The present invention relates to adding new hand gestures, especially to a method of customizing a hand gesture.
The detection and recognition of a user’s hand gestures is an alternative method of controlling electronic devices other than touch control and voice control. In recent years, the popularity of augmented reality (AR) and virtual reality (VR) has gradually made them popular human-computer interaction interfaces, and they have been applied to many fields such as games, tours, and medical care. Doppler radar has the advantages of fast response, fewer dead spots, and can be hidden when detecting and recognizing hand gestures. Therefore, Doppler radar has irreplaceable advantages in detecting and recognizing hand gestures.
In practical applications, a device with hand gesture motion detection and recognition functions, in addition to its own gesture motion detection and recognition technology, also needs to consider a problem that might be encountered when a user tries to create a customized hand gesture; because when the user creates a customized hand gesture, the user needs to repeat many times the hand gesture he/she wants to create, so as to record and mark the customized hand gesture, and at the same time, the device needs to be trained, resulting in a process flow of recording, marking and training the customized hand gesture. Often the process flow is tedious and uncertain, so the user of the device is likely to be stumped by said process flow of recording, marking and training, and thereby the user loses patience, and as a consequence the device with gesture motion detection and recognition functions is often not able to fulfill intended effects of said functions due to the problem of inconvenience in customizing a hand gesture.
Therefore, there is an urgent need for how to enable a device with motion gesture detection and recognition functions to add a customized hand gesture with minimal efforts from the user.
In order to solve the above-mentioned problem, the present invention discloses a method of customizing a hand gesture, including the following steps:
Preferably, each reference graph of the 2D trajectory graph of the input hand gesture and the 2D hand gesture reference graph set is a time series composed of multiple coordinate points on a preset two-dimensional XY coordinate plane.
Preferably, the similarity comparison between two time series is performed with a dynamic time warping (DTW) method.
In the following, the technical solutions in the embodiments of the present invention will be clearly and fully described with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of, not all of, the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by a person of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
The touch screen 11 can be a general two-dimensional (abbreviated as 2D herein) graphic touch input device; the computing unit 12 can be a system chip, such as a central processing unit (CPU) or a micro-controller; the memory 13 can be a solid-state memory or a disk drive; the communication module 14 is equipped with wired or wireless communication functions, such as: local area network (LAN), Wi-Fi, 2G/3G/4G/5G /6G, etc.; and the Doppler radar 15 has the function of detecting three-dimensional (abbreviated as 3D herein) gesture trajectories.
The hand gesture database is stored in the memory 13. In one embodiment, the hand gesture database can also be stored in the server 20 or the cloud 21. The 2D hand gesture reference graph set 50 also has nine 2D hand gesture augmented reference graphs 501-509, and each of these 2D hand gesture augmented reference graphs 501-509 is generated by various deformations of the 2D hand gesture reference graph 500, for example, applying automatic deformation methods such as scaling, shifting, rotating, and random cropping to the 2D hand gesture reference graph 500 to produce these 2D hand gesture augmented reference graphs 501-509. Therefore, the 2D hand gesture reference graph set 50 is composed of the 2D hand gesture reference graph 500 and the 2D hand gesture augmented reference graphs 501-509. Each of the 2D hand gesture augmented reference graphs 501-509 is also a time series consisting of a plurality of coordinate points on the preset two-dimensional X-Y coordinate plane.
Wherein, because existing 2D hand gestures stored in the hand gesture database are arranged in a sequence, in step S3, the flow is to sequentially read, one at a time from the hand gesture database, all the 2D hand gesture reference graphs corresponding to an existing 2D hand gesture in the hand gesture database, until all the 2D hand gesture reference graphs in the hand gesture database are completely read, and when there is no more 2D hand gesture reference graph to be read from the hand gesture database, the flow jumps to step S6.
In step S5, each reference graph in the 2D trajectory graph of the input hand gesture and the 2D hand gesture reference graph set is a time series composed of multiple coordinate points on the preset two-dimensional XY coordinate plane, accordingly, the dynamic time warping (DTW) method used in time series analysis can be used to carry out similarity comparison between two time series.
In step S6, because the hand gesture trajectory data input recorded in step S1 is not similar to all existing 2D hand gestures stored in the hand gesture database, the input hand gesture is indeed a new hand gesture, which must be given a name, and therewith the new hand gesture is written into the hand gesture database, thus completing the creation of the new hand gesture.
In step S8, since the gesture already exists, the hand gesture trajectory data input recorded in step S1, obviously, cannot be regarded as a new hand gesture.
Please refer to
Wherein, in order to test the 2D hand gesture reference graph of a new hand gesture which is stored in the hand gesture database, at first, in step S11, the computing unit 12 reads the 2D hand gesture reference graph of the new hand gesture from the hand gesture database, and thereby generates the 2D hand gesture reference graph set of the new hand gesture. Then the Doppler radar 15 detects and records a 3D new hand gesture test trajectory data of the new hand gesture performed by the user, and sends the 3D new hand gesture test trajectory data to the computing unit 12. Then the computing unit 12 converts the 3D new hand gesture test trajectory data into a 2D new hand gesture test trajectory graph, that is, a plurality of 3D position points of the 3D new hand gesture test trajectory of the 3D new hand gesture test trajectory data are projected one-to-one to corresponding coordinate points on a preset two-dimensional XY coordinate plane to generate the 2D new hand gesture test trajectory graph, accordingly the 2D new hand gesture test trajectory graph is a time series formed by a plurality of coordinate points on the preset two-dimensional XY coordinate plane. Then the computing unit 12 compares and determines whether the 2D new hand gesture test trajectory graph and the 2D hand gesture reference graph set of the new hand gesture are similar, and if they are not similar, the user needs to perform the new hand gesture again, and thereby the computing unit 12 compares and determines again whether the 2D new hand gesture test trajectory graph and the 2D hand gesture reference graph set of the new hand gesture are similar, until they are similar, and then the new hand gesture test is considered successful, and the test is ended.
In one embodiment, when a user performs a new hand gesture, there is no need for a precise starting point or a precise ending point, that is, a 3D new hand gesture test trajectory data collected by the Doppler radar 15, can be accumulated and expanded with time, and in the process of accumulating the 3D new hand gesture test trajectory data, as long as there is any period of time during which the 3D new hand gesture test trajectory data and the 2D hand gesture reference graph set of the new hand gesture are similar, it can be determined that the test of the new hand gesture performed by the user is successful.
Although the above disclosed process flows, test flows and embodiments of the present invention take the end device 10 performing main data processing and data storage as examples, both the server and the cloud connected with the end device 10 through networks are also capable of performing the functions of computation and data storage through proper configurations. Therefore, the execution device for data processing and data storage in the process flows, test flows and embodiments of the present invention is not limited to the end device 10.
The method of customizing a hand gesture disclosed by the present invention converts a hand gesture trajectory data input inputted through a touch screen into a 2D trajectory graph of an input hand gesture, which is then sequentially compared for the similarity with a 2D hand gesture reference graph set corresponding to each 2D hand gesture reference graph in the hand gesture database, so as to determine whether the hand gesture trajectory data input is a new hand gesture. When the hand gesture trajectory data input is determined to be a new hand gesture, the present invention further discloses a test flow to test the new hand gesture, so that after the new hand gesture is created, correctness and effectiveness of the new hand gesture can be further ensured.
Because the present invention discloses using the 2D hand gesture reference graph set to perform similarity comparison, when adding a new hand gesture, the user only needs to perform the input hand gesture once. In addition, because the present invention discloses that when testing a new hand gesture, and in the process of accumulating the test trajectory data of the new hand gesture, as long as there is any period of time during which the 3D new hand gesture test trajectory data and the 2D hand gesture reference graph set of the new hand gesture are similar, the test of the new hand gesture is successful. Therefore, when the user performs the new hand gesture, there is no need for a precise starting point and a precise ending point. Therefore, when testing a new hand gesture, a user can naturally perform the new hand gesture with ease, thereby greatly reducing time spent by the user when adding a new hand gesture to a device, and thus the purpose of the present invention can be achieved.
The aforementioned are preferred embodiments of the present invention. It should be noted that for those of ordinary skill in the art, without departing from the principles of the present invention, certain improvements and retouches of the present invention can still be made, which are nevertheless considered as within the protection scope of the present invention.
Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only. Changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.