The present invention relates to a method for controlling fires in confined areas, and, more particularly, to controlling fires in underground mines.
Mine fires constitute a significant threat to health and safety of personnel working in the underground environment, as well as pose environmental threats and risks to structures above ground in the vicinity of a mine fire. A variety of materials have been used to extinguish fires in underground mines and other confined areas. These materials include water, foam, and the like. While water can remove heat and deprive a fire of oxygen, the water often quickly evaporates before the fire is completely extinguished. Unless water is soaked into the material of the structure on fire, the water evaporates before the fire is extinguished. In addition, only a limited amount of water can even be absorbed into a structure on fire before it evaporates. Water may not readily soak into many structures and simply runs off and is unused. Therefore, a steady supply of water directed onto the fire is required. Significant manpower and a water supply are required to re-apply water and/or re-soak structures from which water falls off, or is evaporated, to provide continued fire protection.
Foams have been used in fire fighting in an effort to apply a more stable material that does not fall off or quickly evaporate. Such foams have been used to control fires in underground mines and other confined areas. In order to prevent the addition of oxygen into the location of a mine fire, nitrogen-expanded foams have been suggested as a fire suppressant in underground mines, as disclosed in U.S. Pat. No. 7,104,336. The area involved in a fire is contacted with a nitrogen-expanded foam that has smothering fire-extinguishing properties, as compared to conventional air-expanded foams. While a nitrogen-expanded foam has structural integrity that can fill a confined area and remain for a period of time in place on a structure, foams cannot flow into, or be pumped into, interstitial gaps within a structure on fire, such as into a coal pillar. Accordingly, while foams can be efficient for suppressing fire in an open area, their use in underground mines for extinguishing fires in a coal pillar, or within a coal stockpile, are limited.
The present invention relates to a method of controlling a mine fire comprising delivering a water-absorbent polymeric composition to a rock structure involved in a fire and infusing the polymeric composition into the rock structure. The present invention also includes methods of controlling ventilation in an underground mine by delivering a water-absorbent polymeric composition to a mine entry of an area of a mine to be isolated, and filling the mine entry with the polymeric composition to seal off the mine entry. Delivery of the polymeric composition can be made by drilling a bore hole from a location aboveground to a location outby of the area of the mine to be isolated. Also included in the present invention is a mine seal that fills a mine entry comprising a wall produced from a water-absorbent polymeric composition.
The present invention is disclosed in connection with the control of a fire in an underground mine. Portions of an underground mine that may be treated by the present invention include, for example, the roof, floor, and/or ribs of a mine entry or a coal pillar. However, the present invention is not limited thereto and includes all other confined areas, such as sites that normally have limited ventilation and access for extinguishing a fire or the like. In such confined areas, the by-products of a combustion may accumulate and pose a threat to personnel attempting to extinguish such a fire.
The present invention is directed to a method for extinguishing a fire in a confined area, such as a mine entry, by contacting the involved area with a water-absorbent polymeric composition. The water-absorbent polymeric composition used in the method of the present invention includes polymer particles that absorb significant quantities of water relative to the size and weight of the particles and may include a thickener that results in a relatively high viscosity composition. Suitable polymeric particles are produced from hydrophilic monomers, such as those disclosed in U.S. Pat. No. 6,245,252, incorporated herein by reference. The polymeric composition is produced by mixing of the polymer particles with water, whereupon the polymer particles absorb significant quantities of water. Viscosity modifying additives may be included in the polymeric composition to increase the viscosity for applications requiring structural integrity to the polymeric composition. The polymeric compositions delivered to a fire contain significant quantities of water that is releasable onto the fire. The water-laden particles can be injected or infused into interstitial gaps within the structure involved in a fire (such as a coal pillar) to inject the fire-suppressant material directly onto the fire and extinguish the fire at or near its origin. Rock strata, such as in an underground mine, inherently has cracks and gaps into which the polymeric composition is delivered. While water alone can be injected into rock strata involved in a fire, the water typically evaporates before it reaches the flames and is not effective. In contrast, the polymeric composition used in the present invention has more surface area than a water molecule, thereby slowing the evaporation process. More water reaches the fire and the fire is doused with less water than when using water alone or when using fire-fighting foams. The polymeric composition used in the present invention can contain at least 30 wt. % water and up to more than 90 wt. % water.
Referring to
Referring to
Referring to
In another embodiment, the polymeric composition further includes an additive that expands upon contact with water. Suitable expansion additives include materials such as bentonite, and may include organic materials that are inflammable, yet expand upon contact with water.
By filling the mine entry, as shown in
All of the preferred embodiments of the present invention are described above. Obvious modifications and alterations of the present invention may be made without departing from the spirit and scope of the present invention. The scope of the present invention is defined in the appended claims and equivalents thereto.
This application claims the benefits of U.S. Provisional Application No. 60/974,879, filed Sep. 25, 2007, entitled “Method of Controlling Mine Fires with Polymeric Gel” and is a Continuation of U.S. patent Ser. No. 12/237,018, filed Sep. 24, 2008 now U.S. Pat. No. 8,096,622, entitled “Method of Controlling Mine Fires with Polymeric Gel”, both of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3186490 | Jamison et al. | Jun 1965 | A |
3455850 | Saunders | Jul 1969 | A |
3791255 | Fox et al. | Feb 1974 | A |
3927719 | Maser | Dec 1975 | A |
4102138 | Dreker et al. | Jul 1978 | A |
4237182 | Fulmer et al. | Dec 1980 | A |
5849210 | Pascente et al. | Dec 1998 | A |
6245252 | Hicks et al. | Jun 2001 | B1 |
7104336 | Ozment | Sep 2006 | B2 |
7334644 | Ozment | Feb 2008 | B1 |
7464992 | Ozment | Dec 2008 | B1 |
20020021042 | Damron | Feb 2002 | A1 |
20030212177 | Vandersall et al. | Nov 2003 | A1 |
20070289752 | Beck et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
6788287 | Aug 1987 | AU |
03018695 | Mar 2003 | WO |
2006056379 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20120205129 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
60974879 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12237018 | Sep 2008 | US |
Child | 13351734 | US |