Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle

Information

  • Patent Grant
  • 9833838
  • Patent Number
    9,833,838
  • Date Filed
    Tuesday, October 21, 2014
    9 years ago
  • Date Issued
    Tuesday, December 5, 2017
    6 years ago
Abstract
A composite particle comprises a core, a shielding layer deposited on the core, and further comprises an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region, a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, and optionally, an adhesion metal layer deposited on the metallic layer, wherein the composite particles have a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F. An article comprises composite particles, wherein has a corrosion rates of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F.
Description
BACKGROUND

Certain downhole operations involve placement of elements in a downhole environment, where the element performs its function, and is then removed. For example, elements such as ball/ball seat assemblies and fracture (frac) plugs are downhole elements used to seal off lower zones in a borehole in order to carry out a hydraulic fracturing process (also referred to in the art as “fracking”) to break up different zones of reservoir rock. After the fracking operation, the ball/ball seat or plugs are then removed to allow fluid flow to or from the fractured rock.


Balls and/or ball seats, and frac plugs, may be formed of a corrodible material so that they need not be physically removed intact from the downhole environment. In this way, when the operation involving the ball/ball seat or frac plug is completed, the ball, ball seat, and/or frac plug corrodes away. Otherwise, the downhole article may have to remain in the hole for a longer period than is necessary for the operation.


To facilitate removal, such elements may be formed of a material that reacts with the ambient downhole environment so that they need not be physically removed by, for example, a mechanical operation, but may instead corrode or dissolve under downhole conditions. However, while corrosion rates of, for example, an alloy used to prepare a corrodible article can be controlled by adjusting alloy composition, an alternative way of controlling the corrosion rate of a downhole article is desirable.


Corrodible materials may include those having a high activity on the saltwater galvanic series, such as a magnesium alloy adjusted for corrosion rate. It has been found that adjusting the amount of trace contaminants in a magnesium alloy can have a significant impact on the corrosion rate of such alloys (Song, G. and Atrens, A., “Understanding Magnesium Corrosion: A Framework for Improved Alloy Performance,” Adv. Eng. Mater. 2003, 5(12) pp. 837-858). For example, metals such as nickel, iron, copper, calcium, etc., may be added to magnesium to increase the corrosion rate and other metals such as zirconium, yttrium, etc. may be added to decrease the corrosion rate. Balancing the amounts of such additives to achieve a desired bulk corrosion rate can in this way control overall corrosion of articles made from the alloy; however, such an approach requires preparation of multiple batches of alloy, requiring high batch-to-batch reproducibility and precise, reproducible control of metal additives or contaminants in the alloy.


There accordingly remains a need for controlling the overall corrosion rate of magnesium alloys for use in downhole articles without need for fine adjustment of alloy composition and with improved corrosion control.


SUMMARY

The above and other deficiencies of the prior art are overcome by, in an embodiment, a composite particle comprising a core, a shielding layer deposited on the core, and further comprising an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region, a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, and optionally, an adhesion metal layer deposited on the metallic layer, wherein the composite particles have a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F.


In another embodiment, a composite particle comprises a magnesium-aluminum alloy core, a shielding layer comprising an aluminum-containing layer deposited on the core, and further comprising an interlayer region comprising α-Mg and γ-Mg17Al12 formed at the interface between the magnesium alloy core and the aluminum-containing layer, and further comprising inclusions of alumina, magnesia, or a combination comprising at least one of these oxides, a metallic layer deposited on the shielding layer, the metallic layer comprising Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing, an aluminum-containing shielding layer deposited on the metallic layer, and optionally, an aluminum-containing adhesion metal layer, wherein the interlayer region, shielding layer, metallic layer, and optional adhesion metal layer are inter-dispersed with each other, wherein the composite particles have a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F.


In another embodiment, a method of adjusting corrosion rate in an aqueous electrolyte is disclosed for a composite particle having a core, a shielding layer deposited on the core, and further comprising an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region, a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, and optionally, an adhesion metal layer deposited on the metallic layer, the method comprising selecting the metallic layer such that the lower the reactivity of the metallic layer is relative to the shielding layer, the greater the corrosion rate, and selecting the amount, thickness, or both amounts and thicknesses of the shielding layer and metallic layer such that the less the amount, thickness, or both amount and thickness of the shielding layer relative to those of the metallic layer, the greater the corrosion rate, wherein the composite particle is adjusted to have a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F. In an embodiment, an article comprising such particles, formed, forged, machined, or otherwise provided with useful features. Such articles may perform many required functions, then may be removed by corrosion processes; for example, a plug may block pressure in a bore for a planned time, after which it may be removed by corrosion provided by the structure of the article with its composing particles.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are numbered alike in the several Figures:



FIG. 1A shows a cross-sectional view of a composite particle 100a having a multilayer structure and FIG. 1B shows a cross-sectional view of a composite particle 100b having an inter-dispersed layer;



FIG. 2A shows a cross-sectional view of a composite particle 200a having a multilayer structure and FIG. 2B shows a cross-sectional view of a composite particle 200b having an inter-dispersed layer; and



FIG. 3 shows a cross-sectional view of an exemplary corrodible downhole article 300 prepared from the composite particles 310.





DETAILED DESCRIPTION OF THE INVENTION

Disclosed herein is a composite particle useful for fabricating a corrodible article. The composite particle has multilayered structure of a core of a high reactivity material, such as magnesium or a magnesium alloy, coated with a shielding layer such as for example, aluminum. At the interface of the shielding layer and the core, an intermetallic phase can form, such as a crystalline metallic compound of magnesium and aluminum, and is present in discontinuous regions. The shielding layer, which includes the intermetallic regions, has a layer of a noble material with a lower reactivity (i.e., more noble than the shielding layer, though comparable in reactivity to the intermetallic phase) disposed on it. An additional layer of an adhesive metal, for example, aluminum, can be disposed over the noble material layer, to provide adhesion between particles upon molding. The interlayer region, shielding layer, noble material layer (referred to herein as the “metallic layer” where the noble material is a metal), and optional adhesion layer are believed to be inter-dispersed with each other, and form a compositionally varied outer shell which is also inter-dispersed with the core.


The noble material layer, which has a lower reactivity relative to the core material, acts as a cathode, whereas the core, made of a metal such as magnesium which is more reactive than the noble metal layer, is anodic relative to the noble metal layer. The shielding layer, which includes the intermetallic phase, is also cathodic relative to the core, but anodic relative to the noble metal layer. A galvanic discharge cycle (e.g., corrosion) occurs between the relatively anodic and relatively cathodic materials in the presence of an electrolyte. By adjusting the composition of the noble metal layer relative to the core and shielding layers, and by adjusting the amounts and/or thicknesses of the shielding and noble metal layers, the corrosion rate of the composite particle is adjusted.


The composite particles are formed into articles by compressing and/or shaping the particles using, for example, cold molding followed by forging. In another embodiment, the article can be formed by forceful plastic or superplastic forming, shear forming, shear and compression forming, hot rolling, roll forming, extrusion, die forming, upsetting, coining, explosive forming, hydroforming, or any methods that can heat and compress the material.


The core includes any material suitable for use in a downhole environment, provided the core is corrodible in the downhole environment relative to a second material having a different reactivity. In an embodiment, the composite particle thus includes a magnesium-containing core. A magnesium-containing core includes any such alloy which is corrodible in a corrosive environment including those typically encountered downhole, such as an aqueous environment which includes salt (i.e., brine), or an acidic or corrosive agent such as hydrogen sulfide, hydrochloric acid, or other such corrosive agents. Magnesium alloys suitable for use include alloys of magnesium (Mg) with aluminum (Al), cadmium (Cd), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), tungsten (W), silicon (Si), silver (Ag), strontium (Sr), thorium (Th), zinc (Zn), zirconium (Zr), or a combination comprising at least one of these elements. Particularly useful alloys include magnesium alloy particles including those prepared from magnesium alloyed with Ni, W, Co, Cu, Fe, or other metals. Alloying or trace elements can be included in varying amounts to adjust the corrosion rate of the magnesium. For example, four of these elements (cadmium, calcium, silver, and zinc) have mild-to-moderate accelerating effects on corrosion rates, whereas four others (copper, cobalt, iron, and nickel) have a still greater accelerating effect on corrosion. Exemplary commercially available magnesium alloys include different combinations of the above alloying elements and achieve different degrees of corrosion resistance. For example, these alloys include but are not limited to magnesium alloyed with aluminum, strontium, and manganese such as AJ62, AJ50x, AJ51x, and AJ52x alloys, and magnesium alloyed with aluminum, zinc, and manganese which include AZ91A-E alloys.


It will be appreciated that alloys having corrosion rates greater than those of the above exemplary alloys are contemplated as being useful herein. For example, nickel has been found to be useful in decreasing the corrosion resistance (i.e., increasing the corrosion rate) of magnesium alloys when included in amounts of less than or equal to about 0.5 wt %, specifically less than or equal to about 0.4 wt %, and more specifically less than or equal to about 0.3 wt %, to provide a useful corrosion rate for the corrodible downhole article. In another embodiment, the magnesium-containing core comprises a magnesium-aluminum alloy.


Particle sizes for the magnesium alloy cores may be from about 50 to about 150 micrometers (μm), more specifically about 60 to about 140 μm, and still more specifically about 70 to about 130 μm. Useful magnesium alloys may include combinations of the above elements and/or contaminants sufficient to achieve a corrosion rate for the magnesium alloy core of about 0.1 to about 20 mg/cm2/hour, specifically about 1 to about 15 mg/cm2/hour using aqueous 3 wt % KCl solution at 200° F. (93° C.).


The composite particle includes a shielding layer. The shielding layer is formed by depositing on the core a material having a lower reactivity than that of the core. In an exemplary embodiment, the shielding layer is an aluminum-containing layer deposited on the core. In an embodiment, the core is a magnesium alloy core and the shielding layer is an aluminum-containing layer. As used herein “on” and “deposited on” mean that a layer may or may not be in direct contact with the underlying surface to which the layer is applied, unless otherwise specified as by stating that the layers are at least partially in contact. It will be further understood that “deposited” and “depositing,” when used in respect to a method, indicates the action of deposition, whereas “deposited” when used in the context of a composition or article, merely indicates the juxtaposition of the layer with respect to the substrate and does not indicate a process of deposition. The shielding layer further comprises an interlayer region formed at the interface of the core and shielding layer, which is compositionally derived from the core and shielding layers. In an embodiment, the interlayer region forms at the boundary of a magnesium-containing core and an aluminum-containing shielding layer, and the interlayer region comprises an intermetallic compound. For example, magnesium-aluminum alloys include an α-Mg phase, and in addition, a γ-Mg17Al12 intermetallic phase which accumulates at the grain boundaries within the Mg—Al alloy. The intermetallic γ-Mg17Al12 phase is generally present in amounts of less than 30 wt % of the Mg—Al alloy. Depending upon the composition, additional phases can also be present, including solid solution Al, and other intermetallic phases such as γ-Mg2Al3. Upon deposition of the aluminum-containing shielding layer, the γ-Mg17Al12 phase forms and accumulates as well at the interface of the shielding layer and the Mg-containing core. Thermal treatment can accelerate the formation of the interlayer region. For example, heating at temperatures less than the eutectic point (e.g., less than or equal to about 450° C., depending on the alloy composition, and as long as the eutectic point is not exceeded) for about 15 minutes can form an intermetallic phase at the interface of the Mg-containing core and the Al-containing layer. The composite particle thus includes, as part of the interlayer region, the intermetallic compound γ-Mg17Al12. The interlayer region forms over the entire contacting area of the Mg-containing core and the Al-containing layer, or a portion of the contacting area. The deposition method and any heat treating can be adjusted so that the intermetallic phase intervenes between a portion of contacting surfaces of the Mg alloy core and the Al-containing layer. The shielding layer further includes an oxide of one or more of the metals of which the core and/or shielding layers are comprised. For example, where the core comprises magnesium or a magnesium-aluminum alloy, and the shielding layer comprises aluminum, the shielding layer optionally includes oxides of magnesium (such as magnesia), aluminum (such as alumina), or a combination comprising at least one of the foregoing.


The composite particle further includes a metallic layer not identical to the shielding layer and deposited on the shielding layer. The metallic layer has a lower reactivity relative to the core, based on the saltwater galvanic series from lower reactivity (i.e., more noble metals) to high reactivity (i.e., less noble metals). In an embodiment, the metal(s) used for the metallic layer allow for the formation of hydrogen when used as a cathode in an electrochemical cell. The metallic layer thus comprises a group 6-11 transition metal. Specifically, the group 6-11 transition metal includes Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing.


The composite particle optionally includes an adhesion layer deposited on the metallic layer. The adhesion layer comprises a material which promotes adhesion between the composite particles. An exemplary adhesion layer includes aluminum or an aluminum alloy. Upon compressing and forging of the adhesion layer-coated composite particles to form a molded article, the particles bind to one another through interparticle contact via the material of the adhesion layer, to further provide mechanical strength to the article.


The layers (shielding layer, metallic layer, and optional adhesion layer) may each have an average thickness of about 0.05 to about 0.15 μm, and specifically about 0.07 to about 0.13 μm. In an embodiment, each layer does not completely cover the underlying layer, and the layer coverage is thus discontinuous. Furthermore, where the layers are “on” one another, interstitial spaces at the interfaces of the layers may be present. In an embodiment, the interlayer region, shielding layer, metallic layer, and optional adhesion metal layer are inter-dispersed with each other. As used herein, “inter-dispersed” means that two or more adjacent layers interpenetrate into or through each other in intimate admixture, where it will be appreciated that two (or more) inter-dispersed layers have, on average, a compositional gradient due to the interpenetration of one layer into the adjacent layer.


The core and shielding layer, shielding layer and metallic layer, and metallic layer and optional adhesion layer are each thus in mutual partial contact and are inter-dispersed such that components of the core, the shielding layer, and the metallic layer are present at the exposed surface of the composite particle.


In an embodiment, the composite particles have a corrosion rate of about 0.1 to about 450 mg/cm2/hour, about 0.5 to about 400 mg/cm2/hour, about 1 to about 350 mg/cm2/hour, about 5 to about 300 mg/cm2/hour; or about 10 to about 250 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F. (93° C.).


In a specific embodiment, the shielding layer is an aluminum-containing layer, and the core is a magnesium-containing core. In an embodiment, the shielding layer comprises aluminum. In another embodiment, the shielding layer further comprises, in addition to aluminum, inclusions of alumina, magnesia, or a combination comprising at least one of these oxides. The shielding layer further includes an interlayer region formed at the interface between the magnesium alloy core and the first aluminum-containing layer. In an embodiment, the interlayer region comprises γ-Mg17Al12.


Also in a specific embodiment, the metallic layer comprises a group 6-11 transition metal on the shielding layer. The group 6-11 transition metal includes Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing.


Optionally, in a specific embodiment, the adhesion layer is an aluminum-containing layer deposited on the metallic layer.


Deposition of the shielding, metallic, and adhesion layers on the core is not particularly limited. Where either or both of the shielding and optional adhesion layers include(s) aluminum or an aluminum alloy, uniformly depositing the aluminum layer(s) on a magnesium alloy core particle is accomplished in one exemplary embodiment by decomposition of an organometallic compound, such as triethylaluminum (having a boiling point of 128-130° C. at 50 mm Hg), after introducing the organometallic compound into a fluidized bed reactor containing the magnesium alloy core particles, to deposit the shielding layer, or by introducing the organometallic compound into a reactor containing magnesium alloy core/shielding layer/metallic layer particles to deposit the adhesion layer. The interlayer region, which in this case includes an intermetallic compound such as γ-Mg17Al12, further forms at the interface of the Mg alloy core and the shielding layer by a thermal treatment, such as sintering and/or annealing, and/or forging of an article molded from the composite particles, at a temperature below the melting point of all or part of the composite particle.


Similarly, depositing a uniform metallic layer is also not particularly limited, and may be accomplished by, for example, decomposition of an organometallic compound (such as nickel carbonyl where the metallic layer is nickel) after introducing the organometallic compound into a fluidized bed reactor containing the magnesium alloy core particles coated with the shielding layer.


The core can also be coated with materials for the shielding layer, metallic layer, and optional adhesion layer using a physical mixing method. For example, the core can be admixed with one or more components of the shielding layer, metallic layer, and optional adhesion layer by cryo-milling, ball milling, or the like. In this way, the shielding, metallic layer and adhesion layer components can be included sequentially, or components for two or all three layers included simultaneously. Combinations of deposition methods including vapor phase deposition and physical methods can also be used to provide the composite particles. Where all components are included by physical mixing simultaneously, it will be appreciated that a single layer is formed which is a composite of the shielding layer, metallic layer, and adhesion layer components.


In another embodiment, the core comprises an inner core of a first core material and an outer core of a second core material, the inner core material having a lower reactivity than that of the outer core. The inner core is any material useful for depositing thereon a high reactivity material such as magnesium, without limitation. The inner core can thus be any suitable, low reactivity material, such as a 6-11 transition metal including Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing; a metal oxide such as alumina, silica, silicates, iron oxides, titania, tungstates, and the like; a polymer including a phenolic polymer; ceramics; glasses; or other such materials. In an exemplary embodiment, the inner core comprises an aluminum alloy, nickel, iron, alumina, titania or silica, and the outer core comprises magnesium or a magnesium alloy as described hereinabove. The outer core is deposited on the inner core using any suitable deposition method such as physical vapor deposition (PVD) of the metallic magnesium or magnesium alloy in a fluidized bed reactor. The core structure having inner and outer cores is then coated with shielding layer, metallic layer, and optional adhesion layer as described above to form the composite particle.


The composite particle generally has a particle size from about 50 to about 150 micrometers (μm), and more specifically about 60 to about 140 μm.


In another embodiment, a method of adjusting corrosion rate of a composite particle, or article prepared therefrom, is disclosed. In an embodiment, adjusting is accomplished by selecting the composition of the metallic layer to have the desired reactivity, where the lower the reactivity of the metallic layer relative to the shielding layer (and by definition, to both the core and interlayer region), the faster the corrosion rate; and conversely, the higher the reactivity of the metallic layer relative to the shielding layer, the slower the corrosion rate. Alternatively or in addition, in an embodiment, adjusting is accomplished by increasing the amount and/or thickness of the shielding layer for any given amount and/or thickness of metallic layer. It will further be appreciated that additional control of the corrosion rate is accomplished by the degree of inter-dispersion of the core, interlayer region, shielding layer, and metallic layer, where the more highly inter-dispersed these layers are, the greater the corrosion rate, and conversely, the less inter-dispersed the layers, the slower the corrosion rate. Thus, amount and thickness as used herein are related in that the higher the amount of a layer, expressed as weight percent based on the weight of the composite particle, the greater the thickness.


The surface of the composite particles includes both anodic and cathodic regions of the inter-dispersed layers. It will be understood that “anodic regions” and “cathodic regions” are relative terms, based on the relative reactivity of the inter-dispersed materials. For example as discussed above, magnesium (from the core) is anodic relative to the cathodic intermetallic compound of the interlayer region (γ-Mg17Al12) and cathodic aluminum from the interlayer region/shielding layer, and anodic relative to nickel from the cathodic metallic layer. Similarly, intermetallic compound (γ-Mg17Al12) is anodic relative to cathodic aluminum from the shielding layer and anodic relative to nickel from the cathodic metallic layer; and aluminum from the shielding layer is anodic relative to nickel from the metallic layer.


In this way, upon exposure of the surface of the composite particle (and any article made from the composite particles) to an electrolyte, multiple localized corrosion mechanisms take place in which reversal of anodic and cathodic regions occur. For example, after exposed anodic core material (such as magnesium) is corroded, a previously cathodic material (such as intermetallic compound or aluminum in the shielding layer) becomes anodic and is corroded by interaction with the more cathodic metallic layer (e.g., which includes nickel, etc.). As the surface corrodes away and new, more anodic core material such as magnesium is exposed, the situation again reverses and the aluminum or intermetallic compound becomes cathodic toward the core material.


As corrosion advances in localized regions on the surface between anodic and cathodic regions in the presence of an electrolyte fluid (water, brine, etc.), these regions, referred to herein as micro-cells, can corrode outward over the surface of the composite particle and link to other micro-cells to form larger corrosion regions, which in turn can link to other corrosion regions, etc., as further anodic material such as magnesium (from the core) or intermetallic γ-Mg17Al12 (from the interlayer region/shielding layer) is exposed. After these regions corrode, new, underlying anodic materials from the core are exposed to the electrolyte. Upon corroding, these inter-dispersed layers can thus become permeable to the electrolyte fluid. This allows percolation of electrolytic fluids into the corroding surface to penetrate and undermine the layers, and the process repeats until the corrodible materials are consumed. It will be appreciated that the presence of metal oxides at the core/shielding layer interface also decreases the corrosion rate of the core at the interface by acting as an inert barrier, and thus affects the relative anodic/cathodic character of the micro-cell (for example, where alumina and/or magnesia are present between a magnesium core and the intermetallic compound, the intermetallic compound is insulated from the core and will be anodic relative to the metallic layer). In this way, the presence of inclusions of metal oxides affects the overall corrosion rate of the composite particle.


Where the core comprises an inner and outer core in which the outer core is anodic, corrosion advances until only the inner core remains. The inner core thus exposed no longer has the structural integrity and cohesiveness of the composite particle, and disperses into the surrounding fluid as a suspension of particles, and can be removed in this way.


Thus, in an embodiment, a method of adjusting corrosion rate in a composite particle includes selecting the metallic layer such that the lower the reactivity of the metallic layer is relative to the shielding layer, the greater the corrosion rate. In another embodiment, a method of adjusting corrosion rate in a composite particle includes selecting the amount, thickness, or both amounts and thicknesses of the shielding layer and the metallic layer such that the less the amount, thickness, or both amount and thickness of the shielding layer are relative to those of the metallic layer, the greater the corrosion rate. The interlayer region, shielding layer, metallic layer, and optional adhesion metal layer are inter-dispersed with each other, and have compositions as discussed above.


In another embodiment, an article comprises the composite particles which may be provided as a powder or other suitable form such as a pre-compressed pellet. Articles may be prepared from the composite particle by compressing or otherwise shaping the composite particles, to form an article having the appropriate shape. For example, the composite particles are molded or compressed into the desired shape by cold compression using an isostatic press at about 40 to about 80 ksi (about 275 to about 550 MPa), followed by forging or sintering and machining, to provide an article having the desired shape and dimensions. As disclosed herein, forging or sintering is carried out at a temperature below that of the melting point of the components.


Thus, a method of forming an article comprises molding the composite particles and forging the molded article. The article has a corrosion rate of about 0.1 to about 450 mg/cm2/hour, about 0.5 to about 400 mg/cm2/hour, about 1 to about 350 mg/cm2/hour, about 5 to about 300 mg/cm2/hour; or about 10 to about 250 mg/cm2/hour using an aqueous 3 wt. % KCl solution at 200° F. (93° C.).


The article so prepared is referred to as a controlled electrolytic material (CEM) article, and useful under downhole conditions. The articles can be a single component article. In an embodiment, the articles inhibit flow. In another embodiment, the articles are pumpable within a downhole environment.


Illustrative single component articles include flappers, hold down dogs and springs, screen protectors, seal bore protectors, electric submersible pump space out subs, full bore guns, chemical encapsulations, slips, dogs, springs and collet restraints, liner setting sleeves, timing actuation devices, emergency grapple release, chemical encapsulation containers, screen protectors, beaded screen protectors, whipstock lugs, whipstock coatings, pins, set screws, emergency release tools, gas generators, mandrels, release mechanisms, staging collars, C-rings, components of perforating gun systems, disintegrable whipstock for casing exit tools, shear pins, dissolvable body locking rings, mud motor stators, progressive cavity pump stators, and shear screws.


Illustrative articles that inhibit flow include seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve seals, sub-surface safety valve flapper seal, dynamic seals, V-rings, back up rings, drill bit seals, liner port plugs, atmospheric discs, atmospheric chamber discs, debris barriers, drill in stim liner plugs, inflow control device plugs, flappers, seats, ball seats, direct connect disks, drill-in linear disks, gas lift valve plug, fluid loss control flappers, electric submersible pump seals, shear out plugs, flapper valves, gaslift valves, and sleeves.


Illustrative articles that are pumpable include plugs, direct connect plugs, bridge plugs, wiper plugs, frac plugs, components of frac plugs, drill in sand control beaded screen plugs, inflow control device plugs, polymeric plugs, disappearing wiper plugs, cementing plugs, balls, diverter balls, shifting and setting balls, swabbing element protectors, buoyant recorders, pumpable collets, float shoes, and darts.


In a specific embodiment, articles include, for example a ball, a ball seat, a fracture plug, or other such downhole article. However, it should be understood that though these articles are disclosed, there are other uses for the composite particles in powder form. For example, the composite particles may be included in a matrix that is non-metallic, and may be applied to a surface as a coating, such as a paint, powder coating, etc., where a controlled electrolytic process occurs in the presence of water, and preferably, water plus an electrolyte. Such processes may include coatings for marine applications such as drill rigs, boat or ship hulls, undersea tools, or other such applications. Such an electrolytic material may provide a sacrificial layer to mitigate or prevent corrosion of an underlying metal layer, or may alternatively prevent adhesion of, for example, marine organisms to the underwater surface coated with the composite particles.


An exemplary use is described herein. FIGS. 1A and 1B show in schematic cross-section different structural variants of the composite particles 100a and 100b. In FIG. 1A, the composite particle 100a includes a core 110; a shielding layer 120 which includes an intermetallic region 121 (heavy dashed line) and aluminum layer 122 surrounding the intermetallic region; a metallic layer 130, and optionally, a second aluminum layer 140 which functions as an adhesion layer. This adhesion layer 140 may be included to promote the adhesion of particles when compressed together to form a shaped article. It will be appreciated that the layers, while shown as discrete core-shell layers, can also be intermixed at the interfaces and/or the layers can be discontinuous on the surfaces to which they are applied, such that core 110 is actually in contact with shielding layer 120 and/or metallic layer 130 and/or adhesion layer 140.


In FIG. 1B, composite particle 100b has a core 110 and an inter-dispersed layer 150 which includes the components of the interlayer region, shielding layer, metallic layer, and optional adhesion layer (not shown individually in FIG. 1B). It will be appreciated that such an inter-dispersed structure can derive from a discontinuous core-shell structure as described in FIG. 1A, in which inter-dispersion is enhanced by thermal treatment (e.g., sintering); or the inter-dispersed structure can derive from a physical method of forming the particles (e.g., cryo- or ball-milling) or by including precursor materials for more than one layer into a fluidized bed reactor during layer formation. The inter-dispersed layer 150 is homogeneously inter-dispersed with the components of the different layers (interlayer region, shielding layer, metallic layer) equally distributed throughout inter-dispersed layer 150, or is non-uniformly distributed, for example, in a gradient where the composition changes from predominantly interlayer region composition at the interface of inter-dispersed layer 150 and core 110, to predominantly adhesion layer composition at the outer surface of inter-dispersed layer 150.



FIGS. 2A and 2B show, similar to FIGS. 1A and 1B, cross-sectional views of different structural variants of the composite particles 200a and 200b. In FIG. 2A, the composite particle 200a includes a core 210 comprising inner core 211 and outer core 212; a shielding layer 220 which includes an intermetallic region 221 (heavy dashed line) and aluminum layer 222 surrounding the intermetallic region; a metallic layer 230, and optionally, a second aluminum layer 240 which functions as an adhesion layer. As in FIG. 1A, it will be appreciated that the layers, while shown as discrete core-shell layers, can also be intermixed at the interfaces and/or the layers can be discontinuous on the surfaces to which they are applied.


In FIG. 2B, composite particle 200b has a core 210 comprising inner core 211 and outer core 212 and an inter-dispersed layer 250 which includes the components of the interlayer region, shielding layer, metallic layer, and optional adhesion layer (not shown individually in FIG. 2B). As in FIG. 1B, it will be appreciated that such an inter-dispersed structure can derive from a discontinuous core-shell structure, from milling to form the particles, or by including precursor materials for more than one layer into a fluidized bed reactor during layer formation. Also as in FIG. 1B, the composition of inter-dispersed layer 250 is homogeneously distributed, or is non-uniformly distributed, such as for example, in a gradient.


In FIG. 3, as an exemplary article, a ball 300 is shown. In FIG. 3, the ball 300 is composed of composite particles 310. During cold compacting to form ball 300, the powdered composite particles 310 are compressed into and shaped to form the spherical ball 300 with interstitial spaces 320, where the interstitial spaces 320 are further reduced in volume by forging and/or sintering to reduce free volume from about 20% after compacting to less than about 5%, specifically less than about 3%, and still more specifically less than about 1% after forging/sintering. When used in conjunction with a ball seat (not shown) and seated in the ball seat to prevent fluid flow past the ball/ball seat, ball 300 forms a downhole seal for isolating, for example, a fracture zone located below the ball/ball seat assembly.


While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.


All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including at least one of that term (e.g., the colorant(s) includes at least one colorant). “Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event occurs and instances where it does not. As used herein, “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like. All references are incorporated herein by reference.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).

Claims
  • 1. A composite particle, comprising: a core,a shielding layer deposited on the core, and further comprising an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region,a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, andoptionally, an adhesion metal layer deposited on the metallic layer;wherein the shielding layer, the metallic layer, and the optional adhesion metal layer are discontinuous; the core and shielding layer, shielding layer and metallic layer, and metallic layer and optional adhesion metal layer, are each in mutual partial contact and are inter-dispersed such that components of the core, the shielding layer, and the metallic layer are present at an exposed surface of the composite particle; andwherein the shielding layer is cathodic relative to the core, and anodic relative to the metallic layer.
  • 2. The composite particle of claim 1, wherein the core comprises magnesium, the shielding layer comprises aluminum and, optionally, oxides of aluminum, magnesium, or a combination comprising at least one of the foregoing, and the interlayer region comprises an intermetallic compound.
  • 3. The composite particle of claim 2, wherein the intermetallic compound is γ-Mg17Al12.
  • 4. The composite particle of claim 1, wherein the metallic layer comprises a group 6-11 transition metal.
  • 5. The composite particle of claim 4, wherein the group 6-11 transition metal comprises one or more of the following: Ni; Fe; Cu; Co; W; or alloys thereof.
  • 6. The composite particle of claim 1, wherein the core comprises an inner core of a first core material and an outer core of a second core material, the inner core material having a lower activity than that of the outer core.
  • 7. The composite particle of claim 6, wherein the inner core comprises aluminum, and the outer core comprises magnesium.
  • 8. The composite particle of claim 1, wherein the core comprises a magnesium-aluminum alloy.
  • 9. A composite particle, comprising: a magnesium-aluminum alloy core,a shielding layer comprising an aluminum-containing layer deposited on the core, further comprising an interlayer region comprising γ-Mg17Al12 formed at the interface between the magnesium alloy core and the aluminum-containing layer, and further comprising inclusions of alumina, magnesia, or a combination comprising at least one of these oxides,a metallic layer deposited on the shielding layer, the metallic layer comprising one or more of the following: Ni; Fe; Cu; Co; W; or alloys thereof,andoptionally, an aluminum-containing adhesion metal layer,wherein the shielding layer, the metallic layer, and the optional adhesion metal layer are discontinuous, the core and shielding layer, shielding layer and metallic layer, and metallic layer and optional adhesion metal layer, are each in mutual partial contact and are inter-dispersed such that components of the core, the shielding layer, and the metallic layer are present at an exposed surface of the composite particle; and wherein the shielding layer is cathodic relative to the core, and anodic relative to the metallic layer.
  • 10. A method of forming an article, comprising compressing or shaping the composite particles of claim 1.
  • 11. An article comprising the composite particles of claim 1.
  • 12. The article of claim 11, wherein the article is a single component; and wherein the article has a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt. % KCl solution at 200° F.
  • 13. The article of claim 12, wherein the article comprises a flapper, a hold down dog and spring, a screen protector, a seal bore protector, an electric submersible pump space out sub, a full bore gun, a chemical encapsulation, a slip, a dog, a spring and collet restraint, a liner setting sleeve, a timing actuation device, an emergency grapple release, a chemical encapsulation container, a screen protector, a beaded screen protector, a whipstock lug, a whipstock coating, a pin, a set screw, an emergency release tool, a gas generator, a mandrel, a release mechanism, a staging collar, a C-ring, a component of perforating gun system, a disintegrable whipstock for casing exit tool, a shear pin, a dissolvable body locking ring, a mud motor stator, a progressive cavity pump stator, or a shear screw.
  • 14. The article of 11, wherein the article inhibits flow; and wherein the article has a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt. % KCl solution at 200° F.
  • 15. The article of claim 14, wherein the article comprises a seal, a high pressure beaded frac screen plug, a screen basepipe plug, a coating for balls and seats, a compression packing element, an expandable packing element, an O-ring, a bonded seal, a bullet seal, a sub-surface safety valve seal, a sub-surface safety valve flapper seal, a dynamic seal, a V-ring, a back-up ring, a drill bit seal, a liner port plug, an atmospheric disc, an atmospheric chamber disc, a debris barrier, a drill in stim liner plug, an inflow control device plug, a flapper, a seat, a ball seat, a direct connect disk, a drill-in linear disk, a gas lift valve plug, a fluid loss control flapper, an electric submersible pump seal, a shear out plug, a flapper valve, a gaslift valve, or a sleeve.
  • 16. The article of claim 14, wherein the article is pumpable within a downhole environment; and wherein the article has a corrosion rate of about 0.1 to about 450 mg/cm2/hour using an aqueous 3 wt. % KCl solution at 200° F.
  • 17. The article of claim 16, wherein the article comprises a plug, a direct connect plug, a bridge plug, a wiper plug, a frac plug, a component of frac plug, a drill in sand control beaded screen plug, an inflow control device plug, a polymeric plug, a disappearing wiper plug, a cementing plug, a ball, a diverter ball, a shifting and setting ball, a swabbing element protector, a buoyant recorder, a pumpable collet, a float shoe, or a dart.
  • 18. A coating comprising the composite particles of claim 1.
  • 19. The composite particle of claim 1, wherein each of the shielding layer, the metallic layer, and the optional adhesion layer has a thickness of about 0.05 to about 0.15 micron.
  • 20. The composite particle of claim 9, wherein each of the shielding layer, the metallic layer, and the optional adhesion layer has a thickness of about 0.05 to about 0.15 micron.
  • 21. The composite particle of claim 9, wherein each of the shielding layer, the metallic layer, and the optional adhesion layer has a thickness of about 0.07 to about 0.13 micron.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Continuation-in-Part of U.S. application Ser. No. 13/194,271 filed Jul. 29, 2011, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (885)
Number Name Date Kind
1468905 Herman Sep 1923 A
2189697 Baker Feb 1940 A
2222233 Mize Nov 1940 A
2225143 Baker et al. Dec 1940 A
2238895 Gage Apr 1941 A
2261292 Salnikov Nov 1941 A
2294648 Ansel Sep 1942 A
2301624 Holt Nov 1942 A
2352993 Maurice Jul 1944 A
2394843 Cooke et al. Feb 1946 A
2672199 McKenna Mar 1954 A
2753941 Hebard et al. Jul 1956 A
2754910 Derrick et al. Jul 1956 A
2933136 Ayers et al. Apr 1960 A
2983634 Budininkas et al. May 1961 A
3057405 Mallinger Oct 1962 A
3066391 Vordahl Dec 1962 A
3106959 Huitt et al. Oct 1963 A
3142338 Brown Jul 1964 A
3152009 Delong Oct 1964 A
3196949 Thomas Jul 1965 A
3242988 McGuire et al. Mar 1966 A
3316748 Lang et al. May 1967 A
3326291 Zandmer et al. Jun 1967 A
3343537 Graham Sep 1967 A
3347317 Zandemer Oct 1967 A
3347714 Broverman et al. Oct 1967 A
3390724 Caldwell Jul 1968 A
3395758 Kelly et al. Aug 1968 A
3406101 Kilpatrick Oct 1968 A
3416918 Henry Dec 1968 A
3465181 Colby et al. Sep 1969 A
3513230 Rhees et al. May 1970 A
3602305 Kisling Aug 1971 A
3637446 Elliott et al. Jan 1972 A
3645331 Maurer et al. Feb 1972 A
3660049 Benjamin May 1972 A
3765484 Hamby, Jr. et al. Oct 1973 A
3768563 Blount Oct 1973 A
3775823 Adolph et al. Dec 1973 A
3816080 Bomford et al. Jun 1974 A
3878889 Seabourn Apr 1975 A
3894850 Kovalchuk et al. Jul 1975 A
3924677 Prenner et al. Dec 1975 A
4010583 Highberg Mar 1977 A
4039717 Titus Aug 1977 A
4050529 Tagirov et al. Sep 1977 A
4157732 Fonner Jun 1979 A
4248307 Silberman et al. Feb 1981 A
4284137 Taylor Aug 1981 A
4292377 Petersen et al. Sep 1981 A
4372384 Kinney Feb 1983 A
4373584 Silberman et al. Feb 1983 A
4373952 Parent Feb 1983 A
4374543 Richardson Feb 1983 A
4384616 Dellinger May 1983 A
4395440 Abe et al. Jul 1983 A
4399871 Adkins et al. Aug 1983 A
4407368 Erbstoesser Oct 1983 A
4422508 Rutledge, Jr. et al. Dec 1983 A
4452311 Speegle et al. Jun 1984 A
4475729 Costigan Oct 1984 A
4498543 Pye et al. Feb 1985 A
4499048 Hanejko Feb 1985 A
4499049 Hanejko Feb 1985 A
4524825 Fore Jun 1985 A
4526840 Jerabek Jul 1985 A
4534414 Pringle Aug 1985 A
4539175 Lichti et al. Sep 1985 A
4554986 Jones Nov 1985 A
4619699 Petkovic-Luton et al. Oct 1986 A
4640354 Boisson Feb 1987 A
4664962 Desmarais, Jr. May 1987 A
4668470 Gilman et al. May 1987 A
4673549 Ecer Jun 1987 A
4674572 Gallus Jun 1987 A
4678037 Smith Jul 1987 A
4681133 Weston Jul 1987 A
4688641 Knieriemen Aug 1987 A
4690796 Paliwal Sep 1987 A
4693863 Del Corso et al. Sep 1987 A
4703807 Weston Nov 1987 A
4706753 Ohkochi et al. Nov 1987 A
4708202 Sukup et al. Nov 1987 A
4708208 Halbardier Nov 1987 A
4709761 Setterberg, Jr. Dec 1987 A
4714116 Brunner Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4719971 Owens Jan 1988 A
4721159 Ohkochi et al. Jan 1988 A
4738599 Shilling Apr 1988 A
4741973 Condit et al. May 1988 A
4768588 Kupsa Sep 1988 A
4775598 Jaeckel Oct 1988 A
4784226 Wyatt Nov 1988 A
4805699 Halbardier Feb 1989 A
4817725 Jenkins Apr 1989 A
4834184 Streich et al. May 1989 A
H635 Johnson et al. Jun 1989 H
4850432 Porter et al. Jul 1989 A
4853056 Hoffman Aug 1989 A
4869324 Holder Sep 1989 A
4869325 Halbardier Sep 1989 A
4880059 Brandell et al. Nov 1989 A
4889187 Terrell et al. Dec 1989 A
4890675 Dew Jan 1990 A
4901794 Baugh et al. Feb 1990 A
4909320 Hebert et al. Mar 1990 A
4929415 Okazaki May 1990 A
4932474 Schroeder, Jr. et al. Jun 1990 A
4938309 Emdy Jul 1990 A
4938809 Das et al. Jul 1990 A
4944351 Eriksen et al. Jul 1990 A
4949788 Szarka et al. Aug 1990 A
4952902 Kawaguchi et al. Aug 1990 A
4975412 Okazaki et al. Dec 1990 A
4977958 Miller Dec 1990 A
4981177 Carmody et al. Jan 1991 A
4986361 Mueller et al. Jan 1991 A
4997622 Regazzoni et al. Mar 1991 A
5006044 Walker, Sr. et al. Apr 1991 A
5010955 Springer Apr 1991 A
5036921 Pittard et al. Aug 1991 A
5048611 Cochran Sep 1991 A
5049165 Tselesin Sep 1991 A
5061323 Deluccia Oct 1991 A
5063775 Walker, Sr. et al. Nov 1991 A
5073207 Faure Dec 1991 A
5074361 Brisco et al. Dec 1991 A
5076869 Bourell et al. Dec 1991 A
5084088 Okazaki Jan 1992 A
5087304 Chang et al. Feb 1992 A
5090480 Pittard et al. Feb 1992 A
5095988 Bode Mar 1992 A
5103911 Heijnen Apr 1992 A
5117915 Mueller et al. Jun 1992 A
5161614 Wu et al. Nov 1992 A
5171734 Sanjurjo et al. Dec 1992 A
5178216 Giroux et al. Jan 1993 A
5181571 Mueller et al. Jan 1993 A
5183631 Kugimiya et al. Feb 1993 A
5188182 Echols, III et al. Feb 1993 A
5188183 Hopmann et al. Feb 1993 A
5204055 Sachs et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5226483 Williamson, Jr. Jul 1993 A
5228518 Wilson et al. Jul 1993 A
5234055 Cornette Aug 1993 A
5252365 White Oct 1993 A
5253714 Davis et al. Oct 1993 A
5271468 Streich et al. Dec 1993 A
5282509 Schurr, III Feb 1994 A
5292478 Scorey Mar 1994 A
5293940 Hromas et al. Mar 1994 A
5304260 Aikawa et al. Apr 1994 A
5304588 Boysen et al. Apr 1994 A
5309874 Willermet et al. May 1994 A
5310000 Arterbury et al. May 1994 A
5316598 Chang et al. May 1994 A
5318746 Lashmore Jun 1994 A
5352522 Kugimiya et al. Oct 1994 A
5380473 Bogue et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5392860 Ross Feb 1995 A
5394236 Murnick Feb 1995 A
5394941 Venditto et al. Mar 1995 A
5398754 Dinhoble Mar 1995 A
5407011 Layton Apr 1995 A
5409555 Fujita et al. Apr 1995 A
5411082 Kennedy May 1995 A
5417285 Van Buskirk et al. May 1995 A
5425424 Reinhardt et al. Jun 1995 A
5427177 Jordan, Jr. et al. Jun 1995 A
5435392 Kennedy Jul 1995 A
5439051 Kennedy et al. Aug 1995 A
5454430 Kennedy et al. Oct 1995 A
5456317 Hood, III et al. Oct 1995 A
5456327 Denton et al. Oct 1995 A
5464062 Blizzard, Jr. Nov 1995 A
5472048 Kennedy et al. Dec 1995 A
5474131 Jordan, Jr. et al. Dec 1995 A
5477923 Jordan, Jr. et al. Dec 1995 A
5479986 Gano et al. Jan 1996 A
5506055 Dorfman et al. Apr 1996 A
5507439 Story Apr 1996 A
5511620 Baugh et al. Apr 1996 A
5524699 Cook Jun 1996 A
5526880 Jordan, Jr. et al. Jun 1996 A
5526881 Martin et al. Jun 1996 A
5529746 Knoss et al. Jun 1996 A
5533573 Jordan, Jr. et al. Jul 1996 A
5536485 Kume et al. Jul 1996 A
5558153 Holcombe et al. Sep 1996 A
5601924 Beane Feb 1997 A
5607017 Owens et al. Mar 1997 A
5623993 Van Buskirk et al. Apr 1997 A
5623994 Robinson Apr 1997 A
5636691 Hendrickson et al. Jun 1997 A
5641023 Ross et al. Jun 1997 A
5647444 Williams Jul 1997 A
5665289 Chung et al. Sep 1997 A
5677372 Yamamoto et al. Oct 1997 A
5685372 Gano Nov 1997 A
5701576 Fujita et al. Dec 1997 A
5707214 Schmidt Jan 1998 A
5709269 Head Jan 1998 A
5720344 Newman Feb 1998 A
5728195 Eastman et al. Mar 1998 A
5765639 Muth Jun 1998 A
5772735 Sehgal et al. Jun 1998 A
5782305 Hicks Jul 1998 A
5797454 Hipp Aug 1998 A
5826652 Tapp Oct 1998 A
5826661 Parker et al. Oct 1998 A
5829520 Johnson Nov 1998 A
5836396 Norman Nov 1998 A
5857521 Ross et al. Jan 1999 A
5881816 Wright Mar 1999 A
5896819 Turila et al. Apr 1999 A
5902424 Fujita et al. May 1999 A
5934372 Muth Aug 1999 A
5941309 Appleton Aug 1999 A
5960881 Allamon et al. Oct 1999 A
5985466 Atarashi et al. Nov 1999 A
5988287 Jordan, Jr. et al. Nov 1999 A
5990051 Ischy et al. Nov 1999 A
5992452 Nelson, II Nov 1999 A
5992520 Schultz et al. Nov 1999 A
6007314 Nelson, II Dec 1999 A
6024915 Kume et al. Feb 2000 A
6032735 Echols Mar 2000 A
6036777 Sachs Mar 2000 A
6047773 Zeltmann et al. Apr 2000 A
6050340 Scott Apr 2000 A
6069313 Kay May 2000 A
6076600 Vick, Jr. et al. Jun 2000 A
6079496 Hirth Jun 2000 A
6085837 Massinon et al. Jul 2000 A
6095247 Streich et al. Aug 2000 A
6119783 Parker et al. Sep 2000 A
6142237 Christmas et al. Nov 2000 A
6161622 Robb Dec 2000 A
6167970 Stout et al. Jan 2001 B1
6170583 Boyce Jan 2001 B1
6173779 Smith Jan 2001 B1
6176323 Weirich et al. Jan 2001 B1
6189616 Gano et al. Feb 2001 B1
6189618 Beeman et al. Feb 2001 B1
6213202 Read, Jr. Apr 2001 B1
6220350 Brothers et al. Apr 2001 B1
6220357 Carmichael et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6237688 Burleson et al. May 2001 B1
6238280 Ritt et al. May 2001 B1
6241021 Bowling Jun 2001 B1
6248399 Hehmann Jun 2001 B1
6250392 Muth Jun 2001 B1
6261432 Huber et al. Jul 2001 B1
6273187 Voisin, Jr. et al. Aug 2001 B1
6276452 Davis et al. Aug 2001 B1
6276457 Moffatt et al. Aug 2001 B1
6279656 Sinclair et al. Aug 2001 B1
6287445 Lashmore et al. Sep 2001 B1
6302205 Ryll Oct 2001 B1
6315041 Carlisle et al. Nov 2001 B1
6315050 Vaynshteyn et al. Nov 2001 B2
6325148 Trahan et al. Dec 2001 B1
6328110 Joubert Dec 2001 B1
6341653 Firmaniuk et al. Jan 2002 B1
6341747 Schmidt et al. Jan 2002 B1
6349766 Bussear et al. Feb 2002 B1
6354372 Carisella et al. Mar 2002 B1
6354379 Miszewski et al. Mar 2002 B2
6357322 Dolan et al. Mar 2002 B1
6357332 Vecchio Mar 2002 B1
6371206 Mills Apr 2002 B1
6372346 Toth Apr 2002 B1
6382244 Vann May 2002 B2
6390195 Nguyen et al. May 2002 B1
6390200 Allamon et al. May 2002 B1
6394180 Berscheidt et al. May 2002 B1
6394185 Constien May 2002 B1
6397950 Streich et al. Jun 2002 B1
6401547 Hatfield et al. Jun 2002 B1
6403210 Stuivinga Jun 2002 B1
6408946 Marshall et al. Jun 2002 B1
6419023 George et al. Jul 2002 B1
6439313 Thomeer et al. Aug 2002 B1
6446717 White et al. Sep 2002 B1
6457525 Scott Oct 2002 B1
6467546 Allamon et al. Oct 2002 B2
6470965 Winzer Oct 2002 B1
6491097 Oneal et al. Dec 2002 B1
6491116 Berscheidt et al. Dec 2002 B2
6513598 Moore et al. Feb 2003 B2
6513600 Ross Feb 2003 B2
6540033 Sullivan et al. Apr 2003 B1
6543543 Muth Apr 2003 B2
6561275 Glass et al. May 2003 B2
6588507 Dusterhoft et al. Jul 2003 B2
6591915 Burris et al. Jul 2003 B2
6601648 Ebinger Aug 2003 B2
6601650 Sundararajan Aug 2003 B2
6609569 Howlett et al. Aug 2003 B2
6612826 Bauer et al. Sep 2003 B1
6613383 George et al. Sep 2003 B1
6619400 Brunet Sep 2003 B2
6634428 Krauss et al. Oct 2003 B2
6662886 Russell Dec 2003 B2
6675889 Mullins et al. Jan 2004 B1
6699305 Myrick Mar 2004 B2
6712153 Turley et al. Mar 2004 B2
6712797 Southern, Jr. Mar 2004 B1
6713177 George et al. Mar 2004 B2
6715541 Pedersen et al. Apr 2004 B2
6719051 Hailey, Jr. et al. Apr 2004 B2
6755249 Robison et al. Jun 2004 B2
6769491 Zimmerman et al. Aug 2004 B2
6776228 Pedersen et al. Aug 2004 B2
6779599 Mullins et al. Aug 2004 B2
6799638 Butterfield, Jr. Oct 2004 B2
6810960 Pia Nov 2004 B2
6817414 Lee Nov 2004 B2
6831044 Constien Dec 2004 B2
6883611 Smith et al. Apr 2005 B2
6887297 Winter et al. May 2005 B2
6896049 Moyes May 2005 B2
6896061 Hriscu et al. May 2005 B2
6899176 Hailey, Jr. et al. May 2005 B2
6899777 Vaidyanathan et al. May 2005 B2
6908516 Hehmann et al. Jun 2005 B2
6913827 George et al. Jul 2005 B2
6926086 Patterson et al. Aug 2005 B2
6932159 Hovem Aug 2005 B2
6939388 Angeliu Sep 2005 B2
6945331 Patel Sep 2005 B2
6951331 Haughom et al. Oct 2005 B2
6959759 Doane et al. Nov 2005 B2
6973970 Johnston et al. Dec 2005 B2
6973973 Howard et al. Dec 2005 B2
6983796 Bayne et al. Jan 2006 B2
6986390 Doane et al. Jan 2006 B2
7013989 Hammond et al. Mar 2006 B2
7013998 Ray et al. Mar 2006 B2
7017664 Walker et al. Mar 2006 B2
7017677 Keshavan et al. Mar 2006 B2
7021389 Bishop et al. Apr 2006 B2
7025146 King et al. Apr 2006 B2
7028778 Krywitsky Apr 2006 B2
7044230 Starr et al. May 2006 B2
7049272 Sinclair et al. May 2006 B2
7051805 Doane et al. May 2006 B2
7059410 Bousche et al. Jun 2006 B2
7090027 Williams Aug 2006 B1
7093664 Todd et al. Aug 2006 B2
7096945 Richards et al. Aug 2006 B2
7096946 Jasser et al. Aug 2006 B2
7097807 Meeks, III et al. Aug 2006 B1
7097906 Gardner Aug 2006 B2
7108080 Tessari et al. Sep 2006 B2
7111682 Blaisdell Sep 2006 B2
7128145 Mickey Oct 2006 B2
7141207 Jandeska, Jr. et al. Nov 2006 B2
7150326 Bishop et al. Dec 2006 B2
7163066 Lehr Jan 2007 B2
7165622 Hirth et al. Jan 2007 B2
7168494 Starr et al. Jan 2007 B2
7174963 Bertelsen Feb 2007 B2
7182135 Szarka Feb 2007 B2
7188559 Vecchio Mar 2007 B1
7210527 Walker et al. May 2007 B2
7210533 Starr et al. May 2007 B2
7217311 Hong et al. May 2007 B2
7234530 Gass Jun 2007 B2
7250188 Dodelet et al. Jul 2007 B2
7252162 Akinlade et al. Aug 2007 B2
7255172 Johnson Aug 2007 B2
7255178 Slup et al. Aug 2007 B2
7264060 Wills Sep 2007 B2
7267172 Hofman Sep 2007 B2
7267178 Krywitsky Sep 2007 B2
7270186 Johnson Sep 2007 B2
7287592 Surjaatmadja et al. Oct 2007 B2
7311152 Howard et al. Dec 2007 B2
7316274 Xu et al. Jan 2008 B2
7320365 Pia Jan 2008 B2
7322412 Badalamenti et al. Jan 2008 B2
7322417 Rytlewski et al. Jan 2008 B2
7325617 Murray Feb 2008 B2
7328750 Swor et al. Feb 2008 B2
7331388 Vilela et al. Feb 2008 B2
7337854 Horn et al. Mar 2008 B2
7346456 Le Bemadjiel Mar 2008 B2
7350582 McKeachnie et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7360593 Constien Apr 2008 B2
7360597 Blaisdell Apr 2008 B2
7363970 Corre et al. Apr 2008 B2
7373978 Barry et al. May 2008 B2
7384443 Mirchandani Jun 2008 B2
7387158 Murray et al. Jun 2008 B2
7387165 Lopez De Cardenas et al. Jun 2008 B2
7392841 Murray et al. Jul 2008 B2
7401648 Bennett Jul 2008 B2
7416029 Telfer et al. Aug 2008 B2
7422058 O'Malley Sep 2008 B2
7426964 Lynde et al. Sep 2008 B2
7441596 Wood et al. Oct 2008 B2
7445049 Howard et al. Nov 2008 B2
7451815 Hailey, Jr. Nov 2008 B2
7451817 Reddy et al. Nov 2008 B2
7461699 Richard et al. Dec 2008 B2
7464764 Xu Dec 2008 B2
7472750 Walker et al. Jan 2009 B2
7478676 East, Jr. et al. Jan 2009 B2
7503390 Gomez Mar 2009 B2
7503399 Badalamenti et al. Mar 2009 B2
7509993 Turng et al. Mar 2009 B1
7510018 Williamson et al. Mar 2009 B2
7513311 Gramstad et al. Apr 2009 B2
7527103 Huang et al. May 2009 B2
7537825 Wardle et al. May 2009 B1
7552777 Murray et al. Jun 2009 B2
7552779 Murray Jun 2009 B2
7559357 Clem Jul 2009 B2
7575062 East, Jr. Aug 2009 B2
7579087 Maloney et al. Aug 2009 B2
7591318 Tilghman Sep 2009 B2
7600572 Slup et al. Oct 2009 B2
7604049 Vaidya et al. Oct 2009 B2
7604055 Richard et al. Oct 2009 B2
7607476 Tom et al. Oct 2009 B2
7617871 Surjaatmadja et al. Nov 2009 B2
7635023 Goldberg et al. Dec 2009 B2
7640988 Phi et al. Jan 2010 B2
7661480 Al-Anazi Feb 2010 B2
7661481 Todd et al. Feb 2010 B2
7665537 Patel et al. Feb 2010 B2
7686082 Marsh Mar 2010 B2
7690436 Turley et al. Apr 2010 B2
7699101 Fripp et al. Apr 2010 B2
7703510 Xu Apr 2010 B2
7703511 Buyers et al. Apr 2010 B2
7708078 Stoesz May 2010 B2
7709421 Jones et al. May 2010 B2
7712541 Loretz et al. May 2010 B2
7723272 Crews et al. May 2010 B2
7726406 Xu Jun 2010 B2
7735578 Loehr et al. Jun 2010 B2
7743836 Cook et al. Jun 2010 B2
7752971 Loehr Jul 2010 B2
7757773 Rytlewski Jul 2010 B2
7762342 Richard et al. Jul 2010 B2
7770652 Barnett Aug 2010 B2
7771289 Palumbo et al. Aug 2010 B2
7775284 Richards et al. Aug 2010 B2
7775285 Surjaatmadja et al. Aug 2010 B2
7775286 Duphorne Aug 2010 B2
7784543 Johnson Aug 2010 B2
7793714 Johnson Sep 2010 B2
7793820 Hirano et al. Sep 2010 B2
7798225 Giroux et al. Sep 2010 B2
7798226 Themig Sep 2010 B2
7798236 McKeachnie et al. Sep 2010 B2
7806189 Frazier Oct 2010 B2
7806192 Foster et al. Oct 2010 B2
7810553 Cruickshank et al. Oct 2010 B2
7810567 Daniels et al. Oct 2010 B2
7819198 Birckhead et al. Oct 2010 B2
7828055 Willauer et al. Nov 2010 B2
7833944 Munoz et al. Nov 2010 B2
7849927 Herrera Dec 2010 B2
7851016 Arbab et al. Dec 2010 B2
7855168 Fuller et al. Dec 2010 B2
7861779 Vestavik Jan 2011 B2
7861781 D'Arcy Jan 2011 B2
7874365 East, Jr. et al. Jan 2011 B2
7878253 Stowe et al. Feb 2011 B2
7896091 Williamson et al. Mar 2011 B2
7897063 Perry et al. Mar 2011 B1
7900696 Nish et al. Mar 2011 B1
7900703 Clark et al. Mar 2011 B2
7909096 Clark et al. Mar 2011 B2
7909104 Bjorgum Mar 2011 B2
7909110 Sharma et al. Mar 2011 B2
7909115 Grove et al. Mar 2011 B2
7913765 Crow et al. Mar 2011 B2
7918275 Clem Apr 2011 B2
7931093 Foster et al. Apr 2011 B2
7938191 Vaidya May 2011 B2
7946335 Bewlay et al. May 2011 B2
7946340 Surjaatmadja et al. May 2011 B2
7958940 Jameson Jun 2011 B2
7963331 Surjaatmadja et al. Jun 2011 B2
7963340 Gramstad et al. Jun 2011 B2
7963342 George Jun 2011 B2
7980300 Roberts et al. Jul 2011 B2
7987906 Troy Aug 2011 B1
7992763 Vecchio et al. Aug 2011 B2
8020619 Robertson et al. Sep 2011 B1
8020620 Daniels et al. Sep 2011 B2
8025104 Cooke, Jr. Sep 2011 B2
8028767 Radford et al. Oct 2011 B2
8033331 Themig Oct 2011 B2
8039422 Al-Zahrani Oct 2011 B1
8056628 Whitsitt et al. Nov 2011 B2
8056638 Clayton et al. Nov 2011 B2
8109340 Doane et al. Feb 2012 B2
8127856 Nish et al. Mar 2012 B1
8153052 Jackson et al. Apr 2012 B2
8163060 Imanishi et al. Apr 2012 B2
8211247 Marya et al. Jul 2012 B2
8211248 Marya Jul 2012 B2
8226740 Chaumonnot et al. Jul 2012 B2
8230731 Dyer et al. Jul 2012 B2
8231947 Vaidya et al. Jul 2012 B2
8263178 Boulos et al. Sep 2012 B2
8276670 Patel Oct 2012 B2
8277974 Kumar et al. Oct 2012 B2
8297364 Agrawal et al. Oct 2012 B2
8327931 Agrawal et al. Dec 2012 B2
8403037 Agrawal et al. Mar 2013 B2
8425651 Xu et al. Apr 2013 B2
8459347 Stout Jun 2013 B2
8490689 McClinton et al. Jul 2013 B1
8535604 Baker et al. Sep 2013 B1
8573295 Johnson et al. Nov 2013 B2
8631876 Xu et al. Jan 2014 B2
8956660 Launag et al. Feb 2015 B2
9079246 Xu et al. Jul 2015 B2
9080098 Xu et al. Jul 2015 B2
9260935 Murphree et al. Feb 2016 B2
20010040180 Wittebrood et al. Nov 2001 A1
20010045285 Russell Nov 2001 A1
20010045288 Allamon et al. Nov 2001 A1
20020000319 Brunet Jan 2002 A1
20020007948 Bayne et al. Jan 2002 A1
20020014268 Vann Feb 2002 A1
20020020527 Kilaas et al. Feb 2002 A1
20020066572 Muth Jun 2002 A1
20020092654 Coronado et al. Jul 2002 A1
20020096365 Berscheidt et al. Jul 2002 A1
20020104616 De et al. Aug 2002 A1
20020108756 Harrall et al. Aug 2002 A1
20020136904 Glass et al. Sep 2002 A1
20020139541 Sheffield et al. Oct 2002 A1
20020162661 Krauss et al. Nov 2002 A1
20030019639 Mackay Jan 2003 A1
20030037925 Walker et al. Feb 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030075326 Ebinger Apr 2003 A1
20030104147 Bretschneider et al. Jun 2003 A1
20030111728 Thai et al. Jun 2003 A1
20030127013 Zavitsanos et al. Jul 2003 A1
20030141060 Hailey et al. Jul 2003 A1
20030141061 Hailey et al. Jul 2003 A1
20030141079 Doane et al. Jul 2003 A1
20030150614 Brown et al. Aug 2003 A1
20030155114 Pedersen et al. Aug 2003 A1
20030155115 Pedersen et al. Aug 2003 A1
20030159828 Howard et al. Aug 2003 A1
20030164237 Butterfield Sep 2003 A1
20030183391 Hriscu et al. Oct 2003 A1
20030226668 Zimmerman et al. Dec 2003 A1
20040005483 Lin Jan 2004 A1
20040020832 Richards et al. Feb 2004 A1
20040031605 Mickey Feb 2004 A1
20040045723 Slup et al. Mar 2004 A1
20040055758 Brezinski et al. Mar 2004 A1
20040058167 Arbab et al. Mar 2004 A1
20040069502 Luke Apr 2004 A1
20040089449 Walton et al. May 2004 A1
20040094297 Malone et al. May 2004 A1
20040154806 Bode et al. Aug 2004 A1
20040159428 Hammond et al. Aug 2004 A1
20040159446 Haugen et al. Aug 2004 A1
20040182583 Doane et al. Sep 2004 A1
20040216868 Owen, Sr. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040251025 Giroux et al. Dec 2004 A1
20040256109 Johnson Dec 2004 A1
20040256157 Tessari et al. Dec 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261994 Nguyen et al. Dec 2004 A1
20050034876 Doane et al. Feb 2005 A1
20050051329 Blaisdell Mar 2005 A1
20050064247 Sane et al. Mar 2005 A1
20050069449 Jackson et al. Mar 2005 A1
20050074612 Eklund Apr 2005 A1
20050098313 Atkins et al. May 2005 A1
20050102255 Bultman May 2005 A1
20050106316 Rigney et al. May 2005 A1
20050126334 Mirchandani Jun 2005 A1
20050161212 Leismer et al. Jul 2005 A1
20050161224 Starr et al. Jul 2005 A1
20050165149 Chanak et al. Jul 2005 A1
20050194143 Xu et al. Sep 2005 A1
20050199401 Patel et al. Sep 2005 A1
20050205264 Starr et al. Sep 2005 A1
20050205265 Todd et al. Sep 2005 A1
20050205266 Todd et al. Sep 2005 A1
20050235757 De Jonge et al. Oct 2005 A1
20050241824 Burris, II et al. Nov 2005 A1
20050241825 Burris, II et al. Nov 2005 A1
20050257936 Lehr Nov 2005 A1
20050268746 Abkowitz et al. Dec 2005 A1
20050275143 Toth Dec 2005 A1
20050279501 Surjaatmadja et al. Dec 2005 A1
20060012087 Matsuda et al. Jan 2006 A1
20060013350 Akers Jan 2006 A1
20060045787 Jandeska, Jr. Mar 2006 A1
20060057479 Niimi et al. Mar 2006 A1
20060081378 Howard et al. Apr 2006 A1
20060102871 Wang May 2006 A1
20060108114 Johnson et al. May 2006 A1
20060108126 Horn et al. May 2006 A1
20060110615 Karim et al. May 2006 A1
20060116696 Odermatt et al. Jun 2006 A1
20060124310 Lopez De Cardenas et al. Jun 2006 A1
20060131011 Lynde et al. Jun 2006 A1
20060131031 McKeachnie et al. Jun 2006 A1
20060131081 Mirchandani et al. Jun 2006 A1
20060134312 Rytlewski et al. Jun 2006 A1
20060144515 Tada et al. Jul 2006 A1
20060150770 Freim, III Jul 2006 A1
20060151178 Howard et al. Jul 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060162927 Walker et al. Jul 2006 A1
20060169453 Savery et al. Aug 2006 A1
20060186602 Martin et al. Aug 2006 A1
20060207763 Hofman et al. Sep 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060231253 Vilela et al. Oct 2006 A1
20060283592 Sierra et al. Dec 2006 A1
20070017674 Blaisdell Jan 2007 A1
20070017675 Hammami Jan 2007 A1
20070029082 Giroux et al. Feb 2007 A1
20070039161 Garcia Feb 2007 A1
20070039741 Hailey Feb 2007 A1
20070044958 Rytlewski et al. Mar 2007 A1
20070044966 Davies et al. Mar 2007 A1
20070051521 Fike et al. Mar 2007 A1
20070053785 Hetz et al. Mar 2007 A1
20070054101 Sigalas et al. Mar 2007 A1
20070057415 Katagiri et al. Mar 2007 A1
20070062644 Nakamura et al. Mar 2007 A1
20070074601 Hong et al. Apr 2007 A1
20070074873 McKeachnie et al. Apr 2007 A1
20070102199 Smith et al. May 2007 A1
20070107899 Werner et al. May 2007 A1
20070107908 Vaidya et al. May 2007 A1
20070108060 Park May 2007 A1
20070119600 Slup et al. May 2007 A1
20070131912 Simone et al. Jun 2007 A1
20070151009 Conrad, III et al. Jul 2007 A1
20070151769 Slutz et al. Jul 2007 A1
20070169935 Akbar et al. Jul 2007 A1
20070181224 Marya Aug 2007 A1
20070185655 Le Bemadjiel Aug 2007 A1
20070187095 Walker et al. Aug 2007 A1
20070207182 Weber et al. Sep 2007 A1
20070221373 Murray Sep 2007 A1
20070221384 Murray Sep 2007 A1
20070227745 Roberts et al. Oct 2007 A1
20070259994 Tour et al. Nov 2007 A1
20070261862 Murray Nov 2007 A1
20070272411 Lopez De Cardenas et al. Nov 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20070277979 Todd et al. Dec 2007 A1
20070284109 East et al. Dec 2007 A1
20070284112 Magne et al. Dec 2007 A1
20070299510 Venkatraman et al. Dec 2007 A1
20080011473 Wood et al. Jan 2008 A1
20080020923 Debe et al. Jan 2008 A1
20080047707 Boney et al. Feb 2008 A1
20080060810 Nguyen et al. Mar 2008 A9
20080066923 Xu Mar 2008 A1
20080066924 Xu Mar 2008 A1
20080072705 Chaumonnot et al. Mar 2008 A1
20080078553 George Apr 2008 A1
20080081866 Gong et al. Apr 2008 A1
20080093073 Bustos et al. Apr 2008 A1
20080099209 Loretz et al. May 2008 A1
20080105438 Jordan et al. May 2008 A1
20080115932 Cooke May 2008 A1
20080121390 O'Malley et al. May 2008 A1
20080121436 Slay et al. May 2008 A1
20080127475 Griffo Jun 2008 A1
20080135249 Fripp et al. Jun 2008 A1
20080149325 Crawford Jun 2008 A1
20080149345 Bicerano Jun 2008 A1
20080149351 Marya et al. Jun 2008 A1
20080169105 Williamson et al. Jul 2008 A1
20080169130 Norman et al. Jul 2008 A1
20080179060 Surjaatmadja et al. Jul 2008 A1
20080179104 Zhang et al. Jul 2008 A1
20080196801 Zhao et al. Aug 2008 A1
20080202764 Clayton et al. Aug 2008 A1
20080202814 Lyons et al. Aug 2008 A1
20080210473 Zhang et al. Sep 2008 A1
20080216383 Pierick et al. Sep 2008 A1
20080223586 Barnett Sep 2008 A1
20080223587 Cherewyk Sep 2008 A1
20080236829 Lynde Oct 2008 A1
20080236842 Bhavsar et al. Oct 2008 A1
20080248205 Blanchet et al. Oct 2008 A1
20080248413 Ishii et al. Oct 2008 A1
20080264594 Lohmueller et al. Oct 2008 A1
20080277109 Vaidya Nov 2008 A1
20080277980 Koda et al. Nov 2008 A1
20080282924 Saenger et al. Nov 2008 A1
20080296024 Tianping et al. Dec 2008 A1
20080302538 Hofman Dec 2008 A1
20080314581 Brown Dec 2008 A1
20080314588 Langlais et al. Dec 2008 A1
20090038858 Griffo et al. Feb 2009 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044949 King et al. Feb 2009 A1
20090044955 King et al. Feb 2009 A1
20090050334 Marya et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090065216 Frazier Mar 2009 A1
20090074603 Chan et al. Mar 2009 A1
20090084553 Rytlewski et al. Apr 2009 A1
20090084556 Richards et al. Apr 2009 A1
20090084600 Severance Apr 2009 A1
20090090440 Kellett et al. Apr 2009 A1
20090107684 Cooke, Jr. Apr 2009 A1
20090114381 Stroobants May 2009 A1
20090114382 Grove et al. May 2009 A1
20090126436 Fly et al. May 2009 A1
20090139720 Frazier Jun 2009 A1
20090145666 Radford et al. Jun 2009 A1
20090151949 Marya et al. Jun 2009 A1
20090152009 Slay et al. Jun 2009 A1
20090155616 Thamida et al. Jun 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090178808 Williamson et al. Jul 2009 A1
20090194273 Surjaatmadja et al. Aug 2009 A1
20090205841 Kluge et al. Aug 2009 A1
20090211770 Nutley et al. Aug 2009 A1
20090226340 Marya Sep 2009 A1
20090226704 Kauppinen et al. Sep 2009 A1
20090242202 Rispler et al. Oct 2009 A1
20090242208 Bolding Oct 2009 A1
20090242214 Foster et al. Oct 2009 A1
20090255667 Clem et al. Oct 2009 A1
20090255684 Bolding Oct 2009 A1
20090255686 Richard Oct 2009 A1
20090266548 Olsen et al. Oct 2009 A1
20090260817 Gambier et al. Nov 2009 A1
20090272544 Giroux et al. Nov 2009 A1
20090283270 Langeslag Nov 2009 A1
20090293672 Mirchandani et al. Dec 2009 A1
20090301730 Gweily Dec 2009 A1
20090305131 Kumar et al. Dec 2009 A1
20090308588 Howell et al. Dec 2009 A1
20090317556 Macary Dec 2009 A1
20090317622 Huang et al. Dec 2009 A1
20100003536 Smith et al. Jan 2010 A1
20100012385 Drivdahl et al. Jan 2010 A1
20100015002 Barrera et al. Jan 2010 A1
20100015469 Romanowski et al. Jan 2010 A1
20100025255 Su et al. Feb 2010 A1
20100032151 Duphorne et al. Feb 2010 A1
20100034857 Launag et al. Feb 2010 A1
20100038076 Spray et al. Feb 2010 A1
20100038595 Imholt et al. Feb 2010 A1
20100040180 Kim et al. Feb 2010 A1
20100044041 Smith et al. Feb 2010 A1
20100051278 Mytopher et al. Mar 2010 A1
20100055491 Vecchio et al. Mar 2010 A1
20100055492 Barsoum et al. Mar 2010 A1
20100089583 Xu et al. Apr 2010 A1
20100089587 Stout Apr 2010 A1
20100101803 Clayton et al. Apr 2010 A1
20100116495 Spray May 2010 A1
20100122817 Surjaatmadja et al. May 2010 A1
20100139930 Patel et al. Jun 2010 A1
20100200230 East, Jr. et al. Aug 2010 A1
20100236793 Bjorgum Sep 2010 A1
20100236794 Duan et al. Sep 2010 A1
20100243254 Murphy et al. Sep 2010 A1
20100252273 Duphorne Oct 2010 A1
20100252280 Swor et al. Oct 2010 A1
20100270031 Patel Oct 2010 A1
20100276136 Evans et al. Nov 2010 A1
20100276159 Mailand et al. Nov 2010 A1
20100282338 Gerrard et al. Nov 2010 A1
20100282469 Richard et al. Nov 2010 A1
20100294510 Holmes Nov 2010 A1
20100297432 Sherman et al. Nov 2010 A1
20100304182 Facchini et al. Dec 2010 A1
20100314105 Rose Dec 2010 A1
20100314126 Kellner Dec 2010 A1
20100319870 Bewlay et al. Dec 2010 A1
20100326650 Tran et al. Dec 2010 A1
20110005773 Dusterhoft et al. Jan 2011 A1
20110036592 Fay Feb 2011 A1
20110048743 Stafford et al. Mar 2011 A1
20110052805 Bordere et al. Mar 2011 A1
20110056692 Lopez De Cardenas et al. Mar 2011 A1
20110056702 Sharma et al. Mar 2011 A1
20110067872 Agrawal Mar 2011 A1
20110067889 Marya et al. Mar 2011 A1
20110067890 Themig Mar 2011 A1
20110094406 Marya et al. Apr 2011 A1
20110100643 Themig et al. May 2011 A1
20110127044 Radford et al. Jun 2011 A1
20110132143 Xu Jun 2011 A1
20110132612 Agrawal Jun 2011 A1
20110132619 Agrawal Jun 2011 A1
20110132620 Agrawal Jun 2011 A1
20110132621 Agrawal Jun 2011 A1
20110135530 Xu Jun 2011 A1
20110135805 Doucet et al. Jun 2011 A1
20110135953 Xu Jun 2011 A1
20110136707 Xu Jun 2011 A1
20110139465 Tibbles et al. Jun 2011 A1
20110147014 Chen et al. Jun 2011 A1
20110186306 Marya et al. Aug 2011 A1
20110214881 Newton Sep 2011 A1
20110247833 Todd et al. Oct 2011 A1
20110253387 Ervin Oct 2011 A1
20110256356 Tomantschger et al. Oct 2011 A1
20110259610 Shkurti et al. Oct 2011 A1
20110277987 Frazier Nov 2011 A1
20110277989 Frazier Nov 2011 A1
20110284232 Huang Nov 2011 A1
20110284240 Chen et al. Nov 2011 A1
20110284243 Frazier Nov 2011 A1
20110300403 Vecchio et al. Dec 2011 A1
20110314881 Hatcher et al. Dec 2011 A1
20120024109 Xu et al. Feb 2012 A1
20120067426 Soni et al. Mar 2012 A1
20120090839 Rudic Apr 2012 A1
20120103135 Xu et al. May 2012 A1
20120107590 Xu et al. May 2012 A1
20120118583 Johnson et al. May 2012 A1
20120130470 Agnew May 2012 A1
20120145378 Frazier et al. Jun 2012 A1
20120145389 Fitzpatrick, Jr. Jun 2012 A1
20120168152 Casciaro et al. Jul 2012 A1
20120177905 Seals et al. Jul 2012 A1
20120205120 Howell Aug 2012 A1
20120205872 Reinhardt et al. Aug 2012 A1
20120211239 Kritzler et al. Aug 2012 A1
20120234546 Xu Sep 2012 A1
20120234547 O'Malley et al. Sep 2012 A1
20120267101 Cooke Oct 2012 A1
20120292053 Xu et al. Nov 2012 A1
20120318513 Mazyar et al. Dec 2012 A1
20130004847 Kumar et al. Jan 2013 A1
20130008671 Booth et al. Jan 2013 A1
20130025409 Xu Jan 2013 A1
20130029886 Mazyar Jan 2013 A1
20130032357 Mazyar et al. Feb 2013 A1
20130048304 Agrawal et al. Feb 2013 A1
20130048305 Xu et al. Feb 2013 A1
20130052472 Xu Feb 2013 A1
20130081814 Gaudette et al. Apr 2013 A1
20130084643 Commarieu et al. Apr 2013 A1
20130105159 Alvarez May 2013 A1
20130126190 Mazyar et al. May 2013 A1
20130133897 Baihly et al. May 2013 A1
20130146144 Joseph et al. Jun 2013 A1
20130146302 Gaudette et al. Jun 2013 A1
20130168257 Mazyar Jul 2013 A1
20130186626 Aitken et al. Jul 2013 A1
20130240200 Frazier Sep 2013 A1
20130240203 Frazier Sep 2013 A1
20130299185 Xu et al. Nov 2013 A1
20130299192 Xu et al. Nov 2013 A1
20130300066 Xu et al. Nov 2013 A1
20130319668 Tschetter et al. Dec 2013 A1
20130327540 Hamid et al. Dec 2013 A1
20140014339 O'Malley et al. Jan 2014 A1
20140027128 Johnson et al. Jan 2014 A1
20140060834 Quintero et al. Mar 2014 A1
20140116711 Tang et al. May 2014 A1
20140262327 Xu et al. Sep 2014 A1
20140360728 Tashiro et al. Dec 2014 A1
20150060085 Xu Mar 2015 A1
20160209391 Zhang et al. Jul 2016 A1
20160258242 Hayter et al. Sep 2016 A1
Foreign Referenced Citations (58)
Number Date Country
2783241 Jun 2011 CA
2783346 Jun 2011 CA
1076968 Oct 1993 CN
1079234 Dec 1993 CN
1255879 Jun 2000 CN
1668545 Sep 2005 CN
1882759 Dec 2006 CN
101050417 Oct 2007 CN
101351523 Jan 2009 CN
101454074 Jun 2009 CN
101457321 Jun 2009 CN
101457321 Jun 2010 CN
0033625 Aug 1981 EP
1174385 Jan 2002 EP
1412175 Apr 2004 EP
1798301 Aug 2006 EP
1857570 Nov 2007 EP
1857570 Nov 2007 EP
2782096 Feb 2000 FR
912956 Dec 1962 GB
1046330 Oct 1966 GB
1280833 Jul 1972 GB
1357065 Jun 1974 GB
61067770 Apr 1986 JP
754008 Feb 1995 JP
8232029 Sep 1996 JP
2000185725 Jul 2000 JP
2002053902 Feb 2002 JP
2004225084 Aug 2004 JP
2004225765 Aug 2004 JP
2005076052 Mar 2005 JP
2010502840 Jan 2010 JP
950014350 Nov 1995 KR
9909227 Feb 1999 WO
9947726 Sep 1999 WO
9947726 Sep 1999 WO
03008186 Jan 2003 WO
2004001087 Dec 2003 WO
2004073889 Sep 2004 WO
2005040068 May 2005 WO
2007044635 Apr 2007 WO
2007095376 Aug 2007 WO
2008034042 Mar 2008 WO
2008057045 May 2008 WO
2008079485 Jul 2008 WO
2008079777 Jul 2008 WO
2009079745 Jul 2009 WO
2010012184 Feb 2010 WO
2011071902 Jun 2011 WO
2011071910 Jun 2011 WO
2011071910 Jun 2011 WO
2011130063 Feb 2012 WO
2012015567 Feb 2012 WO
2012149007 Nov 2012 WO
2012174101 Dec 2012 WO
2013053057 Apr 2013 WO
2013078031 May 2013 WO
2014121384 Aug 2014 WO
Non-Patent Literature Citations (180)
Entry
T.J. Bastow, S. Celotto, Clustering and formation of nano-precipitates in dilute aluminum and magnesium alloys, Materials science and Engineering, 2003, C23, 757-762.
Yue (T.M Yue et al, Laser cladding of Ni/Cu/Al functionally graded coating on magnesium substrate, Surface & Coatings Technology 202 (2008) 3043-3049).
Wang (Cunshan Wang et al, Laser cladding of eutectic-based Ti—Ni—Al alloy coating on magnesium surface, Surface & Coatings Technology 205 (2010) 189-194).
Yue (T.M Yue et al, Microstructure and Phase Evolution in Laser Cladding of Ni/Cu/Al Multilayer on Magnesium Substrates; Metallurgical and Materials Transactions A, vol. 41A, Jan. 2010, 212-223).
“Sliding Sleeve”, Omega Completion Technology Ltd, Sep. 29, 2009, retrieved on: www.omega-completion.com.
Ambat, et al., “Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters”; Surface and Coatings Technology; 179; pp. 124-134; (2004).
Baker Oil Tools, “Baker Oil Tools Introduces Revolutionary Sand Control Completion Technology,” May 2, 2005.
Baker Oil Tools, “Z-Seal Metal-to-Metal Expandable Sealing Device Uses Expanding Metal in Place of Elastomers,” Nov. 6, 2006.
Bastow, et al., “Clustering and formation of nano-precipitates in dilute aluminum and magnesium alloys”, Materials Science and Engineering, 2003, C23, 757-762.
Bercegeay, et al., “A One-Trip Gravel Packing System”; Society of Petroleum Engineers, Offshort Technology Conference, SPE Paper No. 4771; Feb. 7-8, 1974.
Bybee, “One-Trip Completion System Eliminates Perforations,” Completions Today, Sep. 2007, pp. 52-53.
Canadian Office Action for Canadian Application No. 2,783,547, dated Feb. 15, 2013, pp. 1-3.
Chang, et al., “Electrodeposition of Aluminum on Magnesium Alloy in Aluminum Chloride (A1C13)-1-ethyl-3-methylimidazolium chloride (EMIC) Ionic Liquid and Its Corrosion Behavior”; Electrochemistry Communications; 9; pp. 1602-1606; (2007).
Christoglou, et al., “Deposition of Aluminum on Magnesium by a CVD Process”, Surface and Coatings Technology 184 (2004) 149-155.
Constantine, “Selective Production of Horizontal Openhole Completions Using ECP and Sliding Sleeve Technology.” SPE Rocky Mountain Regional Meeting, May 15-18, 1999, Gillette, Wyoming. [Abstract Only].
Curtin, et al., “CNT-reinforced ceramics and metals,” Materials Today, 2004, vol. 7, pp. 44-49.
Flahaut, et al., “Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure, Electrical Conductivity and Mechanical Properties” Acta amter. 48 (2000), pp. 3803-3812.
Forsyth, et al.; “An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31”; Electrochem. Solid-State Lett. 2006 vol. 9, Issue 11, B52-B55/ 9(11); Abstract only; 1 page.
Galanty, et al. “Consolidation of metal powders during the extrusion process,” Journal of Materials Processing Technology (2002), pp. 491-496.
Garfield, “Formation Damage Control Utilizing Composite-Bridge-Plug Technology for Monobore, Multizone Stimulation Operations,” SPE 70004, 2001, Society of Petroleum Engineers Inc., This paper was prepared for presentation at the SPE Per.
Garfield, et al., “Maximizing Inflow Performance in Soft Sand Completions Using New One-trip Sand Control Liner Completion Technology”, SPE European Formation Damage Conference, May 25-27, 2005.
Goh, et al., “Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique”, Nanottechnology 17 (2006) 7-12.
Han, et al., “Mechanical Properties of Nanostructured Materials”, Rev. Adv. Mater. Sci. 9(2005) 1-16.
Hermawan, et al., “Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy”, Powder Metallurgy, vol. 51, No. 1, (2008), pp. 38-45.
Hjortstam, et al. “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites,” Applied Physics A (2004), vol. 78, Issue 8, pp. 1175-1179.
Hsiao, et al., “Baking Treatment Effect on Materials Characteristics and Electrochemical Behavior of anodic Film Formed on AZ91D Magnesium Alloy”; Corrosion Science; 49; pp. 781-793; (2007).
Hsiao, et al., “Effect of Heat Treatment on Anodization and Electrochemical Behavior of AZ91D Magnesium Alloy”; J. Mater. Res.; 20(10); pp. 2763-2771;(2005).
International Search Report and Written Opinion; International Application No. PCT/US2010/057763; International Filing Date: Nov. 23, 2010; dated Jul. 28, 2011; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059257; International Filing Date: Dec. 7, 2010; dated Jul. 27, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059259; International Filing Date: Dec. 7, 2010; dated Jun. 13, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059263; International Filing Date: Dec. 7, 2010; dated Jul. 8, 2011; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059265; International Filing Date: Dec. 7, 2010; dated Jun. 16, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2010/059268; International Filing Date: Dec. 7, 2010; dated Jun. 17, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/043036; International Filing Date: Jul. 6, 2011; dated Feb. 23, 2012; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/047000; International Filing Date: Aug. 9, 2011; dated Dec. 26, 2011; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2011/058099; International Filing Date: Oct. 27, 2011; dated May 11, 2012; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/046231; International Filing Date: Jul. 11, 2012; dated Jan. 29, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/049434; International Filing Date: Aug. 3, 2012; dated Feb. 1, 2013; 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053339; International Filing Date: Aug. 31, 2012; dated Feb. 15, 2013; 11 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053342; International Filing Date: Aug. 31, 2012; dated Feb. 19, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/053350; International Filing Date: Aug. 31, 2012; dated Feb. 25, 2013; 10 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/071742; International Filing Date: Dec. 27, 2012; dated Apr. 22, 2013; 12 pages.
Lavernia, et al., “Cryomilled Nanostructured Materials: Processing and Properties”, Materials Science and Engineering A, 493, (2008) pp. 207-214.
Li, “Design of Abrasive Water Jet Pertoration and Hydraulic Fracturing Tool,” Oil Field Equipment, Mar. 2011.
Maisano, “Cryomilling of Aluminum-Based and Magnesium-Based Metal Powders”, Thesis, Virginia Tech, Jan. 13, 2006.
Seyni, et al., “On the interest of using degradable fillers in co-ground composite materials”, Powder Technology 190, (2009) pp. 176-184.
Vahlas, et al., “Principles and Applications of CVD Powder Technology”, Materials Science and Engineering R 53 (2006) pp. 1-72.
Australian Examination Report for Australian patent application No. 2012302067 dated Sep. 22, 2015.
Australian Examination Report; Australian Application No. 2012287461; dated Jul. 13, 2015; 6 pages.
Chinese Office Action for Chinese Application No. 201280036477.4, dated Nov. 4, 2015, pp. 1-15.
Chinese Office Action; Chinese Application No. 201280020572.5; dated Oct. 10, 2015; 13 pages.
Chuan-Jun et al., “Study on Corrosion Kinetics of Mg—Ni alloys”, Journal of Kunming University of Science and Technology, vol. 34, No. 5, pp. 10-13, Oct. 2009.
European Search Report for EP Application No. 10836538.8 dated Jul. 27, 2015.
European Search Report for EP Application No. 10836540.4 dated Aug. 20, 2015.
Tsipas et al. “Effect of High Energy Ball Milling on Titanium-Hydroxyapatite Powders” Powder Metallurgy, Maney Publishing, London, GB, vol. 46, No. 1, Mar. 2003 (Mar. 2003), pp. 73-77.
“Baker Hughes Refines Expandable Tubular Technology with Abaqus and Isight”, Simulia Realistic Simulation News, Jan./Feb. 2011, pp. 12-13.
“Reactivity series”, Wikipedia, http://en.wikipedia.org/w/index.php?title=Reactivity—series&printable=yes downloaded on May 18, 2014. 8 pages.
Bakshi et al., “Carbon nanotube reinforced metal matrix composites—a review,” International Materials Reviews; 2010, pp. 41-64, vol. 55, No. 1.
Birbilis, et al., “Exploring Corrosion Protection of Mg via Ionic Liquid Pretreatment”, Surface & Coatings Technology; 201, pp. 4496-4504, (2007).
Canadian Office Action for Canadian Application No. 2,833,958, dated Sep. 23, 2014, pp. 1-2.
Chinese Office Action for Chinese Application No. 201080055613.5, dated Nov. 4, 2014, pp. 1-20.
Chinese Office Action for Chinese Application No. 201180012447.5, dated Jul. 3, 2014, 7 pages.
Chinese Office Action for Chinese Application No. 201180052095.6, dated Jul. 21, 2014, pp. 1-32.
Feng, et al., “Electroless Plating of Carbon Nanotubes with Silver” Journal of Materials Science, 39, (2004) pp. 3241-3243.
International Search Report and Written Opinion; International Application No. PCT/US2012/038622; International Filing Date: May 18, 2012; dated Dec. 6, 2012; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2013/020046; International Filing Date: Jan. 3, 2013; dated Apr. 10, 2013; 7 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/054720; International Filing Date: Sep. 9, 2014; dated Dec. 17, 2014; 10 pages.
International Search Report for related PCT Application No. PCT/US2013/035258, dated Jul. 4, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/035261, dated Jul. 10, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/035262, dated Jul. 1, 2013, pp. 1-4.
International Search Report for related PCT Application No. PCT/US2013/068062, dated Feb. 12, 2014, pp. 1-3.
Lee, et al., “Effects of Ni addition on hydrogen storage properties of Mg17AL12 alloy”, Materials Chemistry and Physics, 2011, 126, pp. 319-324.
Li, et al., “Investigation of aluminium-based nancompsoites with ultra-high strength”, Materials Science and Engineering A, 527, pp. 305-316, (2009).
Liu, et al.; “Electroless Nickel Plating on AZ91 Mg Alloy Substrate”; Surface & Coatings Technology; 200; pp. 5087-5093; (2006).
Mathis, “Sand Management: A Review of Approaches and Concerns”, Society of Petroleum Engineers, SPE Paper No. 82240, SPE European Formation Damage Conference, The Hague, The Netherlands, May 13-14, 2003.
Pardo, et al.; “Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaC1”; Corrosion Science; 50; pp. 823-834; (2008).
Quik Drill Composite Frac Plug; Baker Hughes, Baker Oil Tools; Copyright 2002; 3 pages.
Shi, et al.; “Influence of the Beta Phase on the Corrosion Performance of Anodised Coatings on Magnesium-Aluminium Alloys”; Corrosion Science; 47; pp. 2760-2777; (2005).
Shimizu, et al., “Multi-walled carbon nanotube-reinforced magnesium alloy composites”, Scripta Materialia, vol. 58, Issue 4, Feb. 2008, pp. 267-270.
Shumbera, et al. “Improved Water Injector Performance in a Gulf of Mexico Deepwater Development Using an Openhole Frac Pack Completion and Downhole Filter System: Case History.” SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003.
Song, et al.; “Corrosion Mechanisms of Magnesium Alloys”; Advanced Engineering Materials; 1(1); pp. 11-33; (1999).
Song, et al.; “Influence of Microstructure on the Corrosion of Diecast AZ91D”; Corrosion Science; 41; pp. 249-273; (1999).
Song, et al.; “Understanding Magnesium Corrosion”; Advanced Engineering Materials; 5; No. 12; pp. 837-858; (2003).
Sun, et al.; “Colloidal Processing of Carbon Nanotube/Alumina Composites” Chem. Mater. 2002, 14, pp. 5169-5172.
Vickery, et al.; “New One-Trip Multi-Zone Frac Pack System with Positive Positioning.” European Petroleum Conference, Oct. 29-31, 2002, Aberdeen, UK. [Abstract Only].
Zeng, et al. “Progress and Challenge for Magnesium Alloys as Biomaterials,” Advanced Engineering Materials, vol. 10, Issue 8, Aug. 2008, pp. B3-B14.
Zhang, et al.; “High Strength Nanostructured Materials and Their Oil Field Applications”; Society of Petroleum Engineers; Conference Paper SPE 157092; SPE International Oilfield Nanotechnology Conference, 2012; 6 pages.
Zhang, et al.; “Metal Coating on Suspended Carbon Nanotubes and its Implication to Metal-Tube Interaction”, Chemical Physics Letters 331 (2000) 35-41.
“Optisleeve Sliding Sleeve”, [online]; [retrieved on Jun. 25, 2010]; retrieved from the Internet weatherford.com/weatherford/groups/.../weatherfordcorp/WFT033159.pdf.
Baker Hughes, “Flow Control Systems,” [online]; [retrieved on May 20, 2010]; retrieved from the Internet http://www.bakerhughes.com/products-and-services/completions-and-productions/well-completions/packers-and-flow-control/flow-control-systems.
Bououdina, et al., “Comparative Study of Mechanical Alloying of (Mg+Al) and (Mg+Al+Ni) Mixtures for Hydrogen Storage”, J. Alloys, Compds, 2002, 336, 222-231.
Canadian Office Action for Canadian Application No. 2,783,241, dated Feb. 25, 2013, pp. 1-3.
Canadian Office Action for Canadian Application No. 2,783,346, dated Feb. 21, 2013, pp. 1-4.
Carrejo, et al., “Improving Flow Assurance in Multi-Zone Fracturing Treatments in Hydrocarbon Reservoirs with High Strength Corrodible Tripping Balls”; Society of Petroleum Engineers; SPE Paper No. 151613; Apr. 16, 2012; 6 pages.
Coronado, “Development of an Internal Coiled Tubing Connector Utilizing Permanent Packer Technology”; Society of Petroleum Engineers, SPE Paper No. 46036; Apr. 15, 1998; 10 pages.
Garfield, New One-Trip Sand-Control Completion System that Eliminates Formation Damage Resulting From conventional Perforating and Gravel-Packing Operations:, SPE Annual Technical Conference and Exhibition, Oct. 9-12, 2005.
Gray, et al., “Protective Coatings on Magnesium and Its Alloys—a Critical Review”, Journal of Alloys and Compounds 336 (2002), pp. 88-113.
Hsiao, et al., “Anodization of AZ91D Magnesium Alloy in Silicate-Containing Electrolytes”; Surface & Coatings Technology; 199; pp. 127-134; (2005).
Hsiao, et al., “Characterization of Anodic Films Formed on AZ91D Magnesium Alloy”; Surface & Coatings Technology; 190; pp. 299-308; (2005).
Huo et al.; “Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer”; Corrosion Science: 46; pp. 1467-1477; (2004).
International Search Report and Written Opinion; International Application No. PCT/US2011/058105; International Filing Date: Oct. 27, 2011; dated May 1, 2012; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/034973; International Filing Date: Apr. 25, 2012; dated Nov. 29, 2012; 8 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/034978; International Filing Date: Apr. 25, 2012; dated Nov. 12, 2012; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/044866; International Filing Date: Jun. 29, 2012; dated Jan. 2, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/010862; International Filing Date: Jan. 9, 2014; dated Apr. 21, 2014; 9 pages.
International Search Report; International Application No. PCT/US2012/044229, International Filing Date: Jun. 26, 2012; dated Jan. 30, 2013; 3 pages.
Kuzumaki, et al.; “Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite”, Advanced Engineering Materials, 2000, 2, No. 7.
Liu, et al., “Calculated Phase Diagrams and the Corrosion of Die-Cast Mg—Al Alloys”, Corrosion Science, 2009, 51, 606-619.
Lunder et al.; “The Role of Mg17AI12 Phase in the Corrosion of Mg Alloy AZ91”; Corrosion; 45(9); pp. 741-748; (1989).
Majumdar, et al., “Laser Surface Engineering of a Magnesium Alloy with Al + Al2O3”, Surface and Coatings Technology 179 (2004) pp. 297-305.
Murray, “Binary Alloy Phase Diagrams” Int. Met. Rev., 30(5) 1985 vol. 1, pp. 103-187.
Nie, “Patents of Methods to Prepare Intermetallic Matrix Composites: A Review”, Recent Patents on Materials Science 2008, vol. 1, pp. 232-240.
Saravanan et al., “Mechanically Alloyed Carbon Nanotubes (CNT) Reinforced Nanocrystalline AA 4032: Synthesis and Characterization,” Journal of Minerals & Materials Characterization & Engineering, vol. 9, No. 11, pp. 1027-1035, 2010.
Shaw, “Benefits and Application of a Surface-Controlled Sliding Sleeve for Fracturing Operations”; Society of Petroleum Engineers, SPE Paper No. 147546; Oct. 30, 2011; 8 pages.
Song, “Recent Progress in Corrosion and Protection of Magnesium Alloys”; Advanced Engineering Materials; 7(7); pp. 563-586; (2005).
Song, et al.; “A Possible Biodegradable Magnesium Implant Material,” Advanced Engineering Materials, vol. 9, Issue 4, Apr. 2007, pp. 298-302.
Song, et al.; “Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride”; Corrosion Science; 40(10); pp. 1769-1791; (1998).
Triolo et al., “Resolving the Completion Engineer's Dilemma: Permanent or Retrievable Packer?”; Society of Petroleum Engineers, SPE Paper No. 76711; May 20, 2002; 16 pages.
Vernon Constien et al., “Development of Reactive Coatings to Protect Sand-Control Screens”, SPE 112494, Copyright 2008, Society of Petroleum Engineers, Presented at the 2008 SPE International Symposium and Exhibition on Formation Damage Control.
Walters, et al.; “A Study of Jets from Unsintered-Powder Metal Lined Nonprecision Small-Caliber Shaped Charges”, Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066; Feb. 2001.
Wang, et al., “Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites” Nature Materials, vol. 3, Aug. 2004, pp. 539-544.
Watanabe, et al., “Superplastic Deformation Mechanism in Powder Metallurgy Magnesium Alloys and Composites”, Acta mater. 49 (2001) pp. 2027-2037.
Watarai, Trend of research and development for magnesium alloys-reducing the weight of structural materials in motor vehicles, (2006) Science and technology trends, Quaterly review No. 18, 84-97.
Welch et al., “Nonelastomeric Sliding Sleeve Maintains Long Term Integrity in HP/HT Application: Case Histories” [Abstract Only], SPE Eastern Regional Meeting, Oct. 23-25, 1996, Columbus. Ohio.
Xu, et al., “Nanostructured Material-Based Completion Tools Enhance Well Productivity”; International Petroleum Technology Conference; Conference Paper IPTC 16538; International Petroleum Technology Conference 2013; 4 pages.
Zhan, et al. “Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites” Nature Materials, vol. 2., Jan. 2003, pp. 38-42.
Zhang, et al.; “Formation of metal nanowires on suspended single-walled carbon nanotubes” Applied Physics Letter, vol. 77, No. 19 (2000), pp. 3015-3017.
Zhang, et al.; “Study on the Environmentally Friendly Anodizing of AZ91D Magnesium Alloy”; Surface and Coatings Technology: 161; pp. 36-43; (2002).
Zhu, et al., “The process of coating on ultrafine particles by surface hydrolysis reaction in a fluidized bed reactor”, Surface and Coatings Technology 135 (2000) 14-17.
Chinese Office Action for Chinese Patent Application No. 201280041531.4 dated Aug. 31, 2015.
Extended European Search Report; EP Application No. 12822169.4-1605/2739812; dated Nov. 17, 2015; 9 pages.
M.S. Senthil Saravanan et al, “Mechanically Alloyed Carbon Nanotubes (CNT) Reinforced Nanocrystalline AA 4032: Synthesis and Characterization”, Journal of Minerals and Materials Characterization and Engineering, vol. 9, No. 11 pp. 1027-1035 2010.
European Search Report for EP Application No. 12827733.2 dated Jan. 21, 2015.
European Search Report for EP Application No. 12827915.5 dated Dec. 23, 2015.
European Search Report for EP Application No. 12828903.0 dated Jan. 11, 2016.
International Search Report and Written Opinion; International Application No. PCT/US2015/066353; International Filing Date: Dec. 17, 2015; dated Apr. 1, 2016; 14 pages.
Extended European Search Report for EP Application No. 12828379.3-1373, dated May 20, 2016, 8 pages.
Adams, et al.; “Thermal stabilities of aromatic acids as geothermal tracers”, Geothermics, vol. 21, No. 3, 1992, pp. 323-339.
Aviles et al, “Degradable Alternative to Risky Mill-Out Operations in Plug and Perf”; SPE-173695-MS; Society of Petroleum Engineers; SPE/ICOTA Coiled Tubing & Well Intervention Conference & Exhibition; Mar. 24-25, 2015; 10 Pages.
Ayman, et al.; “Effect of Consolidation and Extrusion Temperatures on Tensile Properties of Hot Extruded ZK61 Magnesium Alloy Gas Atomized Powders via Spark Plasma Sintering”, Transactions of JWRI, vol. 38 (2009), No. 2, pp. 1-5.
Baker Hughes Incorporated. IN-Tallic Disintegrating Frac Balls. Houston: Baker Hughes Incorporated, 2011. Accessed Mar. 6, 2015.
Baker Hughes, “Multistage”, Oct. 31, 2011, BakerHughes.com; accessed Mar. 6, 2015.
Bin et al., “Advances in Fluidization CVD Technology”, East China University of Chemical Technology, China Academic Journal Electronic Publishing House, vol. 13, No. 4, Nov. 1992, pp. 360-365, English Abstract on p. 366.
Canadian Office Action for Canadian Application No. 2,833,981, dated Sep. 23, 2014, pp. 1-2.
Canadian Office Action for Canadian Application No. 2,834,794, dated Dec. 15, 2014, pp. 1-3.
Canadian Office Action for Canadian Application No. 2,841,068, dated Jan. 23, 2015, pp. 1-3.
Canadian Office Action for Canadian Application No. 2,841,078, dated Oct. 7, 2014, pp. 1-2.
Canadian Office Action for Canadian Application No. 2,841,132, dated Mar. 11, 2015, pp. 1-4.
Canadian Office Action for Canadian Application No. 2,841,184, dated Apr. 16, 2015, pp. 1-5.
Canadian Office Action for Canadian Application No. 2,842,962, dated Mar. 19, 2015, pp. 1-6.
Canadian Office Action for Canadian Application No. 2,843,011, dated Mar. 31, 2015, pp. 1-4.
Canadian Office Action for Canadian Application No. 2,844,517, dated May 26, 2015, pp. 1-4.
Canadian Office Action for Canadian Application No. 2,845,339, dated May 1, 2015, pp. 1-3.
Canadian Office Action for Canadian Application No. 2,860,699, dated Jul. 16, 2015, pp. 1-4.
Chinese Office Action; Chinese Application No. 201180052095.6; dated Mar. 18, 2015; pp. 1-19.
Chinese Office Action; Chinese Application No. 201280036253.3; dated Apr. 22, 2015; 21 pages.
Chinese Office Action; Chinese Application No. 201280036260.3; dated May 27, 2015; pp. 1-18.
Danish Search Report and Opinion for Danish Application No. PA 2013 00060, dated Dec. 12, 2014, pp. 1-6.
International Search Report and Written Opinion; International Application No. PCT/US2012/047163; International Filing Date: Jul. 18, 2012; dated Feb. 26, 2013; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2012/052836; International Filing Date: Aug. 29, 2012; dated Feb. 1, 2013; 9 pages.
International Search Report and Written Opinion; International Application No. PCT/US2013/050475; International Filing Date: Jul. 15, 2013; dated Oct. 10, 2013; 12 pages.
International Search Report and Written Opinion; International Application No. PCT/US2014/058997, International Filing Date: Oct. 3, 2014; dated Jan. 12, 2015; 12 pages.
Lin et al., “Processing and Microstructure of Nano-Mo/Al2O3 Composites from MOCVD and Fluidized Bed”, Nanostructured Materials, Nov. 1999, vol. 11, No. 8, pp. 1361-1377.
Rose, et al.; “The application of the polyaromatic sulfonates as tracers in geothermal reservoirs”, Geothermics 30 (2001) pp. 617-640.
Shigematsu, et al., “Surface Treatment of AZ91D Magnesium Alloy by Aluminum diffusion Coating”, Journal of Materials Science Letters 19, 2000, pp. 473-475.
Singh, et al., “Extended Homogeneity Range of Intermetallic Phases in Mechanically Alloyed Mg—Al Alloys”, Elsevier Sciences Ltd., Intemetallics 11, 2003, pp. 373-376.
Spencer et al., “Fluidized Bed Polymer Particle ALD Process for Producing HDPE/Alumina Nanocomposites”, The 12th International Conference on Fluidization—New Horizons in Fluidization Engineering, vol. RP4 (2007).
Stanley, et al.; “An Introduction to Ground-Water Tracers”, Department of Hydrology and Water Resources, University of Arizona, Mar. 1985, pp. 1-219.
Zemel, “Tracers in the Oil Field”, University of Texas at Austin, Center for Petroleum and Geosystems, Jan. 1995, Chapters 1, 2, 3, 7.
Reid, Gary Carl, “Literature evaluation of induced groundwater tracers, field tracer techniques, and hydrodynamic dispersion values in porous media”, Theisis in Geosciences (Masters), Texas Tech University, Aug. 1981, 109 pages.
“Declaration of Karl T. Hartwig in Support of Petitioner Pursuant to 37 C.F.R. § 42.120”, executed on Nov. 21, 2016 in support of U.S. Pat. No. 8,573,295, 52 pages.
“Declaration of Karl T. Hartwig in Support of Petitioner Pursuant to 37 C.F.R. § 42.120”, executed on Nov. 21, 2016 in support of U.S. Pat. No. 9,101,978, 51 pages.
AP African Office Action for African Application No. AP/P/2014/007389, dated Oct. 6, 2016, 5 pages.
Callister, Jr., William D., Materials Science and Engineering an Introduction, Seventh Edition, 2006, pp. 111, 627, and G7.
German, Randall M., Powder Metallurgy Science, Second Edition, 1994, 102 pages.
Klar, Erhard, ASM Handbook: International Metals Handbook—Powder Metallurgy, vol. 7, 1997, pp. 14, 276, and 798.
Petition for Inter Partes Review; Case No. IPR2017-00326; U.S. Pat. No. 9,101,978; Nov. 23, 2016; 46 pages.
Petition for Inter Partes Review; Case No. IPR2017-00327; U.S. Pat. No. 8,573,295; Nov. 23, 2016; 53 pages.
Schaffer, James P. et al., The Science and Design of Engineering Materials, Second Edition, 1999, pp. 122, 123, 698, and 699.
Xie, Guoqiang et al., “TEM Observation of Interfaces between Particles in Al—Mg Alloy Powder Compacts Prepared by Pulse Electric Current Sintering”, Materials Transactions, 2002, pp. 2177-2180, vol. 43—No. 9.
Related Publications (1)
Number Date Country
20150093589 A1 Apr 2015 US
Continuation in Parts (1)
Number Date Country
Parent 13194271 Jul 2011 US
Child 14519476 US