This application claims priority to, and is a national phase application of, PCT/RU2014/00231 filed on Mar. 31, 2014, and published as WO 2015/152753 on Oct. 8, 2015, the contents of which are incorporated by reference in their entirety.
The invention relates to indication systems for drivers of vehicles and cars.
The prior art discloses a patent of the Russian Federation RU2424541, issued on 20 Oct. 2011, which describes a device for visual data display on the windscreen of the vehicle, including the image source, which is a liquid crystal matrix with LED-backlit, a mirror receiving light from the image source, and a concave aspheric mirror that directs the light to the windscreen and differs from the mirror receiving the light, which has aspheric convex design. At the same time, the image source provides information about the vehicle speed, fuel endurance, condition of engine and vehicle-borne equipment, readings of onboard video camera, including rear-view and night observation cameras, navigation data (GPS), as well as telecommunication data (mobile phone service). All data flow to the image source from the vehicle computer. Technical result consists of the correction of distortions, improvement of the curvature and astigmatism correction of the image to be formed in the wide field of view.
The prior art discloses U.S. Pat. No. 8,436,952 B2, issued on 7 May 2013. The document describes a hybrid display device on the vehicle windscreen. Moreover, it is proposed to use a special element in the backlight system that mixes the light from the external environment with light of the source from the internal power supply and provides even light for the display system. Technical result consists of the high brightness of the picture in the conditions of bright ambient light.
The prior art discloses U.S. Pat. No. 8,269,652 B2, issued on 18 Sep. 2012, which explained the method and device of graphic data display. The data display device is characterized by the fact that the almost transparent screen on part of the windscreen has light emitting particles of one or more species or microstructure that form a luminous display, it means, that the data are displayed directly on the windscreen. The system also includes a computer that analyzes the data on the traffic state and promptly shows them on the screen.
The prior art discloses U.S. Pat. No. 7,031,067, issued on 18 Apr. 2006, which describes a device of data display via vehicle windscreen, which is the closest analogue and includes interconnected elements located on the optical axis: light modulation matrix for the visible spectral range, which forms the image; a set of lenses for conversion of the light from the matrix; holographic element, which provides the necessary enlargement of image and creates a virtual image. Technical result consists of the reduction of cost and size of the device.
Indication systems for the drivers of vehicles and cars include a data display device that combines two optical systems of the image display—the virtual image display system and the real image display system. The display device may be configured to provide a maximum of displayed information and to ensure safe driving, by controlling the level of details and the content of the data displayed for the vehicle driver, depending on the speed, and by choosing the optical system of data display to minimize the accident risk.
Image quality and safe driving may be improved due to the combination of two systems and control of the level of detail of displayed data.
A technical result is to ensure safe driving and high-quality data displayed due to the combined use of systems depending on the speed of the vehicle, as well as to provide to the driver maximum possible information with minimal risk of accident.
The prior art have one major drawback, which is that these systems have been originally designed to work only with the virtual image, or only with the real image. Therefore, despite the fact that with the head-up system in the vehicle the driver might be less distracted by refocusing from the road to the windscreen, the virtual image quality is significantly worse than in the optical systems projecting a real image onto the windscreen. And vice-versa, the image projected onto the windscreen has a good quality, but requires visual re-accommodation. The proposed technical solution is able to solve this problem—to ensure driving safety and high image quality via combined use of 2 optical systems depending on the speed of the vehicle.
Another problem being solved is relevant data support of the driver based on the location of the devices.
The following example methods and systems have been developed to solve assigned issues.
Method of transmitting of the visual data to the driver via at least two optical systems, controller, speed sensor, comprising the following stages:
a. obtain speed value from the speed sensor of the vehicle and transmit the speed data to the controller;
b. use the controller to compare obtained speed value to the threshold value; and
c. switch on at least one of the optical systems and turn off all other optical systems, if the measured speed is above the threshold.
The method can be implemented so that the threshold speed is in the range of 0-40 km/h.
The method can be implemented so that one optical system forms a real image on the surface of windscreen, and a second optical system generates a virtual (ahead of the car) image on the windscreen.
The method can be implemented so that the controller is used to switch on the optical system displaying real image onto the windscreen of the vehicle and to turn off the optical system displaying virtual (ahead of the car) image behind the windscreen of the vehicle, if the vehicle speed is below a threshold value. The controller is used to switch the optical system of the virtual image display behind the windscreen of the vehicle, and to turn off the optical system of the real image display onto the windscreen of the vehicle, if the vehicle speed is higher than and/or equal to the threshold value.
The method can be implemented so that the position detector and/or the database are used to take the following steps:
a. take readings of the vehicle position detector using position sensor;
b. obtain reference data, corresponding to the position detector data, from the database; and
c. transmit reference data from the database to the driver, using at least one of the optical systems.
The method can be implemented so that the GPS receiver and/or GLONASS is used as a position detector.
The method can be implemented so that the information on cultural, leisure, entertainment, sport, or art facilities located in the immediate vicinity can be used as reference information.
The method can be implemented so that the databases can be located on the remote server and accessed on-line or be downloaded by the software, which can be periodically updated.
The method can be implemented so that based on the speed of the vehicle, the controller chooses the data to be displayed via the appropriate image display system, and the controller chooses the data to be blocked.
The data display device includes the following elements:
a. controller;
b. speed sensor;
c. virtual image display system which includes a coherent light source, illumination optical components, matrix and optical components generating virtual image, including a set of optical elements and the film on the vehicle windscreen, which is either a holographic image or light-induced grating recorded to work at a certain wavelength and is transparent to the rest of the visible spectrum, or a color filter that reflects light at a certain wavelength and is transparent to the rest of the visible spectrum;
d. real image display system which includes sources of visible light, illumination optical components, matrix and optical components generating real image, comprising in turn a set of optical elements and partially a transparent film on the vehicle windscreen, which diffusely reflects only a preselected portion of the spectrum of visible light; and
e. compact body, containing controller, part of the elements of the virtual and real image display system, except of the film on the vehicle windscreen.
The device can be designed so that it switches the GPS and/or GLONASS receiver used as a position detector.
The device can be designed so that it uses laser or laser diode as a coherent light source for the virtual image display system.
The device can be designed so that it uses DLP matrix, or LCD matrix, or LCoS matrix as a matrix for the virtual or real image display system.
The device can be designed so that it uses lenses and/or mirrors and/or holographic images as optical elements for the virtual or real image display system.
The device can be designed so that it uses laser and/or laser diodes, and/or LEDs, and/or phosphors.
The device can be designed so that the transmission factor of the partially transparent film of the real image display system for visible spectrum is over 70%.
The device can be designed so that the film of the virtual image display system is laminated on top of the film of the real image display system.
The holographic image in this application may be understood to mean a film, which has a certain phase structure recorded so that in the first case, the film in the narrow spectral range based on the recorded structure replaces work of such optical elements as a flat mirror, a mirror with a certain curvature or lens, and in the second case it works as a diffuser box of the part of incident light in a wide spectral range.
The data display device includes the following elements: controller, speed sensor, virtual image display system 2 and 6, real image display system 3 and 5, compact body. At the same time, the virtual image display system 2 and 6 includes a coherent light source (laser or laser diode), illumination optical components, matrix (DLP, or LCD, or LCoS) and optical components generating virtual image 9, including a set of optical elements 1 (lenses, and/or mirrors, and/or holographic elements) and the film 10 on the vehicle windscreen 4, functioning as an optical element, such as spherical mirror at the designed wavelength, which is either a holographic image or light-induced grating recorded to work at a certain wavelength and is transparent to the rest of the visible spectrum, or a color filter that reflects light at a certain wavelength and is transparent to the rest of the visible spectrum.
The real image display system 3 and 5 includes sources of visible light (laser and/or laser diodes, and/or LEDs, and/or phosphors for conversion of light), illumination optical components, matrix and optical components generating real image, comprising in turn a set of optical elements 1 and partially transparent film (with the transmission factor for visible spectrum over 70%) 11 on the vehicle windscreen 4, which diffusely reflects only a preselected portion of the spectrum of visible light. Compact body 1 contains controller, part of the elements of the virtual and real image display system, except of the films 5 and 6 on the vehicle windscreen 4. The device can be designed so that the film of the virtual image display system 6 is stacked on the film of the real image display system 5.
The device works as follows. Information (image) to be displayed for the driver is generated on the matrix illuminated by the coherent source in case of the virtual image display system or illuminated by the visible light sources in case of real image display system. At the same time, matrices for two systems can be different. Then, the optical components of the virtual image display system generate a virtual image 9. Either the optical components of the real image display system generate an image on the film 11 of the windscreen 4. Dupont diffuse film, which is transparent in the entire visible range and only part of the light (in the range of 15 to 30%) diffusely back-reflects, can be used as a film of the optical components of real image display system.
The following example shows the work of the device more clearly. The controller receives the speed value of the vehicle from the speed sensor and compares it with the threshold value (may range from 0 to 40 km/h), which switches the virtual image display system 2, 6, and to ensure safety of driving turns off the real image display system 3, 5. At the same time, depending on the vehicle speed, the controller chooses the data to be displayed and to be blocked. For example, at the speed over 120 km/h, only virtual image display system is switched and only the data on the current vehicle speed and the speed limit for the present area of the road, as well as possible obstacles ahead are transmitted. At the speed from 20 km/h to 120 km/h, the controller can also allow to display data on the upcoming maneuvers through the virtual image display system. At the speed below 20 km/h, the real image display system is on, and the data on the cultural, leisure, entertainment, sport, art facilities located in the immediate vicinity of the vehicle, as well as advertising are displayed.
The device can include a position detector GPS and/or GLONASS receiver) and location databases.
In this case, the device works as follows. The controller receives the data (e.g., position coordinates) from the vehicle position detector and then it finds the appropriate data in the database (e.g., data on the cultural, leisure, entertainment, sport, or art facilities located in the immediate vicinity), and displays them through one of the image display systems. The described method provides access to the interactive information via a wireless connection safely for driver while driving the vehicle. The control can be carried out either by voice, or by the buttons on the steering wheel or via the onboard computer. At the same time, the databases can be located on the remote server and accessed on-line or be uploaded into the device, which can be periodically updated.
A technical result is to ensure safe driving and high-quality image displayed with the help of combined use of two display systems depending on the speed of the vehicle, as well as to provide to the driver maximum possible data with the minimal risk of the accident.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2014/000231 | 3/31/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/152753 | 10/8/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3560921 | Lopez | Feb 1971 | A |
3848974 | Hosking et al. | Nov 1974 | A |
4790613 | Moss | Dec 1988 | A |
5615023 | Yang | Mar 1997 | A |
8300314 | Sugiyama | Oct 2012 | B2 |
8854281 | Ho | Oct 2014 | B2 |
8913100 | Tamkivi | Dec 2014 | B2 |
9047703 | Beckwith | Jun 2015 | B2 |
9052503 | Gassner | Jun 2015 | B2 |
9268134 | Wang et al. | Feb 2016 | B2 |
9767693 | Lee | Sep 2017 | B2 |
20040204848 | Matsuo | Oct 2004 | A1 |
20070268415 | Ukyou | Nov 2007 | A1 |
20080133133 | Abels | Jun 2008 | A1 |
20080278822 | Choi | Nov 2008 | A1 |
20090034087 | Hung et al. | Feb 2009 | A1 |
20090073081 | Kakizaki | Mar 2009 | A1 |
20090128630 | Kanaoka | May 2009 | A1 |
20090177393 | Tertoolen | Jul 2009 | A1 |
20100049405 | Li | Feb 2010 | A1 |
20110073773 | Labrot et al. | Mar 2011 | A1 |
20110115913 | Lang | May 2011 | A1 |
20110172917 | Muzina | Jul 2011 | A1 |
20110298693 | Tasaki | Dec 2011 | A1 |
20120105643 | Ozaki | May 2012 | A1 |
20120130624 | Clark | May 2012 | A1 |
20120136505 | Mori | May 2012 | A1 |
20120287277 | Koehrsen | Nov 2012 | A1 |
20120307050 | Mimar | Dec 2012 | A1 |
20130094088 | Merrill | Apr 2013 | A1 |
20130120850 | Lambert | May 2013 | A1 |
20130265646 | Sakai | Oct 2013 | A1 |
20140123062 | Nguyen | May 2014 | A1 |
20140159994 | Garcia | Jun 2014 | A1 |
20140277940 | VanVuuren | Sep 2014 | A1 |
20140281971 | Isbell, III | Sep 2014 | A1 |
20140355106 | Laluet | Dec 2014 | A1 |
20150268466 | Kanamori | Sep 2015 | A1 |
20150331238 | Roth | Nov 2015 | A1 |
20150346914 | Ebi | Dec 2015 | A1 |
20160266385 | Rossini | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
3532120 | May 1991 | DE |
0679549 | Aug 1998 | EP |
2068189 | Jun 2009 | EP |
Entry |
---|
International Search Report PCT/RU2014/000231 dated Nov. 27, 2014; 2 pages. |
Number | Date | Country | |
---|---|---|---|
20170102550 A1 | Apr 2017 | US |