Cladding is a protective and/or aesthetic layer of material that covers an underlying structure. When used as a protective layer, cladding serves as a barrier between the environment and the underlying structure. The cladding may protect the underlying structure from harsh weather conditions including wind, rain, hail, and/or snow. In addition, the cladding may insulate the underlying structure from conditions outside the structure. When used as an aesthetic layer, cladding serves as an aesthetically pleasing decoration of the underlying structure. In this way, the cladding may improve the aesthetic appeal of an interior or exterior panel or roof of the underlying structure. In many instances, cladding serves both a protective and aesthetic purpose.
Conventional cladding used for roofing includes asphalt, concrete, ceramic, wood, clay, metal, rubber, and slate claddings. While some conventional claddings such as, for example, cedar wood, are sourced from renewable resources and made in an ecologically friendly process, they are typically very expensive and suffer from one or more performance issues. As a consequence, manufactured claddings enjoy widespread use. In the United States, asphalt cladding is the predominate cladding used for roofing because of its long service life and comparatively low cost. However, asphalt cladding is made from petroleum or petroleum by-products, a non-renewable resource, in a process that is not ecologically friendly.
According to one aspect of one or more embodiments of the present invention, a method of converting a tire into cladding components includes removing a first sidewall and a second sidewall of the tire from a tread ring of the tire. The first sidewall and the second sidewall are cut radially forming a plurality of shingles. The tread ring is cut transversely forming a plurality of mounting struts.
According to one aspect of one or more embodiments of the present invention, a method of manufacturing a cladding includes fastening at least two mounting struts to a structure. A plurality of interior-facing shingles are fastened to the structure in a mounting groove formed by the at least two mounting struts. A plurality of exterior-facing shingles are fastened to the structure through the at least two mounting struts.
Other aspects of the present invention will be apparent from the following description and claims.
One or more embodiments of the present invention are described in detail with reference to the accompanying figures. For consistency, like elements in the various figures are denoted by like reference numerals. In the following detailed description of the present invention, specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well-known features to one of ordinary skill in the art are not described to avoid obscuring the description of the present invention.
A conventional tire provides traction between a vehicle and the road and provides some manner of cushion to the ride of the vehicle. The tire is typically a doughnut-shaped inflatable structure that is mounted to a rim of a wheel. The tire typically includes a tread portion that provides traction and sidewall portions that support compressed air disposed within a chamber formed by the tire and the rim of the wheel. The tire is typically composed of rubber, fabric, wire, and carbon black. When a vehicle's tires wear out, the tires are typically taken out of service and replaced by new tires. Because of the large number of vehicles in use worldwide, the number of disposed tires increases on a daily basis. While there have been efforts to retread or otherwise repurpose disposed tires, millions of disposed tires are discarded and end up in stockpiles and landfills each year.
Because of the composition of disposed tires, they can take up to 2000 years to decompose. As such, the accumulation and the management of disposed tires is very expensive and poses several health and environmental risks. When disposed tires are stockpiled, disease carrying pests may nest in the cavities of the tires. In addition, mosquitoes may breed in stagnant rainwater that collects in the cavities of the tires. When disposed tires are stockpiled, they pose a serious fire safety risk that cannot be understated. While tires typically do not self-ignite, when they catch fire they are very difficult to extinguish because of their low thermal conductivity and torous geometry. As such, tire fires are typically uncontrollable and can burn for years. If not contained, tire fires can spread fire to the surrounding environment or structures. In addition, tire fires typically emit a thick smoke of various toxic and carcinogenic gases. As the smoke spreads, the toxic gases may be fatal to nearby inhabitants. As tire fires burn, the rubber of the tires may eventually melt. Once melted, the liquefied rubber portions of the tire may drip, run, or otherwise spread and, because of tackiness, adhere to whatever the liquefied rubber contacts. Even when extinguished, tire fires continue to pose a number of health and environmental risks. The location of the tire fire is typically covered in toxic chemicals that can contaminate food and water supplies. Typically, the location must be remediated at great expense before the location is suitable for human use.
The limited success of efforts to retread or otherwise repurpose disposed tires has largely been enjoyed by economically developed countries that have the political will and economic resources to implement such programs. As such, the accumulation of disposed tires, and the corresponding health and environmental risks they pose, have and continue to be felt strongest in lesser economically developed countries. Thus, a need exists to repurpose disposed tires in a cost-effective and ecologically friendly manner.
In certain embodiments, tires 100 may be selected for use in a method of converting tires into cladding components based on one or more of a type and a size of the tire to maintain the approximate uniformity of shingles (not shown) and mounting struts (not shown) made out of tires 100. In other embodiments, tires 100 may be selected at random and approximately uniform shingles (not shown) and mounting struts (not shown) may be selected from those made out of tires 100. In still other embodiments, tires 100 may be selected at random and approximately uniform shingles (not shown) and mounting struts (not shown) may be formed by modifying the shingles (not shown) and mounting struts (not shown) during the manufacture of the cladding components (not shown). One of ordinary skill in the art will recognize that the way in which approximately uniform shingles (not shown) and mounting struts (not shown) are selected may vary in accordance with one or more embodiments of the present invention.
In certain embodiments, a cutting tool (not shown) or cutter (not shown) may be used to remove the first sidewall 110 and the second sidewall 120 from the tread ring 130. In other embodiments, a milling tool (not shown) may be used. In still other embodiments, a saw (not shown) may be used. One of ordinary skill in the art will recognize that any cutting mechanism suitable for removing the first sidewall 110 and the second sidewall 120 from the tread ring 130 may be used in accordance with one or more embodiments of the present invention.
While mounting strut 330 may be used without further modification, in certain embodiments, mounting strut 330 may be modified to facilitate the fastening of mounting strut 330 to an underlying structure (not shown) and/or to facilitate the fastening of shingles (not shown) to the mounting strut 330 itself or to the underlying structure (not shown) through the mounting strut 330. Continuing in
In certain embodiments, a groove forming tool (not used) may be used to remove longitudinal strips 350, 360, and 370. In other embodiments, a cutting tool (not shown) or cutter (not shown) may be used. In still other embodiments, a milling tool (not shown) may be used. One of ordinary skill in the art will recognize that any cutting mechanism suitable for removing longitudinal strips 350, 360, and 370 from the mounting strut 330 may be used in accordance with one or more embodiments of the present invention.
Continuing in
In certain embodiments, a cutting tool (not shown) or cutter (not shown) may be used to make the radial cuts forming the plurality of shingles 400. In other embodiments, a milling tool (not shown) may be used. In still other embodiments, a saw (not shown) may be used. One of ordinary skill in the art will recognize that any cutting mechanism suitable for making radial cuts may be used in accordance with one or more embodiments of the present invention.
As discussed above with respect to
The shingles 400 and mounting struts 330 made out of the tire (100 of
In certain embodiments, an appearance of one or more shingles 400 may be altered by cutting an outward facing surface (not independently illustrated) and/or edge (not independently illustrated) of the one or more shingles 400. For example, the surface and/or edge may be straight-cut, scalloped, or pointed. In other embodiments, an appearance of one or more shingles 400 may be altered by shaving an outward facing surface and/or edge of the one or more shingles 400. In still other embodiments, an appearance of one or more shingles 400 may be altered by buffing an outward facing surface and/or edge of the one or more shingles 400. In still other embodiments, an appearance of one or more shingles 400 may be altered by heating an outward facing surface and/or edge of the one or more shingles. In this way, the outward facing surface (not independently illustrated) and/or edge may be altered to ensure an approximately uniform appearance of the one or more shingles 400 or provide an approximately uniform aesthetic look to the one or more shingles 400.
In certain embodiments, the above-noted alterations to the outward facing surfaces (not independently illustrated) and/or edges (not independently illustrated) of one or more shingles 400 may be performed prior to removal of the first and second sidewalls (110 and 120 of
Mounting struts 330 may be fastened to a flat surface (not independently illustrated) of structure 510 or one or more crossbars 515 of structure 510. For example, a first edge groove 355 or a second edge groove 375 may be fastened to the flat surface of structure 510 or one or more crossbars 515 of structure 510. Mounting strut 330 may be positioned such that mounting strut 330 protrudes longitudinally. The second edge groove 375 or the first edge groove 355 may then be fastened to the flat surface of structure 510 or one or more crossbars 515 of structure 510 to maintain the protruding shape of mounting strut 330. In
Continuing in
For example, a first end of a first interior-facing shingle 400 may be fastened to a lower edge of the flat surface of structure 510 or a crossbar 515 of structure 510 in mounting groove 530 by a fastener 520. A second interior-facing shingle 400 may be rotated relative to the first interior-facing shingle and placed such that a first end of the second interior-facing shingle 400 overlaps a second end of the first interior-facing shingle 400. The first end of the second interior-facing shingle 400 and the second end of the first interior-facing shingle 400 may be fastened by a fastener 520 to the flat surface of structure 510 or a crossbar 515 of structure 510. A third interior-facing shingle 400 may be rotated relative to the second interior-facing shingle and placed such that a first end of the third-interior facing shingle 400 overlaps a second end of the second interior-facing shingle 400. The first end of the third interior-facing shingle 400 and the second end of the second interior-facing shingle 400 may be fastened by a fastener 520 to the flat surface of structure 510 or a crossbar 515 of structure 510. A second end of the third interior-facing shingle 400 may be fastened by a fastener 520 to the flat surface of structure 510 or a crossbar 515 of structure 510. In this way, three interior-facing shingles 400 may be fastened in a mounting groove 530 that spans a length of mounting strut 330. This process may be continued to place as many interior-facing shingles 400 as may be necessary to cover the mounting grooves 530 for a given structure 510. As discussed above with respect to
Continuing in
For example, a first exterior-facing shingle 400 may be oriented such that its orientation matches that of the underlying interior-facing shingles 400 that it will partially cover. In certain embodiments, a first end of the first exterior-facing shingle 400 may be fastened to mounting strut 330 through a center groove 365 of mounting strut 330 by a fastener 520. The center groove 365 may ease fastening shingle 400 to structure 510, but may not be necessary in all embodiments. If mounting strut 330 does not include center groove 365, an approximate longitudinal centerline of mounting strut 330 may be used in its place. In other embodiments, a first end of the first exterior-facing shingle 400 may be fastened to the flat surface of structure 510 or a crossbar 515 of structure 510 through center groove 365 of mounting strut 330 by a fastener 520. A second exterior-facing shingle 400 may be rotated relative to the first exterior-facing shingle 400 and placed such that a first end of the second exterior-facing shingle 400 overlaps a second end of the first exterior-facing shingle 400. In certain embodiments, the first end of the second exterior-facing shingle 400 and the second end of the first exterior-facing shingle 400 may be fastened to mounting strut 330 through center groove 365 of mounting strut 330 by a fastener 520. In other embodiments, the first end of the second exterior-facing shingle 400 and the second end of the first exterior-facing shingle may be fastened to the flat surface of structure 510 or a crossbar 515 of structure 510 through mounting strut 330. A third exterior-facing shingle 400 may be rotated relative to the second exterior-facing shingle 400 and placed such that a first end of the third exterior-facing shingle 400 overlaps a second end of the second exterior-facing shingle 400. In certain embodiments, the first end of the third exterior-facing shingle 400 and the second end of the second exterior-facing shingle 400 may be fastened to mounting strut 330 through center groove 365 of mounting strut 330 by a fastener 520. In other embodiments, the first end of the third exterior-facing shingle 400 and the second end of the second exterior-facing shingle 400 may be fastened to the flat surface of structure 510 or a crossbar 515 of structure 510 through mounting strut 330. In certain embodiments, the second end of the third-exterior facing shingle 400 may be fastened to mounting strut 330 through center groove 365 of mounting strut 330 by a fastener 520. In other embodiments, the second end of the third-exterior facing shingle 400 may be fastened to the flat surface of structure 510 or a crossbar 515 of structure 510 through mounting strut 330. In this way, three exterior-facing shingles 400 may be fastened along a length of mounting strut 330. This process may be continued to place as many exterior-facing shingles 400 as may be necessary to cover the mounting struts 330 for a given structure 510. As discussed above with respect to
As shown in
In certain embodiments, fasteners 520 may be nails. In other embodiments, fasteners 520 may be rivets, staples, screws, glue, chemical bonding material, thermal bonding material, or other mechanical fasteners. One of ordinary skill in the art will recognize that other types of fasteners may be used in accordance with one or more embodiments of the present invention.
In
Cladding panel 600 may be used as part of a larger cladding project. For example, a plurality of cladding panels 600 may be manufactured in advance of a cladding project. The plurality of cladding panels 600 may be stored until needed and transported to a location for a cladding project. The plurality of cladding panels 600 may be arranged such that the plurality of cladding panels 600 provides sufficient cladding coverage for a given cladding project.
In step 920, the first sidewall and the second sidewall may be cut radially forming a plurality of shingles. The first sidewall may be cut radially forming a plurality of shingles. The second sidewall may be cut radially forming a plurality of shingles. The radial cuts may be made along a plurality of lines that run through a center of the circumference of each respective sidewall piece. In certain embodiments, twelve shingles may be formed by making six radial cuts on the first sidewall that are approximately equidistant apart and making six radial cuts on the second sidewall that are approximately equidistant apart. In other embodiments, a plurality of shingles may be formed by making a corresponding plurality of radial cuts on each respective sidewall piece that are approximately equidistant apart. One of ordinary skill in the art will recognize that the number of shingles formed depends on the number of radial cuts made and may vary in accordance with a specific design or application. In addition, one of ordinary skill in the art will recognize that the size of the shingles may vary based on the spacing between the radial cuts and may vary in accordance with a specific design or application. In certain embodiments, a cutting tool or cutter may be used to make the radial cuts forming the plurality of shingles. In other embodiments, a milling tool may be used. In still other embodiments, a saw may be used. One of ordinary skill in the art will recognize that any cutting mechanism suitable for making radial cuts may be used in accordance with one or more embodiments of the present invention.
In step 930, the tread ring may be cut transversely forming a plurality of mounting struts. In certain embodiments, the tread ring may be cut transversely at two locations that are approximately equidistant apart. In this way, two mounting struts of approximately equal length may be formed out of the tread ring. In other embodiments, the tread ring may be cut transversely at a plurality of locations that are approximately equidistant apart, forming a plurality of mounting struts that are approximately equal in length. One of ordinary skill in the art will recognize that the tread ring may be cut transversely at different locations forming mounting struts of different lengths that may vary in accordance with a specific design or application.
While the mounting struts may be used without further modification, in certain embodiments, the mounting struts may be modified to facilitate the fastening of the mounting struts to an underlying structure and/or to facilitate the fastening of shingles to the mounting strut itself or the underlying structure through the mounting struts. In step 940, a longitudinal strip may be removed along a first edge of one or more mounting struts forming a first edge groove in the one or more mounting struts. In step 950, a longitudinal strip may be removed along a second edge of one or more mounting struts forming a second edge groove in the one or more mounting struts. In step 960, a longitudinal strip may be removed along a center of one or more mounting struts forming a center groove in the one or more mounting struts. In certain embodiments, a groove forming tool may be used remove the longitudinal strips. In other embodiments, a cutting tool or cutter may be used. In still other embodiments, a milling tool may be used. One of ordinary skill in the art will recognize that any cutting mechanism suitable for removing longitudinal strips from the one or more mounting struts may be used in accordance with one or more embodiments of the present invention.
The shingles and mounting struts made out of the tire may be used as cladding components for manufacturing a cladding or cladding panel. In certain embodiments, the cladding components may be used as cladding components for roofing. In other embodiments, the cladding components may be used as cladding components for a panel. In still other embodiments, the cladding components may be used as cladding components for a modular cladding panel configured to facilitate the assembly of a larger cladding. One of ordinary skill in the art will recognize that the use of the cladding components may vary based on a specific design or application.
In certain embodiments, an appearance of one or more shingles may be altered by cutting an outward facing surface and/or edge of the one or more shingles. For example, the surface and/or edge may be straight-cut, scalloped, or pointed. In other embodiments, an appearance of one or more shingles may be altered by shaving an outward facing surface and/or edge of the one or more shingles. In still other embodiments, an appearance of one or more shingles may be altered by buffing an outward facing surface and/or edge of the one or more shingles. In still other embodiments, an appearance of one or more shingles may be altered by heating an outward facing surface and/or edge of the one or more shingles. In this way, the outward facing surface and/or edge may be altered to ensure an approximately uniform appearance of the one or more shingles or provide an approximately uniform aesthetic look to the one or more shingles.
In certain embodiments, the above-noted alterations to the outward facing surfaces and/or edges of one or more shingles may be performed prior to removal of the first and second sidewalls from the tread ring. In other embodiments, the above-noted alterations to the outward facing surfaces and/or edges of one or more shingles may be performed after removal of the first and second sidewalls from the tread ring, but prior to the cutting the respective sidewalls into shingles. In still other embodiments, the above-noted alterations to the outward facing surfaces and/or edges of one or more shingles may be performed on one or more shingles after they are formed. One of ordinary skill in the art will recognize that the manner in which the outward facing surface and/or edge of shingles may be altered may vary in accordance with one or more embodiments of the present invention.
In step 970, a portion of a tread tip may be removed from one or more shingles. As discussed above, the first sidewall and second sidewall may be removed from the tread ring at circumferential locations that extend into the tread portion of the tire. As such, the first sidewall and the second sidewall may each include a portion of tread along their outer circumference. The portion of tread left on the first sidewall and the portion of tread left on the second sidewall may form a lip on the shingles formed from each respective sidewall. In certain embodiments, one or more of a portion of a tread tip may be removed from the lip of one or more shingles. The portion of the tread tip may be removed by making a 45 degree angle cut with respect to the portion of tread of shingle when looking at shingle from the perspective of what would be the inside of the tire. The removal of the portions of the tread tip may improve the overlapping of shingles and the aesthetic appeal of the cladding ultimately produced.
In step 1010, at least two mounting struts may be fastened to a structure. As noted above, a disposed tire may be converted into a plurality of mounting struts and a plurality of shingles. In certain embodiments, a disposed tire may be converted into two mounting struts and twelve shingles. The structure may be a portion of a roof, a portion of a panel, or a portion of a modular panel that may be used as part of a larger cladding project. In certain embodiments, the structure may include a flat surface. In other embodiments, the structure may include a flat surface with a number of crossbars disposed on the flat surface. In still other embodiments, the structure may be composed of only crossbars. One of ordinary skill in the art will recognize that the structure may vary in accordance with one or more embodiments of the present invention. The mounting struts may be fastened to the flat surface of the structure or one or more crossbars of the structure. In certain embodiments, a first edge groove may be fastened to the flat surface of the structure or one or more crossbars of the structure with one or more fasteners and the second edge groove may be fastened to the flat surface of the structure or one or more crossbars of the structure with one or more fasteners. The first edge groove or the second edge groove may be fastened to the flat surface of the structure or one or more crossbars of the structure first. The mounting strut may then be positioned such that a portion of the mounting strut protrudes longitudinally. The second edge groove or the first edge groove may then be fastened to the flat surface of the structure or one or more crossbars of the structure to maintain the protruding shape of the mounting strut. A mounting groove may be the aperture or space between two mounting struts, or the aperture or space between a mounting strut and an edge of the structure, which exposes a portion of the flat surface of the structure or one or more crossbars of the structure suitable for mounting a shingle. In certain embodiments, the mounting struts may be placed such that the mounting groove formed between them includes an aperture or space that may be substantially covered by a shingle.
In step 1020, a plurality of interior-facing shingles may be fastened to the flat surface of the structure or one or more crossbars of the structure in one or more mounting grooves formed by at least two mounting struts. Interior-facing shingles are shingles placed such that an interior portion of the source tire is outward facing. In certain embodiments, the interior-facing shingles may be fastened to the structure starting at an edge of the structure and continuing in sequence along a length of the mounting groove. One of ordinary skill in the art will recognize that interior-facing shingles may be fastened to the structure starting at other locations in accordance with one or more embodiments of the present invention. Each subsequently placed interior-facing shingle may be rotated with respect to a previously placed interior-facing shingle and overlap the previously placed interior-facing shingle. In this way, a plurality of interior-facing shingles may be fastened to the structure in a mounting groove that spans a length of the mounting strut. This process may be continued to place as many interior-facing shingles as may be necessary to cover the mounting grooves for a given structure. Because each successive interior-facing shingle is rotated and overlapping, the plurality of interior-facing shingles may form a substantially arcuate profile, which, in one example, forms an approximately sinusoidal pattern.
In step 1030, a plurality of exterior-facing shingles may be fastened to the structure through the at least two mounting struts. Exterior facing shingles are shingles placed such that an exterior portion of the source tire is outward facing. The exterior-facing shingles may be fastened to the structure starting at the edge of the structure and continuing in sequence along a length of the mounting strut. One of ordinary skill in the art will recognize that exterior-facing shingles may be fastened to the structure starting at other locations in accordance with one or more embodiments of the present invention. In certain embodiments, an exterior-facing shingle may be fastened to the structure by a fastener that extends through the shingle into a center groove of a mounting strut that is itself fastened to the structure. In other embodiments, an exterior-facing shingle may be fastened to the structure by a fastener that extends through the shingle and a center groove of a mounting strut into the structure. Each subsequently placed exterior-facing shingle may be rotated with respect to a previously placed exterior-facing shingle and overlap the previously placed exterior-facing shingle. In this way, a plurality of exterior-facing shingles may be fastened to the structure along a length of the mounting strut. This process may be continued to place as many exterior-facing shingles as may be necessary to cover the mounting struts for a given structure. Because each successive exterior-facing shingle is rotated and overlapping, the plurality of exterior-facing shingles may form a substantially arcuate profile, which, in one example, forms an approximately sinusoidal pattern.
The cladding formed using cladding components formed by a method of converting a tire into cladding components may facilitate water flow over a structure. A substantially U-shaped bottom layer may be formed by each column of overlapping interior-facing shingles and a substantially upside-down U-shaped top layer may be formed by each column of overlapping exterior-facing shingles disposed along a length of the mounting struts. The exterior-facing shingles may be supported by the arch of the mounting struts. Because the upside-down U-shaped exterior-facing shingles overlap the U-shaped interior-facing shingles, water flow may be facilitated. Water may roll over the upside-down U-shaped exterior-facing shingles into U-shaped interior-facing shingles. Because each of the interior-facing shingles and exterior-facing shingles are placed in an overlapping manner, water may flow down the reservoir formed by the overlapping interior-facing shingles and off of the structure. In addition to functionality, the cladding formed using cladding components formed by a method of converting a tire into cladding components may provide an aesthetically pleasing decoration of the cladding. In certain embodiments, the cladding may have an approximately sinusoidal-type pattern because of the shape and orientation of the shingles.
Advantages of one or more embodiments of the present invention may include one or more of the following:
In one or more embodiments of the present invention, a method of converting a tire into cladding components repurposes one or more disposed tires in an environmentally friendly manner.
In one or more embodiments of the present invention, a method of converting a tire into cladding components reduces or eliminates the environmental waste associated with disposal of the tire.
In one or more embodiments of the present invention, a method of converting a tire into cladding components reduces or eliminates the environmental impact associated with disposal of the tire.
In one or more embodiments of the present invention, a method of converting a tire into cladding components does not require reshaping, reconstituting the chemical composition, molding, or compositing the tire.
In one or more embodiments of the present invention, a method of converting a tire into cladding components may use the entire disposed tire to produce cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components produces cladding components that aesthetically resemble conventional cladding.
In one or more embodiments of the present invention, a method of converting a tire into cladding components simplifies the process of converting the tire into the cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components reduces the cost associated with converting the tire into the cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components reduces the amount of energy required to produce the cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components produces cladding components that require substantially less maintenance than conventional cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components produces cladding components that have a substantially longer service life compared to conventional cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components produces cladding components that perform as good as or better than conventional cladding components.
In one or more embodiments of the present invention, a method of converting a tire into cladding components produces cladding components that cost substantially less than conventional cladding components.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel made of one or more repurposed tires.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel made of cladding components made by a method of converting a tire into cladding components.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that may be modular.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that uses repurposed tires in an environmentally friendly manner.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that reduces or eliminates the environmental waste associated with disposal of one or more repurposed tires.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that reduces or eliminates the environmental impact associated with disposal of one or more repurposed tires.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that may use the entirety of one or more disposed tires.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that aesthetically resembles conventional cladding.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that simplifies the manufacturing process.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that reduces the cost associated with manufacturing the cladding or cladding panel.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that reduces the amount of energy required to produce the cladding or cladding panel.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that requires substantially less maintenance than conventional cladding or cladding panels.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that have a substantially longer service life compared to conventional cladding or cladding panels.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that perform as good as or better than conventional cladding or cladding panels.
In one or more embodiments of the present invention, a method of manufacturing a cladding produces a cladding or cladding panel that costs substantially less than conventional cladding or cladding panels.
While the present invention has been described with respect to the above-noted embodiments, those skilled in the art, having the benefit of this disclosure, will recognize that other embodiments may be devised that are within the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the appended claims.