1. Field of the Invention
The present invention relates, in general, to a method of decoding a Physical Broadcast Channel (PBCH) in a Long Term Evolution (LTE) system and, more particularly, to a scheme for detecting a Master Information Block (MIB) contained in a PBCH.
2. Description of the Related Art
A Master Information Block (MIB) in a Long Term Evolution (LTE) downlink contains the following four types of important information frequently used when a terminal that receives a downlink signal detects the signal.
1) Downlink bandwidth information
2) Physical Hybrid-automatic repeat request (ARQ) Indicator Channel (PHICH) duration information
3) PHICH resource information
4) System frame number
MIB information is configured in the form of a Physical Broadcast Channel (PBCH) in a physical layer using the process shown in
When the terminal receives a PBCH signal, the terminal must find the following two types of information so as to decode the received PBCH and obtain an MIB.
1) Frame numbers in which a base station transmits the PBCH are required in a scrambling process.
2) Information about the number of transmit antennas of the base station is required so as to eliminate a PBCH Cyclic Redundancy Check (CRC) mask.
The terminal may obtain an MIB via decoding only after detecting both the above two types of information. However, since the above two types of information are contained in the received PBCH signal itself, a blind decoding method must be applied which performs all decoding operations in consideration of all possible cases and finds cases having no error in a CRC check. First, the total number of times that blind descrambling and decoding are processed to detect transmission frame numbers is four, which corresponds to frame transmission numbers. Further, the number of blind CRC checks for finding the number of transmit antennas is three, which corresponds to the number of transmit antennas per frame. Therefore, the blind PBCH decoding process actually requires a total of 12 operation processes, as shown in
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a scheme for detecting an MIB contained in the PBCH of an LTE downlink via a minimum number of decoding processes.
Another object of the present invention is to propose a scheme for finding information about transmission frame numbers and the number of transmit antennas using a low computational load.
In order to accomplish the above objects, the present invention provides a method of extracting frame numbers, the method extracting frame numbers of a Physical Broadcast Channel (PBCH) transmitted by a base station so as to obtain a Master Information Block (MIB) in a Long Term Evolution (LTE) system, including calculating values obtained by shifting bit values constituting a 31-bit shift register to right 1600 times, performing an exclusive-OR operation on bit values of initially set specific bits among the values of the shift register shifted 1600 times, and descrambling results of performing the exclusive-OR operation.
Further, in order to accomplish the above objects, the present invention provides a method of extracting a number of transmit antennas, the method extracting a number of transmit antennas of a base station so as to obtain a Master Information Block (MIB) in a Long Term Evolution (LTE) system, including if a polynomial of a decoded message obtained when an error is not present via a Cyclic Redundancy Check (CRC) is M, a CRC polynomial is P, and a representation of 16-bit transmit antenna information by a polynomial is T, performing a CRC on a received signal using the polynomial P, determining whether T identical to results of performing the CRC is present, and if it is determined that the identical T is present, determining a value of T to be the number of transmit antennas.
The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. Hereinafter, the present invention will be described in detail so that those skilled in the art will easily understand and implement the present invention from the embodiments of the present invention.
A scrambling method proposed in LTE standards is a method of setting initial 31-bit information in a shift register having 31 bit memory elements, and outputting each bit after shifting the initially set 31-bit information via the shift register 1600 times, and the structure of the scrambling method is shown in
Referring to
X1(n+31)=X1(n)⊕X1(n+3)
X2(n+31)=X2(n)⊕X2(n+1)⊕X2(n+2)⊕X2(n+3) (1)
Since the shift registers have a repeatedly circulated structure, an operation is performed using only the initially set 31 bits even if the bit values of each shift register are shifted a plurality of times. When this operation is represented in another way, it means that 31 register values may be represented by the initial 31 bit values even after N shift operations corresponding to a specific value have been performed.
In detail, in the case of the shift register X1, the initial value of a first register is X1(0), but the value of the first register, obtained after 1600 shift operations required to obtain a first output value have been performed, is represented by an equation in which initial 31 values X1(0)˜X1(30) are combined with each other. Meanwhile, after the shift operation has been performed N times, a value stored in the first register is X1(N), and is represented as shown in
Referring to
c(n)=X1(1600+n)⊕X2(1600+n) (2)
Below, a method capable of directly obtaining X1(1600+n) and X2(1600+n) without performing a sequential shift operation in order to reduce time required during the process for performing the initial 1600 shift operations, proposed in the present invention, will be described. For this, values of the registers are represented by the following Equation (3):
X1(N)→xN
X2(N)→yN (3)
When Equation (3) is applied to a cyclic relational expression, the following Equation (4) may be obtained:
X1(n+31)→x(n+31)=xn⊕xn+3
X2(n+31)→y(n+31)=yn⊕yn+1⊕yn+2⊕yn+3 (4)
If X1(1600) and X2(1600) are calculated by using the above Equation (4), the following Equation (5) is given:
x1600=x25⊕x20⊕x19⊕x17⊕x12⊕x9⊕x6⊕x5⊕x4⊕x3⊕x→X1(1600)=X1(25)⊕X1(20)⊕X1(19)⊕X1(17)⊕X1(12)⊕X1(9)⊕X1(6)⊕X1(5)⊕X1(4)⊕X1(3)⊕X1(1)
X2(1600)→y1600=y23⊕y20⊕y19⊕y16⊕y12⊕y8⊕y3⊕y2⊕y→X2(1600)=X2(23)⊕X2(20)⊕X2(19)⊕X2(16)⊕X2(12)⊕X2(8)⊕X2(3)⊕X2(2)⊕X2(1) (5)
The results obtained by Equation (5) mean that X1(1600) and X2(1600) which are the results of performing the 1600 shift operations may be obtained using the initial 31 values without performing actual shift operations. While shift operations are performed each time since X1(1600) and x2(1600) have been directly obtained using the above Equation without performing the 1600 shift operations to obtain the initial output in this way, an actual output signal is obtained by the following Equation (6):
X1(1600+n)=X1(25+n)⊕X1(20+n)⊕X1(19+n)⊕X1(17+n)⊕X1(12+n)⊕X1(9+n)⊕X1(6+n)⊕X1(5+n)⊕X1(4+n)⊕X1(3+n)⊕X1(1+n)
X2(1600+n)=X2(23+n)⊕X2(20+n)⊕X2(19+n)⊕X2(16+n)⊕X2(12+n)⊕X2(8+n)⊕X2(3+n)⊕X2(2+n)⊕X2(1+n)→c(n)=X1(1600+n)⊕X2(1600+n) (6)
Actual equipment may efficiently implement the contents of the above Equation (6) by the representation of binary numbers. The expressions of x1(1600 and x2(1600 are represented by binary numbers 0 and 1, and then may indicate places at which respective values are located.
By means of the above method, bit masks are shifted, and values of the shift registers X1 and X2 are sequentially obtained. Here, it should be noted that if the bit masks of X1 and X2 are placed at register address 31 having a bit value of ‘1’ while the bit masks of X1 and X2 are being shifted, the corresponding address 31 indicates a circulating location, and thus cyclic bit masks to which cyclic equations are applied must be used.
If the above contents are applied to a blind descrambling process for finding frames in which the PBCH is transmitted, the configuration of
When descrambling is performed in a blind descrambling manner to find transmission frame numbers in a state in which transmitted frame numbers are not recognized, the conventional method sequentially performs shift registering so as to perform descrambling corresponding to first, second, third, and fourth transmission frames, whereas the method proposed in the present invention sets values of initial bit masks corresponding to the respective transmission frames and thereafter simultaneously performs descrambling corresponding to the four transmission frames in parallel. Therefore, when descrambling times are compared with each other, the method proposed in the present invention requires time corresponding to ¼ of that of the conventional method.
Until now, the method for rapidly processing descrambling for finding transmission frame numbers in a blind descrambling manner has been described. Below, a method for promptly performing a CRC check for finding the number of transmit antennas in a blind manner will be described.
Information about the number of transmit antennas of a downlink is transmitted after 16-bit information about the number of antennas defined in LTE standards has been encoded by masking 16-bit CRC information on an MIB message that is higher information. 16-bit information for each transmit antenna defined in LTE standards is given by the following Table 1.
Therefore, in a receiving stage, all pieces of 16-bit transmit antenna information are eliminated from the lower 16-bit information of a decoded signal using bit masking so as to detect the number of transmit antennas, and thereafter a CRC check is performed on the 16-bit transmit antenna information. In this process, if, in the CRC check, it is determined that an error is not present, the number of transmit antennas is detected by finding the 16-bit transmit antenna information.
In order to decode the PBCH based on the above description and thereafter find hidden 16-bit information about the number of transmit antennas, a total of three <CRC de-masking & CRC check> processes must be performed. In order to reduce a computational load during these processes, the present invention proposes the following method.
Generally, a CRC check is a process for determining whether an error is present in a decoded signal. In LTE standards, a message obtained by decoding a PBCH is divided by a 16-degree polynomial defined in the standards. If the remainder of the division is ‘0,’ it is determined that an error is not present, whereas if the remainder is not ‘0,’ it is determined that an error is present. If it is assumed that the representation of a decoded message by a polynomial when an error is not present is ‘M’ and the 16-degree CRC polynomial is ‘P,’ and that the representation of 16-bit transmit antenna information by a polynomial is ‘T,’ the following Equation (7) is established:
decoded message: b(N),b(N−1),K,b(1),b(0)→M=b(N)XN+b(N−1)XN−1+Λ+b(1)X+b(0)
16-bit transmit antenna information: r(15),r(14),K,r(1),r(0)→T=r(15)X15+r(14)X14+Λ+r(1)X+r(0)
16-degree CRC polynomial→P=X16+X12+Λ+X5+1 (M−T)mod P=0 (7)
This equation means that a remainder obtained by dividing M−T by the 16-degree CRC polynomial P becomes ‘0’ only when the 16-bit transmit antenna information T is removed from the decoded message M. Accordingly, if the decoded message M is directly divided without eliminating the 16-bit transmit antenna information T, the following Equation (8) is established.
M mod P=(M−T+T)mod P=(M−T)mod P+T mod P=T mod P (8)
Since T is a 15-degree polynomial and P is a 16-degree polynomial, T mod P=T is established. That is, when M is divided by P, the remainder is T. In other words, when a CRC check is directly performed without removing the 16-bit transmit antenna information from the decoded message, the remainder is 16-bit transmit antenna information. When this contents are used, if a remainder, obtained by immediately performing a CRC check without removing the 16-bit CRC mask after decoding, is a single value described in Table 1, the value is recognized as the number of transmit antennas, whereas if the remainder is not a value described in Table 1, an error is determined to have occurred.
That is, in the conventional method, the CRC check is performed a total of three times in consideration of the total number of antennas, whereas the method proposed in the present invention may detect information about the number of antennas by performing a CRC check only once.
Until now, processes for finding 1) transmission frame numbers and 2) information about the number of transmit antennas, which are contained in the received PBCH, in a blind manner have been described. That is, as shown in
As described above, the PBCH blind decoding method in the LTE system according to the present invention may promptly find transmission frame numbers and transmit antenna information, compared to a conventional method. That is, there is an advantage in that, by using the method proposed in the present invention, transmission frame numbers and transmit antenna information may be efficiently found with a low computational load.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0037059 | Apr 2012 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
20110013730 | Mansson et al. | Jan 2011 | A1 |
20110026645 | Luo et al. | Feb 2011 | A1 |
20110228883 | Liu et al. | Sep 2011 | A1 |
20110317780 | Kang et al. | Dec 2011 | A1 |
20120076102 | Ko et al. | Mar 2012 | A1 |
20120188877 | Chin et al. | Jul 2012 | A1 |
20130242951 | Lee et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1020110067656 | Jun 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20130265927 A1 | Oct 2013 | US |