This application is directed, in general, to space conditioning systems and methods for conditioning the temperature and humidity of an enclosed space using an energy recovery ventilator unit, and in particular, to methods and devices for defrosting energy recovery ventilator units.
Energy recovery ventilator units are often used in space conditioning systems to maintain air quality while minimizing energy losses. Sometimes the energy recovery ventilator unit can become frosted, thereby reducing the functionality of the unit.
One embodiment of the disclosure is a method defrosting an energy recovery ventilator unit. The method comprises activating a defrost process of an enthalpy-exchange zone of the energy recovery ventilator unit when an air-flow blockage in the enthalpy-exchange zone coincides with a frost threshold in the ambient environment surrounding the energy recovery ventilator unit. The method also comprises terminating the defrost process when a heat transfer efficiency across the enthalpy-exchange zone returns to within 10 percent of a pre-frosting heat transfer efficiency wherein, the heat transfer efficiency is proportional to a temperature difference between an intake air zone of the energy recovery ventilator and a supply air zone of the energy recovery ventilator divided by a temperature difference between an return air zone of the energy recovery ventilator and the intake air zone.
Another embodiment is an energy recovery ventilator unit. The energy recovery ventilator unit comprises a defrost control module configured to activate the defrost process and to terminate the defrost process, as described above.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The term, “or,” as used herein, refers to a non-exclusive or, unless otherwise indicated. Also, the various embodiments described herein are not necessarily mutually exclusive, as some embodiments can be combined with one or more other embodiments to form new embodiments.
It is desirable to have an efficient and flexible method for defrosting an energy recovery ventilator unit that both minimizes the energy expended for defrosting and minimizes the time spent when the energy recovery ventilator unit is not in its normal operating mode.
For instance, the unit 200 can comprise a cabinet 205 housing an intake air zone 210 (e.g., sometimes a primary intake air zone), a supply air zone 212, a return air zone 214, an exhaust air zone 216 and an enthalpy-exchange zone 218. The intake zone 210 and the exhaust zone 216 are both on one side 220 of the enthalpy exchange zone 218, and, the supply zone 212 and the return zone 214 are both on an opposite side 225 of the enthalpy exchange zone 218. The energy recovery ventilator unit 100 also comprises a first blower 230 and a second blower 235. The first blower 230 is located in the intake zone 210 and is configured to push, or alternatively pull, outside air into the intake zone 210 and straight through the enthalpy exchange zone 218 into the supply zone 212. The second blower 235 is located in the return zone 214 and is configured to push, or alternatively pull, return air into the return zone 214 and straight through the enthalpy exchange zone 218 into the exhaust zone 216. The enthalpy exchange zone 218 can include one or more enthalpy-exchanger devices 240 configured as one or more enthalpy wheels or other enthalpy-exchange devices such as plated heat exchangers or heat pipes or other devices familiar to those skilled in the art. As further illustrates the unit can further include a defrost control module 245 which as illustrated, can be located on the outside surface of the cabinet 205 although other located are within the scope of the disclosed unit 200.
Returning to
As further illustrated in
As also in
The term, frost threshold, as used herein, refers to a pre-selected temperature value corresponding to the measured ambient air-temperature surrounding the energy recovery ventilator unit at which frost formation will occur. In some cases, for example, the frost threshold can correspond to a pre-selected temperature value in a range of 20 to 32° F. In some cases, the frost threshold can be pre-selected temperature value that is adjusted depending on the relative humidity within energy recovery ventilator unit 200. For example, in some cases, the frost threshold may be a temperature value of 20° F. when the relative humidity is low (e.g., 30 percent or lower) but linearly adjusted to 32° F. as the relative humidity reaches 100 percent.
As illustrated for the example method 100 shown in
As shown in
It is often desirable for the defrost process to continue for as short a period as possible, because defrosting can reduce the energy and heat transfer efficiency of the unit 200, and in some cases damage components (e.g., the enthalpy-exchanger devices 240) of the unit 200. In some cases, minimizing the defrosting time can be facilitated by providing multiple different criteria for terminating the defrost process. Consequently, terminating the defrost process can include monitoring one or more different operating conditions of the unit 200.
For instance, in some cases, terminating the defrost process (step 115) can further include a step 117 of determining the operating condition (as part of step 116), which includes measuring an air-pressure difference across the enthalpy-exchange zone 218 while the unit 200 is operating. For example, pressure transducers 242, situated on either side of the enthalpy zone 218, can monitor the pressure during defrost process (step 110) as well as during pre-defrost conditions, such as determined, e.g., during a normal operating state (step 109). In such cases, terminating the defrost process (step 115) includes terminating after the operating condition, corresponding to the measured air-pressure difference across the enthalpy-exchange zone 218, has decreased to substantially equal to (e.g., within ±10% in some cases) the pre-frosting operating condition, corresponding to an air-pressure difference across the enthalpy-exchange zone 218 measured prior to activating the defrost process (e.g., measured during step 109).
For instance, in some cases, terminating the defrost process (step 115) further includes a step 119 of determining the operating condition (as part of step 116), which includes measuring a heat transfer efficiency across the enthalpy-exchange zone 218 while the unit 200 is operating.
For example, temperature sensors 244, situated on either side of the enthalpy zone 218, can monitor the temperature during defrost process (step 110) as well as during pre-defrost conditions, such as determined, e.g., during a normal operating state (step 109). The heat transfer efficiency is proportional to the ratio of: the temperature difference between the intake air zone 210 and the supply air zone 212 divided by the temperature difference between the return air zone 214 and the intake air zone 210. The temperature difference between the difference between return air zone 214 and intake air zone 210 is considered to represent the overall heat transfer occurring in the unit 200, e.g., that drives energy transfer, while the temperature difference between the intake air zone 210 and the supply air zone is considered to represent the actual heat transfer occurring.
In such cases, terminating the defrost process (step 115) includes terminating after the operating condition, corresponding to the measured heat transfer efficiency across the enthalpy-exchange zone 218, has decreased to be substantially equal to (e.g., within ±10% in some cases) the pre-frosting operating condition, corresponding to a heat transfer efficiency across the enthalpy-exchange zone 218 measured prior to activating the defrost process (e.g., measured during step 109).
In some embodiments, however, if the operating condition has not substantially returned to a pre-frosting operating condition, then the non-defrost failure mode (step 110) is entered.
In some cases, it is also desirable to terminate the defrost process (step 115) after a measured pre-selected time limit is reached (step 120). This can advantageously prevent excessive energy and time being expended on defrosting when the enthalpy exchange zone 218 is blocked for reasons other than frosting. In some cases, if the time limit measured in step 120 has reached the pre-selected time limit (e.g., a defrosting time limit has expired), the non-defrost failure mode (step 110) is entered.
To facilitate minimizing the defrosting time and minimizing the energy expended on defrosting, some embodiments of the method 100 provide multiple defrosting strategies that can be implemented, either alone or in combination, as part of the defrosting process 105, and implements in a fashion that depends on the ambient environmental conditions surrounding the unit 200 or on the components that are included in the unit 200.
For instance, in some embodiments, the activated defrost process (step 105) further includes a step 130 of activating a powered heat source 250 configured to warm air in the intake air zone 210 or the exhaust air zone 216 located inside of the unit 200. The powered heat source 250 can pre-heat the ambient cold air outside of the unit to thereby facilitate rapid defrosting. In some cases, the powered heat source 250 can be an electric heater. However, in other cases, a gas-fired heat exchanger could be used. In some cases, the powered heat source 250 is, or includes, a modular electric heater coupled to the outside of the unit 200 and located upstream of an air intake opening 252 of the intake air zone 210. The term modular electric heater, as used herein, refers to a self-contained heater that includes one or more of temperature sensors, electrical power connections, device control connections, as integral parts of the heater 250, thereby facilitating field-installation of the heater 250, e.g., to a previously installed unit 200.
In some embodiments, activating the powered heat source 250 in step 130 further including a step 132 of adjusting the powered heat source 250 to one of a plurality of different levels of heat generation as a function of an ambient air temperature surrounding the unit 200. For instance, if the ambient air temperature is at or below a pre-selected set-point (e.g., 20° F. in some cases) then the heater 250 can be adjusted to a high level of heating. If the ambient air temperature is above the set-point then the heater 250 can be adjusted to a low level of heating. Having the ability to adjust to plurality of different levels facilitates using the full heating the potential of the heater at certain times, but, avoiding excessive heating at other times, that could damage, e.g., due to melting or softening of plastic parts in the enthalpy exchange device 240, or other components of the unit 200.
For instance, in some embodiments, the activated defrost process (step 105) further includes a step 135 of reducing airflow from an air intake zone 210 located inside of the unit 200 to the enthalpy exchange-zone 218. For instance, the speed of the air blower 230 located in the intake air zone 210 can be reduced. For instance, in some cases the speed of the air blower 230 is reduced by about 20 to 30 percent as compared to the speed of the air blower when the unit 200 is in its normal operating state (e.g., step 108). Reducing the airflow can facilitate defrosting because the amount of cold air drawn into the unit 200 from the ambient outside air is reduced. In some cases, when the unit 200 includes the powered heat source 250, reducing the airflow from the air-intake zone 210 (step 135) at or during the same time as activating the heat source 250 (step 130) can speed defrosting because the temperature of the air reaching the enthalpy zone 218 is increased.
In some embodiments, the activated defrost process (step 105) further includes a step 140 of activating an air controller assembly 260 so as to allow air-flow through a secondary air-intake opening 262 connected to the supply zone 212 located inside of the unit 200. As further disclosed in Appl-1, the air controller assembly 260 can include baffles or dampers 264 which are configured to be continuously adjustable to allow substantially no air, to large volumes of air, to pass through the secondary intake opening 260. In
As illustrated in
In some embodiments, the defrost process (activated in step 105) further includes a step 145 of activating a heat source 270 of an air-handling unit 272 that is coupled to the unit 200, such that the air exiting the air-handling unit 272 is heated to a substantially same temperature than before the defrosting process was activated (step 105). The heater 270 of the air-handling unit 272 can be a gas-fired heater, electric heater or other heater familiar to those skilled in the art. As illustrated in
Activating the heat source 270 of an air-handling unit 272 in step 145 can advantageously heat cold outside air through the secondary air-intake opening 262 and thereby make the conditioned space more comfortable during the defrosting process 115. In some cases, the heat source 270 in the air-handling unit 272 is activated in step 145 at the same time, or before, the air controller assembly is activated in step 140. For instance, in some cases, activating the air controller assembly in step 140 causes dampers 264 covering the secondary air-intake opening 262 to take one to two minutes to fully open. During this time, activating the heater 270 can pre-heat the air such that when the secondary air-intake opening 262 is fully opened, the air reaching the conditioned space is preheated to substantially same temperature as before the defrosting process started.
Another embodiment of the disclosure is the energy recovery ventilator unit 200, which can comprise any of embodiments of the unit 200 discussed in the context of
For instance, the unit 200 can include pressure transducers 242 configured to measuring an air-pressure difference across the enthalpy-exchange zone 218 while the unit 200 is operating. The pressure transducers 242 can be configured to transmit the measured air pressure difference to the defrost control module 245, and the defrost control module 245 can be configured to determine the operating condition as including the air-pressure difference in accordance with step 117.
For instance, the unit 200 can include temperature sensors configured to measuring air temperatures 244 of the intake zone 210, a supply air zone 212, and a return air zone 214 located inside of the unit 200. The temperature sensors 244 can be configured to transmit the measured air temperatures to the defrost control module 245. The defrost control module 245 can be configured to determine the operating condition as including a heat transfer efficiency determined from the measured air temperatures, in accordance with step 119.
For instance, the defrost module 245 can be configured to terminate the defrost process (step 115) after a preselected time limit is reached. In some embodiments, e.g., the defrost module 245 includes an electronic timing circuit that monitors the time when the defrost process was activated in step 105, and compare the accumulated defrosting time to the preselected time limit, e.g., as set by factory or installation personnel.
For instance, the unit 200 can further include a powered heat source 250 configured to warm air in the intake air zone 210 or the exhaust air zone 216 located inside of the unit 200, and the defrost control module can be configured to activate or deactivate the heat source 250. In some embodiments the powered heat source 250 includes, or is, a modular electric heater configured to be coupled to the outside of the unit 200 and located upstream of the air intake opening 252 of the intake air zone 210.
For instance, the defrost module 245 can be configured to control the airflow from the air intake zone 210 located inside unit 200 to the enthalpy exchange-zone 218. In some embodiments, e.g., the defrost module 245 includes an electronic circuit configured to control the speed of the air intake blower 250 located in the intake air zone 210, in accordance with step 135.
For instance, the unit 200 can further include an air controller assembly 260 configured to adjust an amount of air-flow through a secondary air-intake opening 262 connected to a supply zone 212 located inside of the unit 200, and the defrost control module 245 can be configured to control the air controller assembly 260 to increase or decrease the amount of air allowed through the secondary air-intake opening 262.
For instance, the defrost control module 245 can be configured the control a heat source 270 of an air-handling unit 272 that is coupled to the unit 200. In some embodiments, e.g., the defrost module 245 includes an electronic circuit that is configured to activate the heat source 272, e.g., when there is air flowing through the secondary intake air opening 262, such that the air exiting the space conditioning system is heated to a substantially same temperature than before the defrosting process was activated. The electronic circuit can be configured to deactivate the heat source 272, when the defrosting process in terminated in step 115, or when there is not longer air flowing through the secondary intake air opening 262.
Aspects of the disclosed method of defrosting are further illustrated in
The blower defrost mode (step 315) can include a step 317 of reducing the air flow to the enthalpy exchange zone 218 e.g., by increasing the speed of the blower 230 (an example of step 135), a step 319 of commencing a timer, a step 321 of monitoring the accumulated time and determining in step 323 if a time-limit is reached (examples of step 120). If the time-limit is reached, a step 325 of further increasing the air flow (e.g., such as the air flow prior to step 317) is activated and in step 327 the operating condition (e.g., pressure difference and/or heat transfer efficiency) is measured (an example of steps 116, 117, 119). In step 329, it is decided if the operating condition (e.g., pressure or heat transfer efficiency) is not different than the pre-frosting operating condition. If there is no difference, then the blower defrost mode (step 315) is terminated (an example of step 115) and the unit 200 returns to a normal operating state in step 331 (an example of step 108). If there is still a difference in the operating condition compared to the pre-frosting condition, then a second blower defrost mode (step 333) is entered (an example continuation of step 105).
The second blower defrost mode (step 333) includes steps 335, 337, 339, 341, 343, 345, and 347 which are analogous to steps 317, 319, 321, 323, 325, 327, and 329, respectively, with the exception that the air flow reduction in step 335 is greater than the air flow reduction in step 317 (e.g., blower 230 speed is further lowered).
If there is still a difference in the operating condition. (e.g., pressure difference or heat transfer efficiency) compared to a pre-frosting operating condition, then a third blower defrost mode (step 353) is entered (an example of continuing step 105). Again the third blower defrost mode (step 353) includes steps 355, 357, 359, 361, 363, 365, and 367 which are analogous to steps 317, 319, 321, 323, 325, 327, and 329, respectively, with the exception that the air flow reduction in step 355 is more (e.g., blower 230 speed is lower) than the air flow reduction in step 317 or step 335. In some cases, the air flow is reduced to zero in step 355 (e.g., the blower 230 is turned off), while in other cases there is still air flow to enthalpy exchange zone 218. In some cases the time-limit set in step 339 can be different than the time-limit set in step 319.
Based on the present disclosure, one of ordinary skill would appreciate that the number of blower defrost modes could be increased or decreased compared to that depicted in
In some cases, e.g., an electric heater 250 can be staged to different heating levels based on an outside air temperature measured in the air-intake zone 210 the control module 245 can lower the intake air blower 230 speed, and electric heater 250 heater operated at a low heating level, until the pressure difference across the enthalpy zone 218 (e.g., an enthalpy wheel intake pressure minus a the wheel exhaust pressure) are at pre-frost conditions. If frosting is not addressed, the speed of the blower 230 can be reduced to an allowable minimum and the electric heater will operate at a higher heating level.
Aspects of another embodiment of staged heating are further illustrated in
In some cases, e.g., an electric heater 250 is staged in as quickly as possible to facilitate continued delivery the correct amount of fresh air. The pressure across the enthalpy zone 218 can be monitoring to determine if defrost has been completed by observing that the pressure difference has reverted back to pre-frosted level.
After starting the defrost mode, a heat source 270 of an air-handler unit 272 can be activated in step 617, e.g., as a preheating step. After step 517, but before either of steps 519 or 521, there is a step 619 of reducing the air flow to the enthalpy exchange zone 218 (e.g., similar to step 317) plus activating an air controller assembly 260 (e.g., to open dampers covering the secondary air-intake opening 262). In step 621 it is determined if the secondary air-intake opening 262 is fully open and pressure in the unit 200 is at or slightly below a global pressure value (e.g., such as further described in Appl-3). If the pressure in the unit 200 is too low, then the intake air flow is increases (e.g., by increasing the blower 230 speed) in step 623. Steps 619, 621 and 623 are followed by either of steps 519 or 521 depending on the decision made in step 517. Subsequent steps are similar to the steps presented in
In some cases, e.g., the control module 245 will slow down intake blower 230 to a minimum accepted air-flow and open up dampers 264 of the air controller assembly 260 until pressure at the air-handler 272 is the same as the ambient pressure. An electric heater 250 will energize at maximum heating capacity until the pressure difference across the enthalpy exchange zone 218 is at a pre-frost condition. Then the damper will slowly close as the intake blower 230 speed increases back to it normal set point.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
This patent application is a continuation application of U.S. patent application Ser. No. 14/641,090, filed on Mar. 6, 2015. U.S. patent application Ser. No. 14/641,090 is a divisional application of U.S. patent application Ser. No. 13/293,454 entitled “Method of Defrosting an Energy Recovery Ventilator Unit, filed on Nov. 10, 2011 which is related to U.S. patent application Ser. No. 13/274,629, by McKie et al., entitled, “DESIGN LAYOUT FOR AN ENERGY RECOVERY VENTILATOR SYSTEM” (“Appl-1”), filed on Oct. 17, 2011, U.S. patent application Ser. No. 13/267,542, by McKie et al., entitled, “DETECTING AND CORRECTING ENTHALPY WHEEL FAILURE MODES” (“Appl-2”), filed on Oct. 6, 2011, and U.S. patent application Ser. No. 13/267,492, by McKie et al., entitled, “ERV GLOBAL PRESSURE DEMAND CONTROL VENTILATION MODE” (“Appl-3”), filed on Oct. 6, 2011, all of which are incorporated herein by reference in their entirety. One or more of the above applications may describe embodiments of Energy Recovery Ventilator Units components and processes thereof that may be suitable for making and/or use in some of the embodiments described herein.
Number | Name | Date | Kind |
---|---|---|---|
3252508 | Goettl | May 1966 | A |
3889742 | Rush et al. | Jun 1975 | A |
4018266 | Kay | Apr 1977 | A |
4060913 | Yoshida et al. | Dec 1977 | A |
4281522 | Bussjager | Aug 1981 | A |
4611653 | Ikemura et al. | Sep 1986 | A |
4754651 | Shortridge et al. | Jul 1988 | A |
4843838 | Trask | Jul 1989 | A |
4854726 | Lesley et al. | Aug 1989 | A |
5173922 | Arakawa et al. | Dec 1992 | A |
5183098 | Chagnot | Feb 1993 | A |
5497823 | Davis | Mar 1996 | A |
5726424 | Koether | Mar 1998 | A |
5728289 | Kirchnavy et al. | Mar 1998 | A |
5761908 | Oas et al. | Jun 1998 | A |
5826641 | Bierwirth et al. | Oct 1998 | A |
6039109 | Chagnot et al. | Mar 2000 | A |
6209622 | Lagace et al. | Apr 2001 | B1 |
6289974 | DeGregoria et al. | Sep 2001 | B1 |
6328095 | Felber et al. | Dec 2001 | B1 |
6415616 | Kim | Jul 2002 | B1 |
6575228 | Ragland | Jun 2003 | B1 |
6629422 | Wellman | Oct 2003 | B2 |
6925999 | Hugghins et al. | Aug 2005 | B2 |
7012516 | Laurosch et al. | Mar 2006 | B2 |
7073566 | Lagace et al. | Jul 2006 | B2 |
7090000 | Taylor | Aug 2006 | B2 |
7231967 | Haglid | Jun 2007 | B2 |
7440864 | Otto | Oct 2008 | B2 |
7716936 | Bailey et al. | May 2010 | B2 |
7856289 | Schanin et al. | Dec 2010 | B2 |
8123518 | Nordberg et al. | Feb 2012 | B2 |
8943848 | Phannavong et al. | Feb 2015 | B2 |
9175872 | McKie et al. | Nov 2015 | B2 |
9395097 | McKie et al. | Jul 2016 | B2 |
9404668 | McKie et al. | Aug 2016 | B2 |
9791163 | McKie | Oct 2017 | B2 |
20020153133 | Haglid | Oct 2002 | A1 |
20030140638 | Arshansky et al. | Jul 2003 | A1 |
20030178411 | Manganiello et al. | Sep 2003 | A1 |
20040155466 | Sodemann et al. | Aug 2004 | A1 |
20050236150 | Chagnot et al. | Oct 2005 | A1 |
20060035580 | Anderson et al. | Feb 2006 | A1 |
20060054302 | Cho et al. | Mar 2006 | A1 |
20060219381 | Lagace et al. | Oct 2006 | A1 |
20070045439 | Wolfson | Mar 2007 | A1 |
20070045601 | Rhee | Mar 2007 | A1 |
20070144187 | Lee | Jun 2007 | A1 |
20070171647 | Artwohl et al. | Jul 2007 | A1 |
20070205297 | Finkam et al. | Sep 2007 | A1 |
20070234748 | Alvord et al. | Oct 2007 | A1 |
20080076346 | Ahmed | Mar 2008 | A1 |
20080144238 | Cline et al. | Jun 2008 | A1 |
20080208531 | Felcman et al. | Aug 2008 | A1 |
20080282494 | Won et al. | Nov 2008 | A1 |
20090095096 | Dean et al. | Apr 2009 | A1 |
20090156966 | Kontschieder et al. | Jun 2009 | A1 |
20100106319 | Grohman | Apr 2010 | A1 |
20110094245 | Kim | Apr 2011 | A1 |
20130118188 | McKie et al. | May 2013 | A1 |
20150204578 | Kaiser et al. | Jul 2015 | A1 |
Entry |
---|
Lennox Engineering Data, Indoor Air Quality ERV Energy Recovery Ventilator 60 HZ, Bulletin No. 210245, Mar. 2010, 20 pages. |
Shapiro, Ian, P.E., “Water & Energy Use in Steam-Heated Buildings,” ASHRAE Journal, May 2010, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180003404 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13293454 | Nov 2011 | US |
Child | 14641090 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14641090 | Mar 2015 | US |
Child | 15708530 | US |