second type of nanoparticles having an average diameter of 300 nm.
In one embodiment, said particle film, preferably said nanoparticle film has a thickness of 0.2 μm to 5 μm, preferably 0.3 μm to 4 μm, more preferably 1 μm to 3 μm, even more preferably 1.5 μm to 2.8 μm, most preferably 2 μm to 3 μm. In one particular embodiment, said particle film, preferably said nanoparticle film has a thickness below 1 μm, preferably in the range of from about 300 nm to about 1 μm, wherein preferably for this embodiment, nanoparticles having an average diameter of about 100 nm are used.
In one embodiment, said dispersion of particles, preferably said dispersion of nanoparticles has a concentration of particles, preferably nanoparticles of 1-50 wt. %, preferably 1-40 wt. %.
Preferably, said particles, preferably said nanoparticles are made of a material selected from the group comprising TiO2, SiO2, CeO2, Al2O3, MnO2, Fe2O3.
In one embodiment, said dispersion of particles, preferably nanoparticles contain at least one solvent which does not dissolve said particles, and/or a UV or heat curable polymer.
The idea of using a solvent is that such solvent may, after application of the dispersion, be removed by drying, leaving a film of particles/nanoparticles behind.
Preferably, said solvent is selected from the group comprising water, ethanol, 1-propanol, isopropanol, butanol, toluene, dichloromethane, THF, 2-propanol, methanol, acetone, DMF and DMSO and mixtures thereof.
The idea of using a heat/UV curable polymer is that the dispersion containing the particles and the non-cured polymer is applied onto said surface, and thereafter a curing step is performed thus creating a particle film having a cured polymer matrix and the particles embedded in said matrix.
In one embodiment, said applying occurs by a process selected from doctor blading, drop casting, spin casting, Langmuir-Blodgett-techniques, sol-gel, spin coating, dip-coating, spray coating.
In one embodiment, said surface is a reflective surface, in particular a reflective back plane in a display, or it is a transparent surface, in particular a transparent back plane in a display.
Preferably, said surface further has an additional layer on top of it facilitating said particle film, preferably said nanoparticle film, adhering to said surface, or protecting said surface from reacting with said particle film, preferably said nanoparticle film.
In a preferred embodiment, said additional layer is made of a material selected from the group comprising polyimide, SiO2, LiF, MgO, Al2O3, Si3N4.
Preferably, said drying and/or said curing occurs in vacuum or in air under ambient conditions. If heat curing is performed, the conditions will depend on the particular heat curable polymer selected.
Preferably said surface is made of a material, selected from the group comprising glass, polymers, silicon, steel, and a composite material, wherein, more preferably said surface is coated with a transparent material, for example indium tin oxide (ITO), fluorine-doped tin oxide (FTO), SnO2, ZnO, Zn2SnO4, ZnSnO3, CdSnO4, TiN, Ag, or with a reflective material, for example a metal, such as silver, gold, platinum.
In one embodiment, steps c) and d) are repeated, preferably several times, thus creating a particle film, preferably a nanoparticle film comprising at least two, preferably several layers of particles, preferably nanoparticles.
In one embodiment said steps a) and b) are performed in the order ab or ba.
The objects of the invention are also solved by a display comprising a back plane having a particle film, preferably a nanoparticle film on top of it, preferably produced by the method according to the present invention.
The objects of the invention are furthermore solved by the use of a particle film, preferably of a nanoparticle film, as defined above, when applied to a surface, as defined above, in particular a reflective back plane in a display, for controlling light diffusion and glare from said surface.
The inventors have surprisingly found that by applying a simple nanoparticle film on a reflecting back plane, the light diffusion properties can be maximized and the glare from such surface can be reduced. For example, reflectivities of 60% and contrast ratios of approximately 6 can be achieved with only a moderate viewing angle dependency.
In the following the invention will be further described by reference to the following examples which are given to illustrate, not to limit the invention. Furthermore, reference is made to the figures, wherein
1-20 wt % TiO2 solution was prepared by mixing Paste 1 (transparent, containing 10 wt % of 10 nm TiO2 particles in 1-propanol and water) and of Paste 2 (scattering, containing 5 wt % of 300 nm TiO2 particles in 1-propanol and water). For example, 4.75 g of Paste 1 and 0.25 g of Paste 2 were mixed in order to achieve 5 wt % Paste 2 TiO2 solution. To ensure a homogeneous mixing, the solution was stirred for one hour and put into ultrasonic bath for 2 h. Then stirred further for 1 h hour.
The solution was doctor-bladed on platinum (Pt) coated glass substrates in order to make a thin homogeneous film. Then the substrates were put on a hotplate of 450° C. for 30 min to evaporate 1-propanol and water in the film. Of course, the substrate is not limited to Pt coated glass substrates, and the choice of the coating & substrate depends on the application. The substrate can be coated with anything transparent (e.g. ITO, FTO, etc.) to reflective (e.g. Ag, Au, etc.). Also the substrate can be made of anything (e.g. polymer, silicon, steel, TFT, composite, etc).
By using a profilometer, the thickness of the layers varied between 1.7 and 2.7 μm depending on the Paste 2 (
The reason for utilizing these TiO2 nano-particles is because using these one can achieve sufficient scattering at such thin layer thickness. Of course, the invention is not limited to nano-particles made from TiO2. Furthermore, one can make similar scattering layer with larger particles size such as 1-3 μm, but this would lead to thicker film as the scattering efficiency of such larger particles drops. The ideal particle size is between 100 nm and 800 nm, preferably between 300 nm and 800 nm, which is comparable to the wavelength of the visible light.
The reflectivity of the TiO2 coated Pt substrates were measured using an LCD evaluation system “Photal Otsuka Electronics LCD-700”. The detector was set at 0° (surface normal) while the incident parallel white light was moved from 150 to 70°. The normalization of 100% was taken using diffusing White standard (Labsphere SRS 99-020).
The results,
The same TiO2 solution was doctor-bladed on TFT back plane in order to make the back plane more diffusive. As can be seen from
The main advantage of the invention is that it allows to modify and/or control the diffusing property of the back plane without having to modify the protuberances themselves. Also, the diffusing layer made by TiO2 particles is thin enough, so that the influence of the layer to the driving voltage of the liquid crystal cell is minimized.
In order to obtain a TiO2 back plane with different degree of scattering property, several layers of TiO2 were doctor bladed on a TFT back plane with polyimide.
Doctor Blading Many Layers
As the number of applied layer increases, the TiO2 layers start flaking (less attached). This can be observed by eye at 4th layer, but according to
Doctor Blading Different Height
Using the particle dispersion of example 1, the ideal TiO2 films were determined to be those with 2-3 μm thickness. However, when using different particle dispersions different thicknesses may prove to be useful. Ideally the thickness of the film is as low as possible, and preferably below 1 μm, for example in the range of from 300 nm to 1 μm.
To obtain more variation in TiO2 scattering layers, doctor blading different thickness was investigated. The preparation was attempted twice. First with drying in vacuum dessicator (Exp. 1), and second with drying in ambient condition overnight (Exp. 2).
As can be seen in
Reflectivity profile of TiO2 layer prepared by different ways were measured. Among those, 2.2 μm TiO2 layer prepared by drying in vacuum showed the highest value at 30 degree incident light.
TiO2 Prepared by Drying in Vacuum
TiO2 Prepared by Drying in Air
The reason that the reflectivity profile differs from the vacuum-dried ones is probably due to packing of TiO2 layer. From observation with eyes, air-dried ones are generally more uniform and contains no flakes at higher TiO2 thickness.
TiO2 Prepared by Doctor Blading Layers
Effect of Glass Substrates on Reflectivity
Because the modified back plane will be placed under a test panel, the effect of glass substrates on reflectivity was measured.
As can be seen in
TiO2 Thickness vs. D-SPDLC Reflectivity & Contrast Ratio
TiO2 thickness effect on D-SPDLC reflectivity and contrast ratio were investigated. Reflectivity (R) values of R=60% and contrast ratio (CR) values of CR=6 could be achieved according to the present invention, in particular with a wide viewing angle and a 2.2 μm TiO2 layer. These results illustrate the invention's suitability to enhance the performance of reflective displays.
3% B4 79TP-TL203 cell which is a sponge polymer dispersed liquid crystal cell, i.e. a polymer dispersed liquid crystal cell (79 wt. % TL213 LC (liquid crystal) in 21 wt. % PN393 polymer) refilled with a different liquid crystal, in this case doped liquid crystal (3 wt. % B4 (Black-4 dye) doped TL203 LC) was placed on various TiO2 layers prepared in vacuum (
An approximately 2.2 μm thick layer of TiO2 particles is favourable in terms of reflectivity, while a layer of approximately 3.2 μm thickness is favoured in terms of broad contrast ratio viewing angle for this particular set up. The precise dimensions may, however, may vary depending on the type and size of particles. In any case the use of a particle film, in particular a nanoparticle film in general on a reflective back plane, as envisaged by the present invention drastically improves reflectivity and contrast ratio values thus opening the door for better display devices.
Number | Date | Country | Kind |
---|---|---|---|
04014949.4 | Jun 2004 | EP | regional |