Our present invention relates to a method of controlling the cross section of a rolled wire rod strand emerging from a wire rod mill line and to a wire rod mill line in which the cross section of the rolled wire rod strand emerging therefrom is controlled.
More particularly the invention relates to a method and a wire rod mill line of the type in which a rolled wire rod strand passes from an intermediate portion of the rolling line to a finish rolling unit comprised of one or more mill stands and which may be followed, optionally but not necessarily, by a post rolling unit or after-rolling unit comprised also of one or more mill stands whereby the cross section of the wire rod strand during the rolling process can be altered by controlled application of traction to the strand.
Modern wire rod rolling lines are required to have significantly narrower tolerances with respect to the cross section of the rolled wire rod strand emerging from that line than can be obtained by manual correction of the parameters of the rolling mill line using classical wire rod rolling techniques. Not only must the cross sectional tolerances be significantly narrower, but deviations from the set point cross section must be held to a minimum over the entire length of the rolled wire rod. The tolerances of the wire rod following the finish rolling unit are determined by a number of parameters. Perhaps the greatest influence on the cross sectional tolerances is the cross section of the rolled wire rod strand entering the finishing unit or the group of mill stands forming the finishing unit and the entry temperature of the strand. Cross sectional variations and temperature variations of the strand entering the finishing unit in the past have been found to result in traction or tension fluctuations as the strand passes through the finishing unit and these fluctuations in turn give rise to substantial tolerance variations or fluctuations in the strand emerging from the finishing unit.
The entry cross section of the strand at the finishing unit depends, in turn, upon the traction applied in the preceding intermediate line or in any preceding mill stand or group of mill stands, among other parameters. The rolling conditions generally do not remain constant during the rolling of the rod but continuously tend to vary during the rolling process. These rolling conditions include not only the entry cross section parameter but parameters like temperature, longitudinal tension and others which contribute to cross sectional variations.
In order to achieve good tolerances, i.e. narrow tolerances, in spite of these continuously varying rolling conditions, the settings of any rolling units which contribute to the rolling conditions must be matched or adjusted closely. This is, however, extremely difficult in practice since with standard group drive of the rolls of the rolling unit, for example, the finishing unit, only the roll gaps can be adjusted and the drive speeds cannot be corrected. With previously known systems, considerable effort has been expended in attempts to eliminate the negative effects described above on the fabrication tolerances with the goal of obtaining a constant outlet cross section of the wire rod from the finishing rolling unit and to control, in spite of the aforementioned difficulties, the entry cross section of the wire rod strand into the finishing unit in a reliable manner.
Thus EP 200 396 B1 describes a system in which upstream of the finishing unit in the rolling direction, two sizing mill stands which are provided one after another and whose speeds are so controllable that with these stands a traction is applied which contributes a corresponding reduction in the wire rod cross section and makes it possible to feed the wire rod into the finishing unit with a relatively uniform cross section.
It is the principal object of the present invention to provide an improved method of controlling the cross section of a rolled wire rod strand emerging from a wire rod mill line, especially to reduce the variation tolerances in that cross section and to maintain uniformity of that cross section over the length of the roller wire rod.
It is another object of the invention to provide an improved method of controlling the cross section of a rolled wire rod strand and an improved wire rod mill line in which that control process can be used and which allows, in a simple manner, matching the wire rod production to the varying rolling conditions and enabling, independently of the latter, an optimum finished cross section of the wire or rod to be obtained.
Still another object of this invention is to eliminate the drawbacks of prior art systems in the rolling of wire rod.
These objects and others which will become apparent herein after are attained, in accordance with the invention, in a method of controlling the cross section of a rolled wire rod strand emerging from a wire rod mill line and whereby
the wire rod strand passes from an intermediate rolling line into a finish rolling unit forming a common drive group with at least one finishing mill stand,
the finishing mill can be followed by an optional post rolling unit or after-rolling or post-finishing unit forming a common drive group with at least one post-finishing rolling mill stand, and
the cross section of the wire rod strand is altered during the rolling by controlled application of traction to the strand. The method comprises the steps of:
(a) applying the traction for cross section alteration to the strand upstream of the last common drive group; and
(b) regulating the applied traction so that the wire rod strand emerging from the last common drive group is of constant uniform cross section.
The finishing rolling unit and any post rolling unit are referred to herein also as common drive groups since generally the speeds of rolling mill stands in each of these units are not varied individually, at least with respect to the stands of the particular unit, but rather any adjustment is to the rolling gap. In the case in which the last common drive group is a post rolling unit, the application of traction can be made upstream or downstream of the finish rolling unit whereas, in the case in which the last common drive group is the finish rolling unit, the traction is supplied upstream thereof.
According to the invention, therefore, the last common drive group can be and preferably is the finish rolling unit.
The traction is preferably applied by a pair of controllable speed horizontal-roll and vertical-roll mill stands
Preferably, a tensioning roll with a displacement sensor is pressed into the wire rod strand to generate a set point deflection therein corresponding to a predetermined ratio of due force to tractive force in the strand. The adjustment of the tractive force to a reference value of the tractive force on the strand is effected by controlling the speed of at least one of the horizontal-roll and vertical-roll mill stands.
With respect to the apparatus features of the invention, a wire rod mill for rolling a wire rod strand can comprise:
a series of mill stands for rolling a wire rod strand and including an intermediate rolling line;
a finish rolling unit downstream of said intermediate rolling line and forming a common drive group with at least one finishing mill stand;
an optional post rolling unit forming a common drive group with at least one post rolling mill stand; and
a unit for altering the cross section of the wire rod strand during the rolling by controlled application of traction to the strand by applying the traction for cross section alteration to the strand upstream of the last common drive group and regulating the applied traction so that the wire rod strand emerging from the last common drive group is of constant uniform cross section.
The apparatus likewise can comprise a horizontal-roll stand and a vertical-roll stand engaging a wire rod strand and imparting traction to said strand, and a traction control unit for regulating the traction applied to said strand by said stands and including pyrometers upstream and downstream of said stands for measuring temperature of said strand.
The invention is based upon the fact that it is possible, by contrast with conventional wire rod mill configurations to obtain a uniform and close-tolerance exit cross section from the finish rolling unit (when that is the last common drive group) or from the post rolling unit (where that is the last common drive unit) based upon a variation in the inlet cross section of the wire rod strand to the respective unit. As a consequence, the tractive control of the wire rod strand of the cross section can thus be provided at optional locations prior to this last common drive group or unit and were necessary immediately upstream of the last drive unit or group, i.e. the last unit in the rolling process and without regulating the speed of the common drive group of that unit at all.
According to the invention, this is achieved by measuring and comparing the wire rod cross section preferably upstream and downstream of the finish rolling unit and altering the inlet cross section of the wire rod strand by applying the appropriate tractive force thereto. This traction force for controlling the entry cross section can be developed upstream of the finish rolling unit by a pair of controllable-speed horizontal-roll and vertical-roll frames or stands arranged along the path of the wire rod strand and upstream of the finishing unit.
According to a feature of the invention, between these two stands or frames, a piston-and-cylinder unit can be provided which has a piston with a controllable displacement as signaled by a displacement sensor and which carries a tensioning roll bearing upon the wire rod strand and imparting a deflection thereto. In addition, upstream and downstream of the horizontal-roll and vertical-roll pair and downstream of the finishing unit or the post rolling unit, profile measuring devices and in association there-with or independently therefrom, upstream of these stands and upstream of the finishing unit or the post rolling unit pyrometers can be provided.
The reference to profile measurement herein is intended to identify a measurement of the cross section and cross sectional shape of the strand capable of determining deviations from tensional and shape tolerances.
When upstream of the stands, both a profile measurement system and a temperature measurement system are provided, the cross section A0 and the temperature T0 can be measured. For a given type of steel and temperature T0, as will be described in greater detail hereinafter with respect to
Direct control in this manner does not require feedback.
The invention also enables adaptive cross sectional control using a hierarchical sizing system and a continuous adaptation of the single pass cross section independently of continuously altering rolling conditions, ensuring at each point in time the best possible finish cross section with a minimal tolerance fluctuation. The adaptive cross sectional control requires that all subordinated control or regulating procedures or measurements be activated including the position-tension measurements, position-tension control and position-cross section control.
In backward control or regulation as will be described in greater detail in connection with
If a rapid backward control is to be achieved as will be described in greater detail in connection with
If adaptation with slow backward control is carried out, it is thereby intended to only eliminate system errors and trends.
Finally, it is also possible to carry out some kind of control in the finish unit so that the cross section is effected in a controlled manner before the strand emerges and in that case the finish unit can have a sequence of rolling stands to apply traction and which may then have adjustable-gap rolls or controllable speed rolls.
The above and other objects, features, and advantages will become more readily apparent from the following description, reference being made to the accompanying drawing in which:
The apparatus for measuring the tension or traction on the wire rod strand and for applying traction thereto as shown in
Between those stands, a piston and cylinder unit KZ is arranged, the piston KS of which carries a tension roller Sr which bears upon the wire rod strand 3 between the nips of the vertical and horizontal rolls to impart a deflection DS to the strand from below.
The piston-and-cylinder arrangement KZ can be a hydraulic or pneumatic control cylinder and is connected with a force backup or sensor KA and a position sensor WG. With this arrangement, the wire rod strand 3 between the roll pairs VW and HW can be pre-stressed to a targeted extent and the height of the deflection DS can be determined and measured. The entire unit for measuring the tractive force or tension, controlling the tractive force and controlling the cross section formed by the measurement and control cylinder unit has been indicated in simplified form by a dot dash box.
In the embodiment of
For the processes of the invention, whereby the cross sectional tolerances of the output strand are reduced by controlling the variation of the entry cross section of the strand into the finishing unit FB by regulating the tractive force on the wire rod, the device of
After the leading end of the wire rod strand enters the unit of
Using the deflection control, a set point deflection is initially established as represented at 61 in
Using the speed control for the tension force, the deflection 64 (
In order to operate in an optimum tractive force range, the speed correction can be set for the tractive force controlling stand VW and the speeds of the stands VW and HW need not be altered.
In a further mode of operation, measurements of the cross section of the strand can be used. For that purpose, the profile measuring device PMI is provided in
For a closed loop control, the profile measurement unit PMII downstream of the finishing unit FB is required. The rolling groove filling downstream of a stand can thus be used as the control parameter for the cross sectional control upstream of the finishing unit FB. The entry cross section thereto can be so varied by the application of a variable traction between the frames VW and HW that downstream of the unit FB the groove filling is optimal and a constant width of the cross section and thus a good ovalness.
The profile measuring system is formed by the cross section measuring units 11 downstream of the last rolling unit with common drive, represented at 10, a cross section measuring unit 12 upstream thereof and a cross section measuring unit 13 upstream of the traction control. Similarly, pyrometers 14, 15 and 16 are provided respectively downstream of the last rolling unit 10, upstream thereof and upstream of the traction control pair of stands. These pyrometers feed respective temperatures T0, T1 and T2 to the computer RE and inputs A0, A1 and A2 representing the cross sections are supplied to the computer by the profile measuring sensors 13, 12 and 11 respectively. An asterisk (*) represents a set point value of the respective parameter. F6 represents the output of the computer to the position-traction measurement and control unit. At 8, a sheer can be provided for cutting the strand into lengths and for diverting defective portions of the strand while a loop representing storage of the strand can be provided upstream of the final block.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 058 825 | Dec 2004 | DE | national |
10 2005 036 184 | Aug 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3540248 | Hostetter et al. | Nov 1970 | A |
3766763 | Cofer et al. | Oct 1973 | A |
4141071 | Yerkes et al. | Feb 1979 | A |
4607511 | Shore | Aug 1986 | A |
4662202 | Lambert | May 1987 | A |
4665730 | Maroti | May 1987 | A |
4674310 | Ginzburg | Jun 1987 | A |
5794473 | Palzer | Aug 1998 | A |
6055834 | Vedova et al. | May 2000 | A |
6112566 | Palzer et al. | Sep 2000 | A |
6199417 | Palzer et al. | Mar 2001 | B1 |
6519990 | Olsson et al. | Feb 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060150701 A1 | Jul 2006 | US |