The present invention relates to a microfluidic delivery system comprising a microfluidic delivery member and methods for delivering a fluid composition into the air.
Various systems exist to deliver fluid compositions, such as perfume mixtures, into the air by an energized (i.e. electrically/battery powered) atomization system. Such systems include battery-powered automatic aerosol air fresheners, sold under the tradename AirWick® by Reckitt Benckiser. Another attempt is a piezoelectric actuator that atomizes a volatile composition into fluid droplets in the air, sold under the tradename Glade® by S.C. Johnson & Son.
Recent attempts have been made to deliver fluid compositions, including scented inks, by means of an ink jet spray head. These attempts are directed to emitting a fluid composition onto an adjacent substrate/surface or emitting a fluid composition into an adjacent space. For example, JP2007054445A1 describes an ink jet head that sprays fluids into a personal space (e.g. near a user's nose) for attaining a benefit. JP2005125225 describes an ink jet head that sprays an insecticide towards a target surface.
There remains a need for an improved microfluidic delivery system to efficiently deliver sufficient quantities of a fluid composition into the air to deliver a benefit, e.g., freshen a room or living space, with minimal deposition of the fluid composition onto adjacent surfaces.
In one embodiment, there is provided a method of delivering a dose of a liquid composition from a microfluidic delivery refill, wherein the liquid composition comprises volatile components such that the liquid composition is defined by a flash point temperature and a boiling point temperature, and wherein the microfluidic delivery refill comprises a reservoir enclosing the liquid composition and a microfluidic delivery member comprising a heater in fluid communication with the reservoir, the method comprising:
deactivating the heater of the microfluidic delivery member, wherein, when the heater is deactivated, a temperature of the heater is less than the flash point temperature of the liquid composition;
receiving an electrical signal with the heater of the microfluidic delivery member; activating the heater of the microfluidic delivery member in response to the electrical signal, wherein, when the heater is activated, the temperature of the heater is greater than the boiling point temperature of the liquid composition; and
vaporizing at least a portion of the volatile components of the liquid composition when the heater is activated, whereby the dose of the liquid composition is delivered from the microfluidic delivery member.
The present invention provides a microfluidic delivery system 10 comprising a microfluidic delivery member 64 and methods for delivering fluid compositions into the air.
The delivery system 10 of the present invention may comprise a housing 12 and cartridge 26. The cartridge 26 may comprise a reservoir 50 for containing a volatile composition, and a microfluidic delivery member 64. The housing 12 may comprise a microprocessor and an outlet 20.
While the below description describes the delivery system 10 comprising a housing 12 and a cartridge 26, both having various components, it is to be understood that the delivery system 10 is not limited to the construction and arrangement set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments or may be practiced or carried out in various ways. For example, the components of the housing 12 may be located on the cartridge 26 and vice-versa. Further, the housing 12 and cartridge 26 may be configured as a single unit versus constructing a cartridge that is separable from the housing as described in the following description.
Housing
The microfluidic delivery system 10 may include a housing 12 constructed from a single piece or having multiple surfaces that are assembled to form the housing. The housing 12 may have an upper surface 14, a lower surface 16, and a body portion 18 between the upper and lower surfaces. The upper surface of the housing 12 includes an outlet 20 that places an environment external to the housing in fluid communication with an interior portion 22 of the housing 12. The interior portion 22 of the housing 12 may includes a holder member 24 that holds a microfluidic cartridge 26, which may be removable. As will be explained below, the microfluidic delivery system 10 may be configured to use thermal energy to deliver fluid from within the microfluidic fill cartridge 26 to an environment external to the housing 12.
Access to the interior portion 22 of the housing 12 is provided by an opening 28 in the housing. The opening 28 is accessible by a cover or door 30 of the housing 12. In the illustrated embodiment, the door 30 rotates to provide access to the opening 28.
The holder member 24 includes an upper surface 32 and a lower surface 34 that are coupled together by one or more sidewalls 36 and has an open side 38 through which the microfluidic cartridge 26 can slide in and out. The upper surface 32 of the holder member 24 includes an opening 40 that is aligned with the first hole 20 of the housing 12. The holder member 24 holds the microfluidic cartridge 26 in position.
The housing 12 may include external electrical connection elements for coupling with an external power source. The external electrical connection elements may be a plug configured to be plugged into an electrical outlet or battery terminals. Internal electrical connections couple the external electrical connection elements to the holder member 24 to provide power to the microfluidic cartridge 26. The housing 12 may include a power switch 42 on a front of the housing.
Cartridge
Reservoir
The microfluidic delivery system 10 includes a microfluidic cartridge 26 which includes a reservoir 50 for containing a fluid composition. In some embodiments, the reservoir 50 is configured to contain from about 5 to about 50 ml, alternatively from about 10 to about 30 ml, alternatively from about 15 to about 20 ml of fluid composition. The delivery system may be configured to have multiple reservoirs, each containing the same or a different composition. The reservoir 50 may be formed as a separate construction, so as to be replaceable (e.g. a refill cartridge). The reservoir can be made of any suitable material for containing a fluid composition including glass and plastic.
A lid 54, having an inner surface 56 and an outer surface 58, is secured to an upper portion 60 of the reservoir to cover the reservoir 50. The lid 54 may be secured to the reservoir 50 via a variety of ways known in the art. Between the lid 54 and the reservoir 50, there may be an o-ring 62 for forming a seal therebetween to prevent fluid from leaking out of the reservoir.
A microfluidic delivery member 64 is secured to an upper surface 66 of the lid 54 of the microfluidic cartridge 26. The microfluidic delivery member 64 includes an upper surface 68 and a lower surface 70 (see
Fluid Transport Member
In some embodiments, the microfluidic delivery system 10 may include a fluid channel positioned in a flow path between the fluid transport member 80 and the reservoir 50 or between the fluid transport member 80 and the microfluidic delivery member 64. A channel may be useful in configurations where the reservoir, transport member or the microfluidic delivery member are not perfectly aligned vertically wherein the capillary fluid channel is used to still enable capillary flow of liquid.
The fluid transport member 80 may be any commercially available capillary tube or wicking material, such as a metal or fabric mesh, sponge, or fibrous or porous wick that contains multiple interconnected open cells which form capillary passages to draw a fluid composition up from the reservoir to come in contact with the fluid feed of the microfluidic delivery member. Non-limiting examples of suitable compositions for the fluid transport member include polyethylene, ultra-high molecular weight polyethelene, nylon 6, polypropylene, polyester fibers, ethyl vinyl acetate, polyether sulfone, polyvinylidene fluoride, and polyethersulfone, polytetrafluroethylene, and combinations thereof. In some embodiments, the fluid transport member 80 is free of a polyurethane foam. Many traditional ink jet cartridges use an open-cell polyurethane foam which can be incompatible with perfume mixtures over time (e.g. after 2 or 3 months) and can break down.
In some embodiments, the fluid transport member 80 may be a high density wick composition to aid in containing the scent of a perfume mixture. In one embodiment, the fluid transport member is made from a plastic material chosen from high-density polyethylene or polyester fiber. As used herein, high density wick compositions include any conventional wick material known in the art having a pore radius or equivalent pore radius (e.g. in the case of fiber based wicks) ranging from about 20 microns to about 200 microns, alternatively from about 30 microns to about 150 microns, alternatively from about 30 microns to about 125 microns, alternatively, about 40 microns to about 100 microns.
Regardless of the material of manufacture, where a wicking material is used, the fluid transport member 80 can exhibit an average pore size from about 10 microns to about 500 microns, alternatively from about 50 microns to about 150 microns, alternatively about 70 microns. The average pore volume of the wick, expressed as a fraction of the fluid transport member not occupied by the structural composition, is from about 15% to about 85%, alternatively from about 25% to about 50%. Good results have been obtained with wicks having an average pore volume of about 38%.
The fluid transport member 80 may be any shape that is able to deliver fluid from the reservoir 50 to the microfluidic delivery member 64. Although the fluid transport member 80 of the illustrated embodiment has a width dimension, such as diameter, that is significantly smaller than the reservoir 50, it is to be appreciated that the diameter of the fluid transport member 80 may be larger and in one embodiment substantially fills the reservoir 50. The fluid transport member 80 can also be of variable length, such as, from about 1 mm to about 100 mm, or from about 5 mm to about 75 mm, or from about 10 mm to about 50 mm.
As best shown in
Microfluidic Delivery Member
The delivery system 10 of the present invention employs a microfluidic delivery member 64. Microfluidic delivery member 64 of the present invention may employ aspects of ink-jet print head systems.
In a typical “drop-on-demand” ink-jet printing process, a fluid is ejected through a very small orifice of a diameter typically about 0.0024 inches (5-50 microns) in the form of minute droplets by rapid pressure impulses. The rapid pressure impulses are typically generated in the print head by either expansion of a piezoelectric crystal vibrating at a high frequency or volatilization of a volatile composition (e.g. solvent, water, propellant) within the ink by rapid heating cycles. Thermal ink-jet printers employ a heating element within the print head to volatilize a portion of the composition that propels a second portion of fluid through the orifice nozzle to form droplets in proportion to the number of on/off cycles for the heating element. The fluid is forced out of the nozzle when needed. Conventional ink-jet printers are more particularly described in U.S. Pat. Nos. 3,465,350 and 3,465,351.
The microfluidic delivery member 64 of the present invention may employ aspects of any known ink-jet print head system or, more particularly, aspects of thermal ink-jet print heads. The microfluidic delivery member 64 of the present invention may be in electrical communication with a power source and may include a printed circuit board (“PCB”) 106 and a microfluidic die 92 that is in fluid communication with the fluid transport member 80.
As shown in
The board 106 includes first and second circular openings 136, 138 and an oval opening 140. Prongs 142 from the lid 54 extend through the openings 136, 138, 140 to ensure the board 106 is aligned with the fluid path appropriately. The oval opening 140 interacts with a wider prong so that the board 106 can only fit onto the lid 54 in one arrangement. Additionally, the oval openings allow for PCB and lid tolerances.
The board 106 is of a conventional construction. It may comprise a fiberglass-epoxy composite substrate material and layers of conductive metal, normally copper, on the top and bottom surfaces. The conductive layers are arranged into conductive paths through an etching process. The conductive paths are protected from mechanical damage and other environmental effects in most areas of the board by a photo-curable polymer layer, often referred to as a soldermask layer. In selected areas, such as the liquid flow paths and wire bond attachment pads, the conductive copper paths are protected by an inert metal layer such as gold. Other material choices could be tin, silver, or other low reactivity, high conductivity metals.
Still referring to
The board 106 includes the electrical contacts at the first end and contact pads 112 at the second end proximate the die 92. Electrical traces from the contact pads 112 to the electrical contacts are formed on the board and may be covered by the solder mask or another dielectric. Electrical connections from the die 92 to the board 106 may be established by a wire bonding process, where small wires, which may be composed of gold or aluminum, are thermally attached to bond pads on the silicon die and to corresponding bond pads on the board. An encapsulant material, normally an epoxy compound, is applied to the wire bond area to protect the delicate connections from mechanical damage and other environmental effects.
On the lower surface of the board 106, a filter 96 separates the opening 78 of the board from the chamber 88 at the lower surface of the board. The filter 96 is configured to prevent at least some of particulates from passing through the opening 78 to prevent clogging the nozzles 130 of the die 92. In some embodiments, the filter 96 is configured to block particulates that are greater than one third of the diameter of the nozzles 130. It is to be appreciated that, in some embodiments, the fluid transport member 80 can act as a suitable filter 96, so that a separate filter is not needed. In one embodiment, the filter 96 is a stainless steel mesh. In other embodiments, the filter 96 is randomly weaved mesh, polypropylene or silicon based.
The filter 96 may be attached to the bottom surface with an adhesive material that is not readily degraded by the fluid in the reservoir 50. In some embodiments, the adhesive may be thermally or ultraviolet activated. The filter 96 is positioned between the chamber 88 and the die 92. The filter 96 is separated from the bottom surface of the microfluidic delivery member 64 by a mechanical spacer 98. The mechanical spacer 98 creates a gap 99 between the bottom surface 70 of the microfluidic delivery member 64 and the filter 96 proximate the through hole 78. The mechanical spacer 98 may be a rigid support or an adhesive that conforms to a shape between the filter 96 and the microfluidic delivery member 64. In that regard, the outlet of the filter 96 is greater than the diameter of the second through hole 78 and is offset therefrom so that a greater surface area of the filter 96 can filter fluid than would be provided if the filter was attached directly to the bottom surface 70 of the microfluidic delivery member 64 without the mechanical spacer 98. It is to be appreciated that the mechanical spacer 98 allows suitable flow rates through the filter 96. That is, as the filter 96 accumulates particles, the filter will not slow down the fluid flowing therethrough. In one embodiment, the outlet of the filter 96 is about 4 mm2 or larger and the standoff is about 700 microns thick.
The opening 78 may be formed as an oval, as is illustrated in
The board 106 carries a microfluidic die 92. The die 92 comprises a fluid injection system made by using a semiconductor micro fabrication process such as thin-film deposition, passivation, etching, spinning, sputtering, masking, epitaxy growth, wafer/wafer bonding, micro thin-film lamination, curing, dicing, etc. These processes are known in the art to make MEMs devices. The die 92 may be made from silicon, glass, or a mixture thereof. The die 92 comprises a plurality of microfluidic chambers 128, each comprising a corresponding actuation element: heating element or electromechanical actuator. In this way, the die's fluid injection system may be micro thermal nucleation (e.g. heating element) or micro mechanical actuation (e.g. thin-film piezoelectric). One type of die for the microfluidic delivery member of the present invention is an integrated membrane of nozzles obtained via MEMs technology as described in U.S. 2010/0154790, assigned to STMicroelectronics; Geneva, Switzerland. In the case of a thin-film piezo, the piezoelectric material (e.g. lead zirconinum titanate)” is typically applied via spinning and/or sputtering processes. The semiconductor micro fabrication process allows one to simultaneously make one or thousands of MEMS devices in one batch process (a batch process comprises of multiple mask layers).
The die 92 is secured to the upper surface of the board 106 above the opening 78. The die 92 is secured to the upper surface of the board 106 by any adhesive material configured to hold the semiconductor die to the board. The adhesive material may be the same or different from the adhesive material used to secure the filter 96 to the microfluidic delivery member 64.
The die 92 may comprise a silicon substrate, conductive layers, and polymer layers. The silicon substrate forms the supporting structure for the other layers, and contains a channel for delivering fluid from the bottom of the die to the upper layers. The conductive layers are deposited on the silicon substrate, forming electrical traces with high conductivity and heaters with lower conductivity. The polymer layers form passages, firing chambers, and nozzles 130 which define the drop formation geometry.
The die 92 includes a plurality of electrical connection leads 110 that extend from one of the intermediate layers 109 down to the contact pads 112 on the circuit board 106. At least one lead couples to a single contact pad 112. Openings 150 on the left and right side of the die 92 provide access to the intermediate layers 109 to which the leads 110 are coupled. The openings 150 pass through the nozzle plate 132 and chamber layer 148 to expose contact pads 152 that are formed on the intermediate dielectric layers. In other embodiments that will be described below, there may be one opening 150 positioned on only one side of the die 92 such that all of the leads that extend from the die extend from one side while other side remains unencumbered by the leads.
The nozzle plate 132 may include about 4 to about 64 nozzles 130, or about 6 to about 48 nozzles, or about 8 to about 32 nozzles, or about 8 to about 24 nozzles, or about 12 to about 20 nozzles. In the illustrated embodiment, there are eighteen nozzles 130 through the nozzle plate 132, nine nozzles on each side of a center line. Each nozzle 130 may deliver about 1 to about 10 picoliters, or about 2 to about 8 picoliters, or about 4 to about 6 picoliters of a fluid composition per electrical firing pulse. The nozzles 130 may be positioned about 60 um to about 110 μm apart. In one embodiment, twenty nozzles 130 are present in a 3 mm2 area. The nozzles 130 may have a diameter of about 5 μm to about 40 μm, or 10 μm to about 30 μm, or about 20 μm to about 30 μm, or about 13 μm to about 25 μm.
Generally, the nozzles 130 are positioned along a fluidic feed channel through the die 92 as shown in
Each nozzle 130 is in fluid communication with the fluid in the reservoir 50 by a fluid path. Referring to
Proximate each nozzle chamber 128 is a heating element 134 (see
In use, when the fluid in each of the chambers 128 is heated by the heating element 134, the fluid vaporizes to create a bubble. The expansion that creates the bubble causes fluid to eject from the nozzle 130 and to form a plume of one or more droplets.
As best seen in
The intermediate layers 109 include a first dielectric layer 162 and a second dielectric layer 164. The first and second dielectric layers are between the nozzle plate and the substrate. The first dielectric layer 162 covers the plurality of first and second contacts 154, 156 formed on the substrate and covers the heaters 134 associated with each chamber. The second dielectric layer 164 covers the conductive traces 155.
In one embodiment, the heater 134 is a 20-nanometer thick tantalum aluminum layer. In another embodiment, the heater 134 may include chromium silicon films, each having different percentages of chromium and silicon and each being 10 nanometers thick. Other materials for the heaters 134 may include tantalum silicon nitride and tungsten silicon nitride. The heaters 134 may also include a 30-nanometer cap of silicon nitride. In an alternative embodiment, the heaters 134 may be formed by depositing multiple thin-film layers in succession. A stack of thin-film layers combine the elementary properties of the individual layers.
A ratio of an area of the heater 134 to an area of the nozzle 130 may be greater than seven to one. In one embodiment, the heater 134 is square, with each side having a length 147. The length may be 47 microns, 51 microns, or 71 microns. This would have an area of 2209, 2601, or 5041 microns square, respectively. If the nozzle diameter is 20 microns, an area at the second end would be 314 microns square, giving an approximate ratio of 7 to 1, 8 to 1, or 16 to 1, respectively.
As can be seen in this cross-section, the die 92 is relatively simple and does not include complex integrated circuitry. This die 92 will be controlled and driven by an external microcontroller or microprocessor. The external microcontroller or microprocessor may be provided in the housing. This allows the board 64 and the die 92 to be simplified and cost effective.
This die 92 is a thermal heating die that is free of complicated active circuitry. In this embodiment, there are two metal or conductive levels formed on the substrate. These conductive levels include the contact 154 and the trace 155. In some embodiments, all of these features can be formed on a single metal level. This allows the die to be simple to manufacture and minimizes the number of layers of dielectric between the heater and the chamber.
Referring now to
Upon depletion of the fluid in the reservoir 50, the microfluidic cartridge 26 may be removed from the housing 10 and replaced with another microfluidic cartridge 26.
Operating System
The microfluidic delivery system 10 includes programmable electronic drive circuitry to set a precise intensity level and delivery rate (in milligrams per hour) of a fluid composition to provide a consumer benefit, such as good room-fill in large living spaces with minimal deposition and minimal clogging (e.g. wick clogging). In operation, the microfluidic delivery system 10 may deliver a spray of micro droplets in which the majority of emitted droplets project at least about 4 cm to about 12 cm, or about 8 cm to about 12 cm upward from the nozzles 130 to provide noticeable delivery of the fluid composition to a space while minimizing deposition.
The delivery system 10 may allow a user to adjust the intensity and/or the timing of delivering the fluid composition for personal preference, efficacy, or for room size. For example, the delivery system 10 may provide ten intensity levels for a user to select and user selected options of delivering the fluid composition every 6, 12, or 24 hours.
The microfluidic delivery system 10 can be run in one of two modes: (1) normal operation and (2) refill limited. In normal operation mode, the system is running at a frequency that enables the chambers 128 to refill to a degree substantially equal to their static sill volume such that droplet ejection is consistent in volume and shape. In contrast, refill limited mode is an operating condition whereby the drive circuitry fires at a rate faster than the time required for the fluid to substantially refill the chamber 128. By operating in the refill limited mode, the system 10 can force the drops that are ejected to have a smaller size, higher velocity, and random shape distribution which can lead to less deposition on the housing 12, microfluidic delivery member 64 or surrounding surfaces. These drops are typically smaller than the nozzle diameter at higher burst frequency. With printing applications this random shape and size can be problematic for high print resolution but it can be an advantage in the case of atomizing a liquid into the air. Operating in refill limited mode allows smaller droplets to be ejected while avoiding complex micro fabrication processes to construct small nozzle diameters, which may be more prone to clogging. The small droplet distribution may have the advantage of evaporating faster compared to a droplet distribution produced under normal operating mode, possibly minimizing surface deposition and far reaching in space due to diffusion kinetics.
The drive circuitry is powered by about 4 to about 24 Volts, or about 4 to about 16 Volts from an external power source. The heating element 134 is electrically connected to a microprocessor, which may be part of the device or cartridge and comprises software programmed to control operation of the heating element 134 such as firing time, firing sequence, and frequency of the heating element. When the heating element 134 is activated under the direction of the software, the fluid composition emits from the nozzles 130.
Referring to
It has been found that the firing frequency will impact droplet size as well as how far upward the droplet is ejected which is important for avoiding deposition. With higher rates (e.g. 5000 Hertz), the droplets are fired at 5000 times/second which provides more momentum for the following droplets and hence causes the droplets to be ejected further which may help reduce deposition on surrounding surfaces. In addition, at 5000 Hertz the droplets are smaller for a given chamber size due to insufficient time to completely fill the chamber which has been defined above as refill limited mode.
The firing period (tON) may have a duration of about 0.25 seconds to about 10 seconds, or about 0.5 seconds to about 2 seconds, or about 0.25 seconds to about 1 second. A non-firing period (denoted tOFF)—where no firing pulses are supplied to the heating element 134, may have a duration of about 9 seconds to about 200 seconds. When in a continuous repeat mode the tON and tOFF are repeated continuously over an extended period of time to deliver a desired mg/hr rate of fluid. For example, with a burst frequency of 5000 Hertz and a firing period (tON) of 0.5 seconds, each nozzle is firing 2500 times during that sequence. If the tOFF is 10 seconds, then the sequence will be repeated every 10.5 seconds or about 6 times/minute and the total firings of each nozzle would be 2500 multiplied by about 6 times/min or about 15,000 firings/min. This delivery rate, per table 1, with 20 nozzles firing will deliver about 90 mg/hour of fluid composition into the air.
In another example of continuous repeat mode at 5000 Hz, to deliver 5 mg/hr of fluid composition, the heating element 134 may have firing periods (tON) and non-firing periods (tOFF) comprising a 0.3% duty cycle (e.g. 0.5 second firing and 160 seconds non-firing). To deliver 57 mg/hr, the heating element may have firing and non-firing periods comprising a 2.4% duty cycle (e.g. 0.5 second firing and 20 seconds non-firing). In the case of an electromechanical actuator as the activation element, the stated heating element could be a piezo element. Table 1 and
In boost mode, the heating elements 134 may have a firing period (tON) of about 0.5 seconds and a non-firing period (tOFF) of about 0.5 seconds and repeated 20 times over approximately 20 seconds to deliver approximately 5 mg of fluid composition into the air. This number of repeats for a one-time boost can be adjusted with software as desired.
The chamber 128 dimensions (e.g. inlet width, inlet thickness, surface tension of the inlet flow paths as well as the liquid properties (surface tension and viscosity)) can all impact what is the desired frequency for either normal operation mode or refill limited mode. With a recent example, the inventors have found that firing frequency of less than 2000 Hertz tends to result in normal operation mode where as when the electrical signal fires at frequencies of 4000 Hertz or higher, the system tends to be in a refill limited mode with significantly smaller droplets relative to the nozzle diameter and more fine fragments. While refill limited mode may be a problem for printing ink onto paper with certain resolution, it is may be an advantage for systems designed to volatilize a liquid into the air or depositing compositions onto a surface.
As part of the operation of the heating element 134, it is possible to supply one or more preheating pulses with a preheating duration (denoted tHEAT) which is always less than tFIRE for the sole purpose of preheating the liquid in the chamber. The level and rate of preheating is controlled by the number and duration of pulses supplied. The preheating of fluid could be important to lowering the viscosity of the system and hence making for more realizable firing of fluids. With lower viscosity, exit velocities are also higher which improves throw distance of the droplets.
As part of the operating conditions, under device ideal state, one can introduce a “keep wet spitting” (“KWS”) operation for the sole purpose of maintaining nozzle health over time. KWS is firing operation at very low frequency in order to balance the dry out phenomenon with wasted delivered fluid. In the case of perfumes, a KWS of 0.1 to 0.0001 Hertz is sufficient to keep the nozzles healthy. Dry out is meant to be fluid compositional changes over time that impact jetting performance (e.g. viscosity, low BP constitutes, etc)
In multiple reservoir delivery systems, a microprocessor and timer could be installed to emit the fluid composition from individual reservoirs at different times and for selected time periods, including emitting the volatile compositions in an alternating emission pattern as described in U.S. Pat. No. 7,223,361. Additionally, the delivery system could be programmable so a user can select certain compositions for emission. In the case of scented perfumes being emitted simultaneously, a customized scent may be delivered to the air. It is also understood that in a multi chamber system the drive circuitry (voltage, tFIRE, tHEAT, etc) could be different in the same device
While the heating element 134 for each chamber 128 is illustrated in
The nozzles 130 may be grouped together with other nozzles to form a group in which each group may be spaced from each other by at least a predetermined minimum number of nozzles. And, each of the nozzles 130 in a group is spaced from the nozzles in the subsequently enabled group by at least the predetermined minimum number of nozzles.
In some embodiments, the operating system of the microfluidic delivery system 10 delivers from about 5 mg to about 90 mg, or about 5 mg to about 40 mg, of fluid composition per hour into the air. Delivery rate of fluid composition can be calculated according to the following:
Average droplet mass*number of nozzles*frequency*cumulative seconds of tON/hour (sec/hr)=5 to 90 mg/hr.
For example, if tON is 0.5 sec and tOFF is 59.5 seconds then cumulative tON time would be 30 second/hour. Further, if average droplet mass is 0.000004 mg and one is using 20 nozzles at 5000 Hertz frequency the mg/hour with cumulative tON of 30 seconds=12 mg/hour.
Optional Features
Fan
In another aspect of the invention, the delivery system may comprise a fan to assist in driving room-fill and to help avoid deposition of larger droplets from landing on surrounding surfaces that could damage the surface. The fan may be any known fan, such as a 5V 25×25×5 mm DC axial fan (Series 250, Type255N from EBMPAPST), used in the art for air freshening systems that delivers 1-1000 cubic centimeters of air/minute, alternatively 10-100 cubic centimeters/minute.
Sensors
In some embodiments, the delivery system may include commercially available sensors that respond to environmental stimuli such as light, noise, motion, and/or odor levels in the air. For example, the delivery system can be programmed to turn on when it senses light, and/or to turn off when it senses no light. In another example, the delivery system can turn on when the sensor senses a person moving into the vicinity of the sensor. Sensors may also be used to monitor the odor levels in the air. The odor sensor can be used to turn-on the delivery system, increase the heat or fan speed, and/or step-up the delivery of the fluid composition from the delivery system when it is needed.
In some embodiments, a VOC sensors can be used to measure intensity of perfume from adjacent or remote devices and alter the operational conditions to work synergistically with other perfume devices. For example a remote sensor could detect distance from the emitting device as well as fragrance intensity and then provide feedback to device on where to locate device to maximize room fill and/or provide the “desired” intensity in the room for the user.
In some embodiments, the devices can communicate with each other and coordinate operations in order to work synergistically with other perfume devices.
The sensor may also be used to measure fluid levels in the reservoir or count firing of the heating elements to indicate the cartridge's end-of-life in advance of depletion. In such case, an LED light may turn on to indicate the reservoir needs to be filled or replaced with a new reservoir.
The sensors may be integral with the delivery system housing or in a remote location (i.e. physically separated from the delivery system housing) such as remote computer or mobile smart device/phone. The sensors may communicate with the delivery system remotely via low energy blue tooth, 6 low pan radios or any other means of wirelessly communicating with a device and/or a controller (e.g. smart phone or computer).
In another embodiment, the user can change the operational condition of the device remotely via low energy blue tooth, or other means.
Smart Chip
In another aspect of this invention, the cartridge has a memory in order to transmit optimal operational condition to the device. We expect operational optimal condition for be fluid dependent in some cases.
The delivery system may be configured to be compact and easily portable. In such case, the delivery system may be battery operated. The delivery system may be capable for use with electrical sources as 9-volt batteries, conventional dry cells such as “A”, “AA”, “AAA”, “C”, and “D” cells, button cells, watch batteries, solar cells, as well as rechargeable batteries with recharging base.
Fluid Composition
To operate satisfactorily in a microfluidic delivery system, many characteristics of a fluid composition are taken into consideration. Some factors include formulating fluids with viscosities that are optimal to emit from the microfluidic delivery member, formulating fluids with limited amounts or no suspended solids that would clog the microfluidic delivery member, formulating fluids to be sufficiently stable to not dry and clog the microfluidic delivery member, etc. Operating satisfactorily in a microfluidic delivery system, however, addresses only some of the requirements necessary for a fluid composition having more than 50 wt. % of a perfume mixture to atomize properly from a microfluidic delivery member and to be delivered effectively as an air freshening or malodor reducing composition.
The fluid composition of the present invention may exhibit a viscosity of less than 20 centipoise (“cps”), alternatively less than 18 cps, alternatively less than 16 cps, alternatively from about 5 cps to about 16 cps, alternatively about 8 cps to about 15 cps. And, the volatile composition may have surface tensions below about 35, alternatively from about 20 to about 30 dynes per centimeter. Viscosity is in cps, as determined using the Bohlin CVO Rheometer system in conjunction with a high sensitivity double gap geometry.
In some embodiments, the fluid composition is free of suspended solids or solid particles existing in a mixture wherein particulate matter is dispersed within a liquid matrix. Free of suspended solids is distinguishable from dissolved solids that are characteristic of some perfume materials.
In some embodiments, the fluid composition of the present invention may comprise volatile materials. Exemplary volatile materials include perfume materials, volatile dyes, materials that function as insecticides, essential oils or materials that acts to condition, modify, or otherwise modify the environment (e.g. to assist with sleep, wake, respiratory health, and like conditions), deodorants or malodor control compositions (e.g. odor neutralizing materials such as reactive aldehydes (as disclosed in U.S. 2005/0124512), odor blocking materials, odor masking materials, or sensory modifying materials such as ionones (also disclosed in U.S. 2005/0124512)).
The volatile materials may be present in an amount greater than about 50%, alternatively greater than about 60%, alternatively greater than about 70%, alternatively greater than about 75%, alternatively greater than about 80%, alternatively from about 50% to about 100%, alternatively from about 60% to about 100%, alternatively from about 70% to about 100%, alternatively from about 80% to about 100%, alternatively from about 90% to about 100%, by weight of the fluid composition.
The fluid composition may contain one or more volatile materials selected by the material's boiling point (“B.P.”). The B.P. referred to herein is measured under normal standard pressure of 760 mm Hg. The B.P. of many perfume ingredients, at standard 760 mm Hg can be found in “Perfume and Flavor Chemicals (Aroma Chemicals),” written and published by Steffen Arctander, 1969.
In the present invention, the fluid composition may have an average B.P. of less than 250° C., alternatively less than 225° C., alternatively less than 200° C., alternatively less than about 150° C., alternatively less than about 120° C., alternatively less than about 100° C., alternatively about 50° C. to about 200° C., alternatively about 110° C. to about 140° C. In some embodiments a quantity of low B.P. ingredients (<200 C) can be used to help higher B.P. formulations to be ejected. In one example, a formula with BP above 25° could be made to eject with good performance if 10-50% of the formula's ingredients has a B.P. less than 200 C despite the overall average still being above 250° C.
In some embodiments, the fluid composition may comprise, consist essentially of, or consist of volatile perfume materials.
Tables 2 and 3 outline technical data on perfume materials suitable for the present invention. In one embodiment, approximately 10%, by weight of the composition, is ethanol which may be used as a diluents to reduce boiling point to a level less than 250° C. Flash point may be considered in choosing the perfume formulation as flash points less than 70° C. require special shipping and handling in some countries due to flammability. Hence, there may be advantages to formulate to higher flash points.
Table 2 lists some non-limiting, exemplary individual perfume materials suitable for the fluid composition of the present invention.
Table 3 shows an exemplary perfume mixture having a total B.P. less than 200° C.
When formulating fluid compositions for the present invention, one may also include solvents, diluents, extenders, fixatives, thickeners, or the like. Non-limiting examples of these materials are ethyl alcohol, carbitol, diethylene glycol, dipropylene glycol, diethyl phthalate, triethyl citrate, isopropyl myristate, ethyl cellulose, and benzyl benzoate.
In some embodiments, the fluid composition may contain functional perfume components (“FPCs”). FPCs are a class of perfume raw materials with evaporation properties that are similar to traditional organic solvents or volatile organic compounds (“VOCs”). “VOCs”, as used herein, means volatile organic compounds that have a vapor pressure of greater than 0.2 mm Hg measured at 20° C. and aid in perfume evaporation. Exemplary VOCs include the following organic solvents: dipropylene glycol methyl ether (“DPM”), 3-methoxy-3-methyl-1-butanol (“MMB”), volatile silicone oil, and dipropylene glycol esters of methyl, ethyl, propyl, butyl, ethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, or any VOC under the tradename of Dowanol™ glycol ether. VOCs are commonly used at levels greater than 20% in a fluid composition to aid in perfume evaporation.
The FPCs of the present invention aid in the evaporation of perfume materials and may provide a hedonic, fragrance benefit. FPCs may be used in relatively large concentrations without negatively impacting perfume character of the overall composition. As such, in some embodiments, the fluid composition of the present invention may be substantially free of VOCs, meaning it has no more than 18%, alternatively no more than 6%, alternatively no more than 5%, alternatively no more than 1%, alternatively no more than 0.5%, by weight of the composition, of VOCs. The volatile composition, in some embodiments, may be free of VOCs.
Perfume materials that are suitable as FPCs are disclosed in U.S. Pat. No. 8,338,346.
Throughout this specification, components referred to in the singular are to be understood as referring to both a single or plural of such component.
All percentages stated herein are by weight unless otherwise specified.
Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical range were all expressly written herein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, e.g., 1 to 6.1, 3.5 to 7.8, 5.5 to 10, etc.
Further, the dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
3465350 | Keur et al. | Sep 1969 | A |
3465351 | Keur et al. | Sep 1969 | A |
3967286 | Andersson et al. | Jun 1976 | A |
4463359 | Ayata | Jul 1984 | A |
4532530 | Hawkins | Jul 1985 | A |
5084713 | Wong | Jan 1992 | A |
5317339 | Braun | May 1994 | A |
5591409 | Watkins | Jan 1997 | A |
5610635 | Murray | Mar 1997 | A |
5666140 | Mitani et al. | Sep 1997 | A |
5714989 | Wade et al. | Feb 1998 | A |
5874974 | Courian et al. | Feb 1999 | A |
5975675 | Kim | Nov 1999 | A |
6010210 | Wilson et al. | Jan 2000 | A |
6012799 | Silverbrook | Jan 2000 | A |
6024440 | Murthy et al. | Feb 2000 | A |
6113228 | Pawlowski | Sep 2000 | A |
6126277 | Feinn et al. | Oct 2000 | A |
6139131 | Prasad et al. | Oct 2000 | A |
6170937 | Childers et al. | Jan 2001 | B1 |
6261347 | Moreland | Jul 2001 | B1 |
6282458 | Muray et al. | Aug 2001 | B1 |
6287550 | Trinh | Sep 2001 | B1 |
6322200 | Feinn et al. | Nov 2001 | B1 |
6325475 | Hayes et al. | Dec 2001 | B1 |
6371451 | Chol | Apr 2002 | B1 |
6543887 | Chang | Apr 2003 | B2 |
6672129 | Frederickson et al. | Jan 2004 | B1 |
6698862 | Choi | Mar 2004 | B1 |
6808684 | Boden et al. | Oct 2004 | B2 |
6834937 | Killmeier | Dec 2004 | B2 |
7097263 | Silverbrook | Aug 2006 | B2 |
7201916 | Schiavo | Apr 2007 | B2 |
7223361 | Kvietok et al. | May 2007 | B2 |
7293849 | Tani et al. | Nov 2007 | B2 |
7328974 | Wang | Feb 2008 | B2 |
7367661 | Hess et al. | May 2008 | B2 |
7389943 | Jaworski | Jun 2008 | B2 |
7490815 | Tollens et al. | Feb 2009 | B2 |
7499632 | Granger | Mar 2009 | B2 |
8020573 | Lamers et al. | Sep 2011 | B2 |
8087759 | Oikawa et al. | Jan 2012 | B2 |
8101124 | Uchiyama | Jan 2012 | B2 |
8142558 | Robertson et al. | Mar 2012 | B2 |
8201752 | Brodbeck | Jun 2012 | B2 |
8251500 | Yamanda et al. | Aug 2012 | B2 |
8727234 | Haran | May 2014 | B2 |
8821802 | Haran | Sep 2014 | B2 |
8870090 | Feriani | Oct 2014 | B2 |
8881999 | Blaylock et al. | Nov 2014 | B2 |
9174453 | Dodd et al. | Nov 2015 | B1 |
9211356 | Gruenbacher et al. | Dec 2015 | B2 |
9211980 | Gruenbacher | Dec 2015 | B1 |
9377786 | Nakamoto et al. | Jun 2016 | B2 |
9554459 | Gruenbacher et al. | Jan 2017 | B2 |
9636430 | Gruenbacher et al. | May 2017 | B2 |
20010050317 | Denen | Dec 2001 | A1 |
20020050533 | Hirota | May 2002 | A1 |
20020063752 | Clark | May 2002 | A1 |
20020086319 | Elison et al. | Jul 2002 | A1 |
20020192255 | Schiavo | Dec 2002 | A1 |
20030062385 | Engel | Apr 2003 | A1 |
20030218077 | Boticki | Nov 2003 | A1 |
20040032468 | Killmeier et al. | Feb 2004 | A1 |
20040119793 | Mutz et al. | Jun 2004 | A1 |
20040200907 | Martens et al. | Oct 2004 | A1 |
20050018016 | Silverbrook | Jan 2005 | A1 |
20050037945 | Gygax et al. | Feb 2005 | A1 |
20050062804 | Eaton | Mar 2005 | A1 |
20050077376 | Hess et al. | Apr 2005 | A1 |
20050091879 | DuVal et al. | May 2005 | A1 |
20050124512 | Woo et al. | Jun 2005 | A1 |
20050205916 | Conway et al. | Sep 2005 | A1 |
20050279854 | Martens et al. | Dec 2005 | A1 |
20060065755 | Sugita et al. | Mar 2006 | A1 |
20060152550 | Tomita | Jul 2006 | A1 |
20070008380 | Ushinohama | Jan 2007 | A1 |
20070010645 | Vonwiller et al. | Jan 2007 | A1 |
20070207174 | Pluyter | Sep 2007 | A1 |
20080023569 | O'Leary et al. | Jan 2008 | A1 |
20080043063 | Bergstedt | Feb 2008 | A1 |
20080061163 | Kubby et al. | Mar 2008 | A1 |
20080073443 | Tollens | Mar 2008 | A1 |
20080197213 | Flashinski et al. | Aug 2008 | A1 |
20090096839 | Olbrich et al. | Apr 2009 | A1 |
20090108094 | Irvi | Apr 2009 | A1 |
20090126722 | Sugita et al. | May 2009 | A1 |
20090289127 | Tollens | Nov 2009 | A1 |
20100001091 | Bara et al. | Jan 2010 | A1 |
20100154790 | Merassi et al. | Jun 2010 | A1 |
20100206306 | Feriani et al. | Aug 2010 | A1 |
20100328957 | Hessing | Dec 2010 | A1 |
20110024521 | Joergensen | Feb 2011 | A1 |
20110036365 | Chong et al. | Feb 2011 | A1 |
20110049266 | Joergensen | Mar 2011 | A1 |
20110089252 | Rosener et al. | Apr 2011 | A1 |
20110130877 | Lynch | Jun 2011 | A1 |
20110221083 | Laulicht | Sep 2011 | A1 |
20110284653 | Butler et al. | Nov 2011 | A1 |
20110284656 | Kambayashi et al. | Nov 2011 | A1 |
20110290911 | Tollens et al. | Dec 2011 | A1 |
20120093491 | Browder et al. | Apr 2012 | A1 |
20120097754 | Vlad | Apr 2012 | A1 |
20130010035 | Norikane | Jan 2013 | A1 |
20130026250 | Burt | Jan 2013 | A1 |
20130206857 | Ivri | Aug 2013 | A1 |
20130292484 | Jackson | Nov 2013 | A1 |
20140369895 | Turner et al. | Dec 2014 | A1 |
20150367013 | Gruenbacher et al. | Dec 2015 | A1 |
20150367014 | Gruenbacher et al. | Dec 2015 | A1 |
20150367016 | Gruenbacher et al. | Dec 2015 | A1 |
20150367356 | Gruenbacher et al. | Dec 2015 | A1 |
20150368001 | Gruenbacher et al. | Dec 2015 | A1 |
20160271639 | Bush et al. | Sep 2016 | A1 |
20160354799 | Gruenbacher et al. | Dec 2016 | A1 |
20170072085 | Gruenbacher et al. | Mar 2017 | A1 |
20170072086 | Gruenbacher et al. | Mar 2017 | A1 |
20170094720 | Gruenbacher et al. | Mar 2017 | A1 |
20170165390 | Gruenbacher et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2 213 066 | Feb 1999 | CA |
1223637 | Oct 2005 | CN |
204072869 | Jan 2015 | CN |
1510228 | Mar 2005 | EP |
1894727 | Mar 2008 | EP |
2143576 | Nov 2012 | EP |
H09123453 | May 1997 | JP |
2002254613 | Sep 2002 | JP |
A-2004-311093 | Nov 2004 | JP |
2005185366 | Jul 2005 | JP |
A-2008-168223 | Jul 2005 | JP |
2005224503 | Aug 2005 | JP |
2005224504 | Aug 2005 | JP |
A2005224504 | Aug 2005 | JP |
2007054446 | Mar 2007 | JP |
A-2008-061937 | Mar 2008 | JP |
A-2009-213901 | Sep 2009 | JP |
100238582 | Jan 2000 | KR |
WO 0130404 | May 2001 | WO |
WO 2004044552 | May 2004 | WO |
WO 2006004902 | Jan 2006 | WO |
WO 2007083164 | Jul 2007 | WO |
WO 2014043424 | Mar 2014 | WO |
WO 2015175527 | Nov 2015 | WO |
Entry |
---|
U.S. Appl. No. 14/310,401, filed Jun. 20, 2014, Dana Paul Gruenbacher, et al. |
U.S. Appl. No. 14/310,285, filed Jun. 20, 2014, Dana Paul Gruenbacher, et al. |
U.S. Appl. No. 14/310,311, filed Jun. 20, 2014, Dana Paul Gruenbacher, et al. |
U.S. Appl. No. 14/310,334, filed Jun. 20, 2014, Dana Paul Gruenbacher, et al. |
PCT Search Report dated Jun. 19, 2015; PCT/US2015/036546, 5 Pages. |
PCT Search Report dated Sep. 17, 2015; PCT/US2015/036549, 11 Pages. |
PCT Search Report dated Sep. 18, 2015; PCT/US2015/036551, 9 pages. |
All Office Actions for U.S. Appl. No. 14/310,401. |
All Office Actions for U.S. Appl. No. 14/310,285. |
All Office Actions for U.S. Appl. No. 14/950,214. |
All Office Actions for U.S. Appl. No. 14/310,311. |
All Office Actions for U.S. Appl. No. 14/310,334. |
All Office Actions for U.S. Appl. No. 14/024,673. |
All Office Actions for U.S. Appl. No. 14/217,524. |
All Office Actions for U.S. Appl. No. 14/658,280. |
All Office Actions for U.S. Appl. No. 15/231,807. |
All Office Actions for U.S. Appl. No. 15/376,691. |
All Office Actions for U.S. Appl. No. 14/966,231. |
All Office Actions for U.S. Appl. No. 15/358,171. |
All Office Actions for U.S. Appl. No. 14/855,653. |
All Office Actions for U.S. Appl. No. 14/855,662. |
All Office Actions for U.S. Appl. No. 14/855,677. |
Number | Date | Country | |
---|---|---|---|
20150367014 A1 | Dec 2015 | US |