The invention relates to controlling a rotation speed of a motor of a speed-controllable hoist drive.
When a load is lifted from the ground, both the load and the structure carrying the load are subjected to vertical vibrations. The vertical vibration is mainly caused by an impact load which is generated when the load is quickly lifted from the ground at a high lifting speed.
The impact load may be reduced by keeping the lifting speed low when removing the load from the ground. An experienced hoist operator may apply this method manually by reducing the lifting speed at a point of time when the load comes off the ground.
It is known to equip a hoist drive with a hoist controller arranged to detect the tightening of a cable and the load becoming airborne by monitoring a change in the cable force relative to time, i.e. the time derivative of the cable force. When the time derivative of the cable force becomes too high, the lifting speed is reduced. When the time derivative of the cable force becomes sufficiently low, the lifting speed is raised back to its original value. Such a controller enables quite good results to be achieved in connection with two-speed hoist drives.
A problem with the prevention of impact load based on monitoring the time derivative is that the method is not very well suited to speed-controllable hoist drives wherein the lifting speed may be anything between minimum and maximum speeds.
An object of the invention is thus to provide a method of controlling the rotation speed of a motor of a speed-controllable hoist drive, and a hoist drive so as to enable the aforementioned problem to be alleviated. The object of the invention is achieved by a method and a hoist drive which are characterized by what is stated in the independent claims. Preferred embodiments of the invention are disclosed in the dependent claims.
The idea underlying the invention is that a position derivative of the actual value of the cable force is utilized in formation of a final speed instruction of a speed-controllable hoist drive. A position derivative of the cable force refers to a change in the cable force in relation to the position of a hoisting member.
An advantage of the invention is that by monitoring the position derivative of the actual value of the cable force, more reliable information is obtained on stages of a hoisting event than by using a method which is based on monitoring the time derivative of the cable force. The invention is suitable for use e.g. for indicating the airborneness of a load and for indicating the tightening of a cable.
The invention is now described in closer detail in connection with the preferred embodiments and with reference to the accompanying drawings, in which:
The hoist drive further comprises means for determining an actual value F of a cable force directed to the cable 2, and means for determining position information of the hoisting member 4. The means for determining the actual value F of the cable force may comprise a strain gauge connected to a fastening point of the cable 2. The information on the actual value F of the cable force is taken to the hoist controller 10. The means for determining the position information of the hoisting member 4 may comprise a pulse sensor of the motor 6. The pulse sensor provides information nm relating to the rotation of the motor 6, which is taken to the hoist controller 10. The hoist controller 10 determines the position of the hoisting member 4 by using as initial information the information nm relating to the rotation of the motor 6 as well as a known transmission ratio between the rotation of the motor 6 and the position of the hoisting member 4.
The hoist controller 10 is arranged to determine the position derivative of the actual value of the cable force dF/dz by using as initial information the actual value F of the cable force and the position information of the hoisting member 4. The position derivative of the actual value of the cable force dF/dz thus describes a change in the actual value F of the cable force in relation to a change in the position z of the hoisting member 4. The hoist controller 10 is also arranged to monitor the position derivative of the actual value of the cable force dF/dz it determined, and to control the rotation speed of the motor 6 on the basis thereof. The hoist drive utilizes the values of the position derivative of the actual value of the cable force dF/dz for observing different stages of the load hoisting event.
The hoist controller 10 indicates the tightening of the cable 2 when predetermined conditions are met. The conditions on the basis of which the tightening of the cable is indicated comprise exceeding predetermined impact load limit value of the position derivative of the cable force dFz,IL and impact load limit value of the cable force FIL. The hoist controller 10 is arranged in response to the indicated tightening of the cable to lower the value of the final speed instruction {circumflex over (ω)}m to be equal to a predetermined impact load limit value of the speed instruction ωIL.
In situations where no tightening of the cable 2 has been indicated, the hoist controller 10 is arranged to form a final speed instruction {circumflex over (ω)}m which, within the limits of predetermined parameters, follows the lift speed instruction {circumflex over (ω)}′m. The speed of change of the final speed instruction {circumflex over (ω)}m is kept within predetermined limits, i.e. the final speed instruction {circumflex over (ω)}m does not change stepwise even if the lift speed instruction {circumflex over (ω)}′m would.
In the hoist controller 10, as one condition for the indication of the tightening of the cable 2 the exceeding of the impact load limit value of the cable force FIL is used e.g. because this procedure enables an incorrect indication of the tightening of the cable 2 to be prevented in a situation where the determined position derivative of the actual value of the cable force dF/dz is erroneous. The use of the exceeding of the impact load limit value of the cable force FIL as a condition for the indication of the tightening of the cable is thus a back-up condition. In an embodiment of the invention, the predetermined conditions on the basis of which the tightening of the cable is indicated comprise exceeding the impact load limit value of the position derivative of the cable force dFz,IL but they do not comprise exceeding the impact load limit value of the cable force FIL.
The hoist controller 10 indicates the airborneness of the load at a point of time which follows the indication of the tightening of the cable and at which point of time the position derivative of the actual value of the cable force dF/dz drops below a predetermined load lift-off limit value dFz,LO. An inequality dFz,IL>dFz,LO>0 applies to the limit values of the position derivative of the cable force. In response to the indicated airborneness of the load the hoist controller 10 raises the value of the final speed instruction {circumflex over (ω)}m to be equal to the lift speed instruction {circumflex over (ω)}′m.
The load lift-off limit value dFz,LO of the position derivative is hoist drive specific initial information which has been fed in advance to the hoist controller 10. The impact load limit value of the position derivative of the cable force dFz,IL, impact load limit value of the cable force FIL, and the impact load limit value of the speed instruction ωIL are also hoist drive specific initial information.
In an embodiment of the invention, the position derivative of the actual value of the cable force dF/dz is only used for indicating the airborneness of the load, i.e. the airborneness of the load is indicated when the position derivative of the actual value of the cable force dF/dz drops below the predetermined load lift-off limit value dFz,LO. In this embodiment, the tightening of the cable is indicated by means of a quantity other than the position derivative of the actual value of the cable force dF/dz. The tightening of the cable may be indicated e.g. as a response to the predetermined impact load limit value of the cable force FIL being exceeded.
At a time t=0, when the final speed instruction {circumflex over (ω)}m and the rotation speed ωm are at zero, a lift speed instruction {circumflex over (ω)}′m, which is slightly over 400 rad/s, is brought to the hoist controller 10. According to the first graph of
At a time tOS2
When the tightening of the cable 2 has been indicated, the hoist controller 10 starts to decrease the final speed instruction {circumflex over (ω)}m such that the final speed instruction decreases by an angular acceleration αdec
In theory, when the hoist controller 10 indicates the tightening of the cable, the final speed instruction {circumflex over (ω)}m could be dropped directly to the impact load limit value of the speed instruction ωIL, but in a real hoist drive this could cause e.g. the overcurrent protector of the frequency converter feeding the motor to go off. Consequently, in several embodiments, it is justified to slow down the final speed instruction to the impact load limit value of the speed instruction by using finite deceleration.
It can be seen in the second and third graphs of
At a time tOS3
It can be seen in the first graph of
The fourth graph of
In the simulated hoisting event of
Since the method according to the invention enables disadvantageously high impact loads to be prevented automatically, the lift speed instruction to be fed to the hoist controller may, when the load is being lifted from the ground, even equal the maximum allowable rotation speed of the motor of the hoist drive. It is thus possible to lift the load smoothly from the ground even irrespectively of the experience and occupational skills of the operator of the hoist drive. This is why the method according to the invention is also well suited for automatic hoists as well.
In
The position of the hoisting member 4 is hereinabove indicated by ‘z’, which in many contexts refers to a vertical dimension. It is clear, however, that the utilization of the invention is by no means limited to embodiments wherein the load moves in the vertical direction only.
It is obvious to one skilled in the art that the basic idea of the invention may be implemented in many different ways. The invention and its embodiments are thus not restricted to the above-described examples but they may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20085633 | Jun 2008 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2009/050505 | 6/12/2009 | WO | 00 | 12/13/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/156573 | 12/30/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3517830 | Virkkala | Jun 1970 | A |
3612486 | Martin et al. | Oct 1971 | A |
3921818 | Yamagishi | Nov 1975 | A |
4304337 | Dummer | Dec 1981 | A |
4520778 | Nanjo et al. | Jun 1985 | A |
4556830 | Schwalm et al. | Dec 1985 | A |
4756432 | Kawashima et al. | Jul 1988 | A |
4917206 | Hara | Apr 1990 | A |
4997095 | Jones et al. | Mar 1991 | A |
5105135 | Nashiki et al. | Apr 1992 | A |
5127533 | Virkkunen | Jul 1992 | A |
5160056 | Yoshimatsu et al. | Nov 1992 | A |
5282136 | Zui et al. | Jan 1994 | A |
5296791 | Hipp | Mar 1994 | A |
5355060 | Peterson | Oct 1994 | A |
5371452 | Kato | Dec 1994 | A |
5392935 | Kazama et al. | Feb 1995 | A |
5529193 | Hytonen | Jun 1996 | A |
5550733 | Yun et al. | Aug 1996 | A |
5645181 | Ichiba et al. | Jul 1997 | A |
5671912 | Langford et al. | Sep 1997 | A |
5785191 | Feddema et al. | Jul 1998 | A |
6102221 | Habisohn | Aug 2000 | A |
6241462 | Wannasuphoprasit et al. | Jun 2001 | B1 |
6366049 | Chen et al. | Apr 2002 | B1 |
6474922 | Bachman et al. | Nov 2002 | B2 |
7239106 | Rodnunsky et al. | Jul 2007 | B2 |
7820115 | Zatechka et al. | Oct 2010 | B2 |
8005598 | Terashima et al. | Aug 2011 | B2 |
20040164041 | Sawodny et al. | Aug 2004 | A1 |
20050017228 | Werner | Jan 2005 | A1 |
20070001158 | Hoffend | Jan 2007 | A1 |
20070023378 | Porma et al. | Feb 2007 | A1 |
20090272710 | Golder | Nov 2009 | A1 |
20110006025 | Schneider et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1826283 | Aug 2006 | CN |
101067304 | Nov 2007 | CN |
0 578 280 | Jan 1994 | EP |
5-268788 | Oct 1993 | JP |
9-272689 | Oct 1997 | JP |
WO 02070392 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20110089388 A1 | Apr 2011 | US |