Method of delivering an intragastric device for treating obesity

Information

  • Patent Grant
  • 7883524
  • Patent Number
    7,883,524
  • Date Filed
    Friday, December 21, 2007
    17 years ago
  • Date Issued
    Tuesday, February 8, 2011
    13 years ago
Abstract
An intragastric member and method of delivery thereof are described. Delivery of the intragastric member is enabled by partitioning the intragastric member into discrete bundles with retaining members that are circumferentially disposed along the longitudinal length of the intragastric member. Formation of the intragastric member into bundles facilitates controlled delivery into the gastric lumen. The use of suture ties enables deployment of the intragastric member into the gastric lumen. The distal ends of the suture ties are affixed to the bundles. Pulling on the proximal free end of each of the suture ties enables the corresponding bundles to be advanced distally along a delivery tube. The suture ties are pulled until each of the bundles slide off from the delivery tube and enter into the gastric lumen.
Description
TECHNICAL FIELD

This invention relates to medical devices, and more particularly to obesity treatment devices that can be placed in the stomach of a patient to occupy volume in the gastric lumen.


BACKGROUND OF THE INVENTION

It is well known that obesity is a very difficult condition to treat. Methods of treatment are varied, and include drugs, behavior therapy, and physical exercise, or often a combinational approach involving two or more of these methods. Unfortunately, results are seldom long term, with many patients eventually returning to their original weight over time. For that reason, obesity, particularly morbid obesity, is often considered an incurable condition. More invasive approaches have been available which have yielded good results in many patients. These include surgical options such as bypass operations or gastroplasty. However, these procedures carry high risks, and are therefore not appropriate for most patients.


In the early 1980s, physicians began to experiment with the placement of intragastric balloons to reduce the size of the stomach reservoir, and consequently its capacity for food. Once deployed in the stomach, the balloon helps to trigger a sensation of fullness and a decreased feeling of hunger. These balloons are typically cylindrical or pear-shaped, generally range in size from 200-500 ml or more, are made of an elastomer such as silicone, polyurethane, or latex, and are filled with air, water, or saline. While some studies demonstrated modest weight loss, the effects of these balloons often diminished after three or four weeks, possibly due to the gradual distension of the stomach or the fact that the body adjusted to the presence of the balloon. Other balloons include a tube exiting the nasal passage that allows the balloon to be periodically deflated and re-insufflated to better simulate normal food intake. However, the disadvantages of having an inflation tube exiting the nose are obvious.


The experience with balloons as a method of treating obesity has provided uncertain results, and has been frequently disappointing. Some trials failed to show significant weight loss over a placebo, or were ineffective unless the balloon placement procedure was combined with a low-calorie diet. Complications have also been observed, such as gastric ulcers, especially with use of fluid-filled balloons, and small bowel obstructions caused by deflated balloons. In addition, there have been documented instances of the balloon blocking off or lodging in the opening to the duodenum, wherein the balloon may act like a ball valve to prevent the stomach contents from emptying into the intestines.


Unrelated to the above-discussed methods for treating obesity, it has been observed that the ingestion of certain indigestible matter, such as fibers, hair, fuzzy materials, etc., can collect in the stomach over time, and eventually form a mass called a bezoar. In some patients, particularly children and the mentally handicapped, bezoars often result from the ingestion of plastic or synthetic materials. In many cases, bezoars can cause indigestion, stomach upset, or vomiting, especially if allowed to grow sufficiently large. It has also been documented that certain individuals having bezoars are subject to weight loss, presumably due to the decrease in the size of the stomach reservoir. Although bezoars may be removed endoscopically, especially in conjunction with a device known as a bezotome or bezotriptor, they, particularly larger ones, often require surgery.


What is needed is method of delivering an intragastric device that provides the potential weight loss benefits of a bezoar or intragastric balloon without the associated complications. Ideally, such a-method should be well-tolerated by the patient, effective over a long period of time, and easy to place and retrieve.


SUMMARY OF THE INVENTION

These and other advantages, as well as the invention itself, will become apparent in the details of construction and operation as more fully described below. Moreover, it should be appreciated that several aspects of the invention can be used with other types of intragastric devices or procedures used for the treatment of obesity.


In a first aspect, an intragastric member is provided. The intragastric member comprises a tubular sheet of material that is partitioned into a first bundle and a second bundle by a first retaining member and a second retaining member. The second retaining member is disposed distal of the first retaining member, and the first and second bundles extend circumferentially to form a lumen. A first suture tie and a second suture tie are provided. The first suture tie comprises a first proximal end and a first distal end. The first proximal end is a first free end that extends within the lumen and the first distal end is affixed to the first retaining member. The second suture tie comprises a second proximal end and a second distal end. The second proximal end is a second free end that extends within the lumen and the second distal end is affixed to the second retaining member. The first suture tie comprises a first ratcheted element and the second suture tie comprises a second ratcheted element, the first and the second ratcheted elements adapted to maintain the first and the second bundles in a compressed configuration.


In a second aspect, an intragastric device for the treatment of obesity is provided. A delivery tube comprising a proximal end, a distal end, and a lumen extends therebetween. An intragastric member is provided comprising a tubular sheet of material. The intragastric member is partitioned into a first bundle and a second bundle by a first retaining member and a second retaining member disposed distal of the first retaining member, the first and the second bundles being slidably disposed along the delivery tube and extending circumferentially about the delivery tube. A first suture tie and a second suture tie are provided. The first suture tie comprises a first proximal end and a first distal end, the first proximal end being a first free end that extends within the lumen of the delivery tube and the first distal end affixed to the first retaining member. The second suture tie comprises a second proximal end and a second distal end, the second proximal end being a second free end that extends within the lumen of the delivery tube and the second distal end affixed to the second retaining member.


In a third aspect, a method of treatment of obesity in mammals is provided. An intragastric member is provided comprising a tubular sheet of material. The intragastric member is secured onto a delivery tube with a retaining member. The retaining member extends circumferentially about the intragastric member to partition the intragastric member into a first and a second bundle, the second bundle positioned proximal of the first bundle. The retaining member is secured with a suture tie comprising a proximal and a distal end, the proximal end being a free end that extends within a lumen and the distal end affixed to the retaining member. The proximal end of the suture tie is pulled in a proximal direction through the lumen such that the first and the second bundles advance distally along the delivery tube.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

Several embodiments of the present invention will now be described by way of example with reference to the accompanying drawings, in which:



FIG. 1 is a side view of an intragastric member partitioned into bundles and disposed onto a delivery tube;



FIG. 2 is a side view of the delivery device of FIG. 1 in which the bundles have been advanced distally;



FIG. 3 is a side view of the delivery device of FIG. 1 in which the first bundle has been deployed into the gastric lumen;



FIG. 4 is a side view of the delivery device of FIG. 1 in which each of the three bundles have advanced distally;



FIG. 5 is a side view of the delivery device of FIG. 1 in which the second bundle has been deployed into the gastric lumen;



FIG. 6 is a side view of the delivery device of FIG. 1 in which each of the two bundles have been advanced distally;



FIG. 7 is a side view of the delivery device of FIG. 1 in which the third bundle has been deployed into the gastric lumen;



FIG. 8 is a side view of the delivery device of FIG. 1 in which the bundle has been advanced distally;



FIG. 9 is a blown up view of FIG. 1 of the intragastric member;



FIG.10 shows each of the bundles removed from the delivery tube and cinched by ratcheting elements; and



FIG. 11 shows the intragastric member fully deployed in the gastric lumen.





DETAILED DESCRIPTION OF THE INVENTION

The obesity treatment apparatus depicted in FIGS. 1-11 comprises an intragastric member 11. The intragastric member 11 is preferably a high surface area mesh material (e.g., expandable polyethylene mesh), as shown in FIGS. 1 and 10 that is designed to displace volume within the gastric lumen. The implanted intragastric member 11 occupies a sufficient volume within the gastric lumen such that it does not pass through the pylorus 1010, as shown in FIG. 11. The exact volume required is patient specific, depending on the volume of the patient's gastric lumen. In one example, the apparent volume of the intragastric member 11 may range from about 500 mL to about 1500 mL. The term “apparent volume” as used herein refers to the volume of the intragastric member 11 prior to deployment into the gastric lumen.


As will be discussed with reference to FIGS. 1-11, delivery of the intragastric member 11 is enabled by partitioning the intragastric member 11 into a plurality of discrete bundles with retaining members that are circumferentially disposed along the longitudinal length of the intragastric member 11. Generally speaking, formation of the intragastric member 11 into bundles facilitates controlled delivery into the gastric lumen. The use of pull strings or suture ties enables deployment of the intragastric member 11 into the gastric lumen. The distal ends of the suture ties are affixed to the bundles. Pulling on the proximal free end of each of the suture ties enables the corresponding bundles to be advanced distally along a delivery tube. The suture ties are pulled until each of the bundles slide off from the delivery tube and enter into the gastric lumen.



FIG. 1 shows an exemplary intragastric member 11 that has been partitioned into a plurality of discrete bundles. Although the intragastric member 11 may comprise a relatively large number of bundles, for purposes of simplicity and clarity, only four bundles are shown. In particular, bundles 14, 15, 16, 17 are shown extending along the distal portion of the intragastric member 11. Compartmentalizing the intragastric member 11 into discrete bundles 14-17 facilitates its delivery and deployment into the gastric lumen. Retaining members 34, 35, 36, 37, 38 are circumferentially disposed at predetermined longitudinal lengths of the intragastric member 11 to form the bundles 14-17. The longitudinal length of each bundle 14, 15, 16, and 17 may vary and is partially dependent upon the degree of compartmentalization required. The shorter the longitudinal length of each of the bundles 14-17, the greater the ease of control may be in maneuvering the intragastric member 11 during delivery and deployment.


Retaining member 35 partitions the distal end of the intragastric member 11 into bundle 14 and bundle 15. Retaining member 36 further partitions the distal end of the intragastric member 11 into bundle 16, and retaining member 37 further partitions the intragastric member 11 into bundle 17. Additional retaining members 34 and 38, as shown in FIG. 1, may be provided to further constrain the intragastric member 11 into a low profile during delivery by substantially preventing the ends of bundle 14 and bundle 17 from undesirably flaring outwards and freely moving relative to delivery tube 18.


The intragastric member 11 with retaining members 34-38 are shown mounted over a delivery tube 18. FIG. 1 shows that the bundles 14-17 are constrained about delivery tube 18 at discrete intervals. Such constrainment of the bundles 14-17 enables a controlled delivery and deployment of the intragastric member 11 into a gastric lumen.


The retaining members 34-38 may be elastic bands or other structures, such as elastic rings. The retaining members 34-38 are secured to the intragastric member 11 and are not substantially moveable relative to each other. The attachment of the retaining members 34-38 to the intragastric member 11 at discrete locations enables the overall member 11 to achieve a low profile capable of being delivered to the gastric lumen. The retaining members 34-38 extend circumferentially about the intragastric member 11, as shown in FIG. 1. Each of the retaining members 34-38 is attached to its respective distal end of the suture tie that it contacts. As an example, FIG. 10 shows retaining member 38 attached by an adhesive to suture tie 64 at the distal end 85 of suture tie 64. The attachment of retaining member 38 to the distal end 85 of the suture tie 64 is sufficient so as to enable distal movement of both retaining member 38 and distal end 85 of suture tie 64 when the proximal end 65 of suture tie 64 is pulled. Other means of securing the retaining member 38 to the distal end 85 of suture tie 64 are contemplated. For example, the distal end 85 of suture tie 64 may be knotted to retaining member 38. Alternatively, the suture tie 64 may be riveted or crimped to the retaining member 38. For enhanced securement of the suture tie 64 to the bundles of the mesh 910 and retaining member 38, the suture tie 64 may also be interwoven through the interstices 920 of the mesh 910.


In the illustrative embodiments, the retaining members 34-38 (see FIG. 1) extend circumferentially about an intragastric member 11 to secure it onto a delivery tube 18. The retaining members 34-38 may be spaced apart from about 10 cm to about 30 cm to partition the intragastric member 11 into discrete bundle-like structures 14-17. Other spaced apart distances are contemplated.


Although five retaining members 34-38 are shown in FIG. 1, more than five or less than five retaining members may be used. The number of retaining members to be used is partially dependent upon the degree of partitioning of the intragastric member 11 that is desired during delivery. Generally speaking, a suitable number of retaining members should be disposed at a predetermined interval such that substantial portions of the intragastric member 11 are not free to radially and longitudinally move around during delivery. Such inadvertent movement increases the size of the member 11, thereby making delivery and deployment into the gastric lumen difficult.


Suture ties 61-64 are shown affixed to the bundles 14-17. The suture ties 61-64 are shown as pull strings which enable the bundles 14-17 to be advanced distally along the delivery tube 18 and ultimately to be released from the tube 18 into the gastric lumen. Suture tie 61 has a proximal end 66 and a distal end 82. The distal end of each suture tie as used herein refers to that portion of the suture tie that extends along the outer surface of the bundles 14-17. The proximal end of each suture tie as used herein refers to that portion of the suture tie that extends along the inner surface of the bundles 14-17 within the lumen 17 of the delivery tube 18. The distal end 82 is affixed to the retaining member 35, and the proximal end 66 is a free end that extends proximally within the lumen 18.


Suture tie 62 has a proximal end 67 and a distal end 83. The distal end 83 is attached to retaining member 36, and the proximal end 67 is a free end that extends proximally within the lumen 18. Note that the distal end 83 of the suture tie 62 also is attached to the retaining member 35.


Suture tie 63 has a proximal end 68 and a distal end 84. The distal end 84 is affixed to the retaining member 37, and the proximal end 68 is a free end that extends proximally within the lumen 18. Note that the distal end 84 of the suture tie 63 also is attached to retaining members 35 and 36.


Suture tie 64 has a proximal end 65 and a distal end 85. The distal end 85 is attached to the retaining member 38, and the proximal end 66 is a free end that extends proximally within the lumen 18. Note that the distal end 85 of the suture tie 64 extends proximally to the retaining members 35, 36, 37, and 38. Each of the free ends of the proximal ends 65-68 of the suture ties 61-64 extends proximally within the lumen 18 of the patient's esophagus and terminates out of the patient's mouth, thereby allowing a physician access to the suture ties 61-64 during deployment of the intragastric member 11.


The intragastric member 11 may be formed from a variety of materials. Preferably, the member 11 comprises a woven polymeric mesh, as shown in FIGS. 1-11. The mesh member 11 resembles a sock-like structure that is disposed about the delivery tube 18. The mesh sock-like structure is compliant and capable of being partitioned into bundles. The mesh sock-like structure is also flowable such that the individual bundles can be distally advanced along the delivery tube 18. In a preferred embodiment, the mesh 910 (FIG. 10) is formed from a low-density polyethylene having a thickness of about 40-50 microns. Details of a medical device formed from a mesh-like structure are described in U.S. patent application Ser. No. 11/743,732 which is incorporated herein by reference. Other types of materials are contemplated. For example, many well-known plastics such as polyesters, polyurethanes, polyethylenes, polyamides, and silicone may be used. Mammalian hair has been found to form natural bezoars, and thus, is also a possible material. Fluorinated ethylene propylene, ethylene vinyl acetate copolymer, nylon, or types of polymers that are biocompatible and to which food will generally not adhere may also be utilized.


Having described the structure of the intragastric member 11, a method of delivery and deployment of the intragastric member 11 will now be described. The intragastric member 11 is loaded onto a delivery tube 18 (FIG. 1). The intragastric member 11 may be configured to extend circumferentially about the delivery tube 18. The retaining members 34-38 are likewise disposed circumferentially about the intragastric member 11 at predetermined intervals to create the partition of bundles 14-17, as described above. The retaining members 34-38 also help secure the intragastric member 11 onto the delivery tube 18 in a constrained, low profile configuration. In the example shown in FIG. 1, the retaining members 34-38 may be spaced apart at about 30 cm increments along the distal end of the delivery tube 18.


Suture ties 61-64 may be attached longitudinally to the bundles 14-17 by interweaving the ties 61-64 through the interstices 920 of the mesh 910 (FIG. 10). The distal ends 82-85 of respective ties 61-64 may be disposed underneath the retaining members 34-38. Various other mechanisms for securing the intragastric member 11 to the delivery tube 18 are contemplated. For example, the sutures ties 61, 62, 63, 64 may be looped, sewn or threaded through the interstices 920 of the mesh 910 (FIG. 10). The proximal ends 65-68 are free ends that extend within the lumen 17 of the delivery tube 18, through the overtube 1000 (FIG. 10) and out of the patient's mouth for a physician to access during deployment of the bundles 14-17.


Having loaded the intragastric member 11 onto the delivery tube 11 with retaining members 34-38 and suture ties 61-64, delivery of the intragastric member 11 may begin. The intragastric member 11 and delivery tube 18 may be navigated through an overtube 1000 (FIG. 11) that spans along the patient's esophagus and into the entrance of the gastric lumen 1020 (FIG. 11). The delivery tube 18 may be navigated through the overtube 1000 and into the gastric lumen 1020 with the intragastric member 11 being configured in the constrained, low profile state by virtue of the bundles 14-17 (FIG. 1).


After the delivery tube 18 has been introduced into the gastric lumen 1020, deployment of the bundles 14-17 of the intragastric member 11 may begin by pulling on each of the proximal ends 65-68 of the suture ties 61-64 as will now be described. The proximal ends 65-68 may be color coded to help the operator identify which of the suture ties 61-64 is being pulled. Other means for logically identifying and organizing the proximal ends 61-64 are contemplated. For example, the proximal ends 61-64 may be wound so as to create a user-friendly configuration.


Proximal end 66 of suture tie 61 is pulled (as indicated by the arrow in FIG. 1) with a predetermined amount of force to cause the first bundle 14 to move toward the distal (forward) end of the delivery tube 18. Movement of the first bundle 14 towards the distal edge of the delivery tube 18 causes the first bundle 14 to become compressed, as shown in FIG. 2. FIG. 2 shows that the first bundle 14 has compressed, as indicated by the crease lines. The predetermined amount of force with which the proximal end 66 of suture tie 61 is pulled and the elasticity of retaining member 35 may help to maintain the first bundle 14 in a compressed configuration at the distal end of the delivery tube 18. The elasticity of retaining member 35 about the mesh 910 (FIG. 10) of intragastric member 11 provides sufficient frictional engagement of bundle 14 with the delivery tube 18 such that the bundle 14 does not readily slide off from the distal end of the delivery tube 18 at this juncture. Such frictional engagement may provide incremental and controlled deployment of each bundle 14-17 from the delivery tube 18. As the first bundle 14 shortens in length, the length of the distal end 82 of the suture tie 61 (i.e., the portion outside the tube 18) decreases while the length of the proximal end 66 of the suture tie 61 (i.e., the portion within the tube 18) proportionately increases.


Further pulling of the suture tie 61 at its proximal end 66 (FIG. 2) with an appropriate amount of force causes the first bundle 14 to slide off from the distal end of the delivery tube 18 (FIG. 3) thereby leaving bundles 15-17 disposed along the delivery tube 18 as shown in FIG. 3. FIG. 3 shows that bundle 15 is the next bundle that will be removed from the delivery tube 18. Proximal end 67 of suture tie 62 is pulled (as indicated by the arrow in FIG. 3) with a predetermined amount of force to cause bundle 15 to move toward the distal edge of the delivery tube 18. Movement of the bundle 15 towards the distal edge of the delivery tube 18 causes the bundle 15 to become compressed, as shown in FIG. 4. Bundle 15 has compressed, as indicated by the crease lines. The predetermined amount of force with which the proximal end 67 of suture tie 62 is pulled and the elasticity of retaining member 36 may help to maintain the second bundle 15 in a compressed configuration at the distal end of the delivery tube 18. The elasticity of retaining member 36 about the mesh 910 (FIG. 10) of intragastric member 11 provides sufficient frictional engagement of the second bundle 15 with the delivery tube 18 such that the second bundle 15 does not readily slide off from the distal end of the delivery tube 18 at this juncture. As the bundle 15 has shortened in length, the length of the distal end 83 of the suture tie 62 (i.e., the portion outside the tube 18) has decreased while the length of the proximal end 67 of the suture tie 62 (i.e., the portion inside the tube 18) has proportionately increased.


Further pulling of the suture tie 62 at its proximal end 67 with a predetermined amount of force causes the bundle 15 to slide off from the distal end of the delivery tube 18 (FIG. 4), thereby leaving bundles 16 and 17 disposed along the delivery tube 18, as shown in FIG. 5. FIG. 5 shows that bundle 16 is the next bundle that will be removed from the delivery tube 18. Proximal end 68 of suture tie 63 is pulled (as indicated by the arrow in FIG. 5) with a predetermined amount of force causing bundle 16 to become compressed, as shown in FIG. 6. FIG. 6 shows that the bundle 16 has compressed, as indicated by the crease lines. The predetermined amount of force with which the proximal end 68 of suture tie 63 is pulled and the elasticity of retaining member 37 may help to maintain the third bundle 16 in a compressed configuration at the distal end of the delivery tube 18. The elasticity of retaining member 37 about the mesh 910 (FIG. 10) of intragastric member 11 provides sufficient frictional engagement of bundle 16 with the delivery tube 18 such that the bundle 16 does not readily slide off from the distal end of the delivery tube 18 at this juncture. As the bundle 16 has shortened in length, the length of the distal end 84 of the suture tie 63 (i.e., the portion outside the tube 18) has decreased while the length of the proximal end 68 of the suture tie 63 (i.e., the portion inside the tube 18) has proportionately increased.


Further pulling of the suture tie 63 at its proximal end 68 (FIG. 6) causes the bundle 16 to slide off from the distal end of the delivery tube 18 (FIG. 7). At this juncture, bundle 17 is shown in FIG. 7 as the only remaining bundle 17 that is disposed along the delivery tube 18. Proximal end 65 of suture tie 64 is pulled (as indicated by the arrow in FIG. 7) causing the bundle 17 to become compressed, as shown in FIG. 8. FIG. 8 shows that the bundle 17 has compressed, as indicated by the crease lines. The predetermined amount of force with which the proximal end 65 of suture tie 64 is pulled and the elasticity of retaining member 38 may help to maintain the fourth bundle 17 in a compressed configuration at the distal end of the delivery tube 18. The elasticity of retaining member 38 about the mesh 910 (FIG. 10) of intragastric member 11 provides sufficient frictional engagement of bundle 17 with the delivery tube 18 such that the bundle 17 does not readily slide off from the distal end of the delivery tube 18 at this juncture. As the bundle 16 has shortened in length, the length of the distal end 85 of the suture tie 64 (i.e., the portion outside the tube 18) has decreased while the length of the proximal end 65 of the suture tie 64 (i.e., the portion inside the tube 18) has proportionately increased.


Further pulling of the suture tie 64 at its proximal end 65 (FIG. 8) causes the bundle 17 to slide off from the distal end of the delivery tube 18 (FIG. 9). At this juncture all of the bundles 14-17 are deployed in the gastric lumen 1020 (FIG. 11). The proximal ends 65-68 of each of the suture ties 61-64 may be severed and the delivery tube 18 may be removed through the overtube 1000 (FIG. 11).



FIG. 9 shows all of the bundles 14-17 deployed from the delivery tube 18. Beads 90-93 are shown affixed to the surface of their respective suture ties 61-64. The beads 90-93 serve as ratcheted structures which cinch their respective bundles 14-17 in the longitudinal direction and maintain the bundles 14-17 in a compressed and bundled configuration (FIG. 9). Other types of ratcheted structures to cinch the bundles 14-17 are contemplated and would be appreciated by one of ordinary skill in the art. For example, proximal and distal stoppers could be used to maintain the bundles 14-17 in a compressed configuration. Alternatively, all of the bundles 14-17 may be knotted or tied together.


The above described procedure of delivery may be repeated by loading additional intragastric members 11 over the delivery tube 18 and pushing these intragastric members 11 against the previously inserted bundles 14-17 until all of the bundles 14 have been inserted into the gastric lumen. Deployment of additional intragastric members 11 may occur if greater displacement of the gastric lumen is required.


As an alternative to the above-described procedure, suture tie 64 may be pulled to cause distal movement of bundle 17. Distal movement of bundle 17 may push against bundles 14-16 thereby causing them to also move distally such that bundles 14-17 attain a compressed configuration at the distal end of the delivery tube 18.



FIG. 11 show the completely deployed intragastric member 11 implanted in the gastric lumen 1020. The deployed intragastric member 11 is shown in an unconstrained state without any stoppers to constrain the bundles 14-17. The bundles 14-17 are in a compressed configuration yet occupy sufficient volume such that they do not exit through the pylorus 1010. Beads 90-93 cinch the bundles 14-17 and maintain the bundles 14-17 in a compressed configuration within the gastric lumen 1020.


The intragastric member 11 is sufficiently large such that it occupies a volume in the gastric lumen 1020 that prevents the bundles 14-17 from passing through the pylorus 1010. The intragastric member 11 occupies a sufficiently large volume in the gastric lumen 1020 to cause a patient to eat less and achieve satiety.


The above-described embodiments discuss a method for delivering a large volume of material into a gastric lumen in a controlled and incremental manner. Various sized intragastric bags may be delivered using the above embodiments. In one example, an intragastric bag having a starting longitudinal length of about four feet and a width of about six inches may be partitioned into four bundles, each of the four bundles having a longitudinal length of about one foot and a width of about one inch. More retaining members may be utilized to further partition the intragastric bag, thereby reducing the profile of the assembled bundles onto the delivery tube 18. After deployment into the gastric lumen, each of the bundles may have a width of about six inches and a longitudinal length of about one-and-a-half inches. Generally speaking, the width of the deployed bundles 14-17 is greater than the width of the bundles 14-17 assembled onto delivery tube 18.


To remove the intragastric member 11 from the gastric lumen 1020, the retaining members 34-38 are typically cut so as to enable the bundles 14-17 to uncompress and be withdrawn from the lumen 1020. One end of the member 11 is then grasped by forceps or similar device and pulled out of the patient.


Any other undisclosed or incidental details of the construction or composition of the various elements of the disclosed embodiment of the present invention are not believed to be critical to the achievement of the advantages of the present invention, so long as the elements possess the attributes needed for them to perform as disclosed. The selection of these and other details of construction are believed to be well within the ability of one of even rudimentary skills in this area, in view of the present disclosure. Illustrative embodiments of the present invention have been described in considerable detail for the purpose of disclosing a practical, operative structure whereby the invention may be practiced advantageously. The designs described herein are intended to be exemplary only. The novel characteristics of the invention may be incorporated in other structural forms without departing from the spirit and scope of the invention.

Claims
  • 1. An intragastric device for the treatment of obesity, the intragastric device comprising: an intragastric member comprising a generally tubular sheet of material having a lumen extending there through, the intragastric member partitioned into a first bundle and a second bundle disposed proximal of the first bundle, the first and the second bundles formed by a first retaining member and a second retaining member, the first retaining member disposed between the first and second bundles, the second retaining member disposed proximal of the first retaining member and proximal of the second bundle, the first and second retaining members extending circumferentially about the lumen;a first suture tie and a second suture tie, the first suture tie comprising a first proximal end and a first distal end, the first proximal end being a first free end that extends within the lumen and the first distal end affixed to the first retaining member, the second suture tie comprising a second proximal end and a second distal end, the second proximal end being a second free end that extends within the lumen and the second distal end affixed to the second retaining member;wherein the intragastric member comprise a meshed sock-like structure, and the first and the second retaining members are interwoven about the mesh;wherein the first and the second bundles are each movable from a longitudinally extended configuration to a longitudinally compressed configuration,wherein the first and second suture ties are configured to move the first and second bundles from the longitudinally extended configuration to the longitudinally compressed configuration, andwherein the first suture tie comprises a first ratcheted element and the second suture tie comprises a second ratcheted element, the first and the second ratcheted elements adapted to secure the first and the second bundles in the longitudinally compressed configuration.
  • 2. The intragastric device according to claim 1, wherein the first and the second bundles are disposed onto a delivery tube, the delivery tube extending through the lumen of the intragastric member.
  • 3. The intragastric device according to claim 2, wherein the first suture comprises a first proximal end portion that extends within the delivery tube and a first distal end portion that extends over the first bundle.
  • 4. The intragastric device according to claim 1, wherein the intragastric member has an apparent volume ranging between about 500 mL to about 1500 mL.
  • 5. The intragastric device according to claim 1, wherein the second suture tie comprises a second proximal end portion that extends within the delivery tube and a second distal end portion that extends over the second bundle.
  • 6. The intragastric device according to claim 1, wherein the first and the second bundles are circumferentially constrained about a delivery tube at discrete intervals when in the longitudinally extended configuration and the that the first and second retainers are disposed about the delivery tube at spaced apart locations.
  • 7. The intragastric device according to claim 1, wherein the first and second retainers are disposed adjacent to each other when the first and the second bundles are in the longitudinally compressed configuration.
  • 8. An intragastric device for the treatment of obesity, the intragastric device comprising: an intragastric member comprising a generally tubular sheet of material having a lumen extending there through, the intragastric member partitioned into a first bundle and a second bundle disposed proximal of the first bundle, the first and the second bundles formed by a first retaining member and a second retaining member, the first retaining member disposed between the first and second bundles, the second retaining member disposed proximal of the first retaining member and proximal of the second bundle, the first and second retaining members extending circumferentially about the lumen;a first suture tie and a second suture tie, the first suture tie comprising a first proximal end and a first distal end, the first proximal end being a first free end that extends within the lumen and the first distal end affixed to the first retaining member, the second suture tie comprising a second proximal end and a second distal end, the second proximal end being a second free end that extends within the lumen and the second distal end affixed to the second retaining member;wherein the intragastric member comprise a meshed sock-like structure, and the first and the second suture ties are interwoven with the mesh;wherein the first and the second bundles are each movable from a longitudinally extended configuration to a longitudinally compressed configuration,wherein the first and second suture ties are configured to move the first and second bundles from the longitudinally extended configuration to the longitudinally compressed configuration, andwherein the first suture tie comprises a first ratcheted element and the second suture tie comprises a second ratcheted element, the first and the second ratcheted elements adapted to secure the first and the second bundles in the longitudinally compressed configuration.
  • 9. The intragastric device according to claim 8, wherein the first and the second bundles are disposed onto a delivery tube, the delivery tube extending through the lumen of the intragastric member.
  • 10. The intragastric device according to claim 9, wherein the first suture comprises a first proximal end portion that extends within the delivery tube and a first distal end portion that extends over the first bundle.
  • 11. The intragastric device according to claim 8, wherein the intragastric member has an apparent volume ranging between about 500 mL to about 1500 mL.
  • 12. The intragastric device according to claim 8, wherein the second suture tie comprises a second proximal end portion that extends within the delivery tube and a second distal end portion that extends over the second bundle.
  • 13. The intragastric device according to claim 8, wherein the first and the second bundles are circumferentially constrained about a delivery tube at discrete intervals when in the longitudinally extended configuration and the that the first and second retainers are disposed about the delivery tube at spaced apart locations.
  • 14. The intragastric device according to claim 8, wherein the first and second retainers are disposed adjacent to each other when the first and the second bundles are in the longitudinally compressed configuration.
US Referenced Citations (143)
Number Name Date Kind
2508690 Schmerl May 1950 A
4133315 Berman et al. Jan 1979 A
4134405 Smit Jan 1979 A
4246893 Berson Jan 1981 A
4315509 Smit Feb 1982 A
4403604 Wilkinson et al. Sep 1983 A
4416267 Garren et al. Nov 1983 A
4485805 Foster, Jr. Dec 1984 A
4558699 Bashour Dec 1985 A
4607618 Angelchik Aug 1986 A
4694827 Weiner et al. Sep 1987 A
4696288 Kuzmak et al. Sep 1987 A
4723547 Kullas et al. Feb 1988 A
4803985 Hill Feb 1989 A
4878905 Blass Nov 1989 A
4899747 Garren et al. Feb 1990 A
4925446 Garay et al. May 1990 A
4952339 Temus et al. Aug 1990 A
5129915 Cantenys Jul 1992 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5306300 Berry Apr 1994 A
5327914 Shlain Jul 1994 A
5345949 Shlain Sep 1994 A
5868141 Ellias Feb 1999 A
5938669 Klaiber et al. Aug 1999 A
5993473 Chan et al. Nov 1999 A
6067991 Forsell May 2000 A
6210347 Forsell Apr 2001 B1
6348056 Bates et al. Feb 2002 B1
6427089 Knowlton Jul 2002 B1
6450946 Forsell Sep 2002 B1
6454699 Forsell Sep 2002 B1
6460543 Forsell Oct 2002 B1
6511490 Robert Jan 2003 B2
6540789 Silverman et al. Apr 2003 B1
6558400 Deem et al. May 2003 B2
6605111 Bose et al. Aug 2003 B2
6627206 Lloyd Sep 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6669721 Bose et al. Dec 2003 B1
6675809 Stack et al. Jan 2004 B2
6676674 Dudai Jan 2004 B1
6733512 McGhan May 2004 B2
6740121 Geitz May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6755869 Geitz Jun 2004 B2
6802868 Silverman et al. Oct 2004 B2
6845776 Stack et al. Jan 2005 B2
6879859 Boveja Apr 2005 B1
6916326 Benchetrit Jul 2005 B2
6946002 Geitz Sep 2005 B2
6981980 Sampson et al. Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7033373 de la Torre et al. Apr 2006 B2
7033384 Gannoe et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7054690 Imran May 2006 B2
7056305 Garza Alvarez Jun 2006 B2
7066945 Hashiba et al. Jun 2006 B2
7090699 Geitz Aug 2006 B2
7097665 Stack et al. Aug 2006 B2
7112186 Shah Sep 2006 B2
7121283 Stack et al. Oct 2006 B2
7152607 Stack et al. Dec 2006 B2
7172613 Wazne Feb 2007 B2
7175638 Gannoe et al. Feb 2007 B2
7177693 Starkebaum Feb 2007 B2
20010011543 Forsell Aug 2001 A1
20020188354 Peghini Dec 2002 A1
20030049325 Suwelack et al. Mar 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030158564 Benchetrit Aug 2003 A1
20030199989 Stack et al. Oct 2003 A1
20030199990 Stack et al. Oct 2003 A1
20030199991 Stack et al. Oct 2003 A1
20040019388 Starkebaum Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040044353 Gannoe Mar 2004 A1
20040044354 Gannoe et al. Mar 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040117031 Stack et al. Jun 2004 A1
20040122452 Deem et al. Jun 2004 A1
20040122453 Deem et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040138760 Schurr Jul 2004 A1
20040138761 Stack et al. Jul 2004 A1
20040143342 Stack et al. Jul 2004 A1
20040153106 Dudai Aug 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040186503 DeLegge Sep 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040243152 Taylor et al. Dec 2004 A1
20050049718 Dann et al. Mar 2005 A1
20050070921 Ortiz et al. Mar 2005 A1
20050096750 Kagan et al. May 2005 A1
20050149141 Starkebaum Jul 2005 A1
20050149142 Starkebaum Jul 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050192531 Birk Sep 2005 A1
20050192614 Binmoeller Sep 2005 A1
20050209653 Herbert et al. Sep 2005 A1
20050222637 Chen Oct 2005 A1
20050222638 Foley et al. Oct 2005 A1
20050240239 Boveja et al. Oct 2005 A1
20050240279 Kagan et al. Oct 2005 A1
20050245957 Starkebaum et al. Nov 2005 A1
20050246037 Starkebaum Nov 2005 A1
20050250979 Coe Nov 2005 A1
20050256587 Egan Nov 2005 A1
20050267405 Shah Dec 2005 A1
20060015151 Aldrich Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060030949 Geitz Feb 2006 A1
20060074450 Boveja et al. Apr 2006 A1
20060079944 Imran Apr 2006 A1
20060089571 Gertner Apr 2006 A1
20060129027 Catona Jun 2006 A1
20060129094 Shah Jun 2006 A1
20060161172 Levine et al. Jul 2006 A1
20060206063 Kagan et al. Sep 2006 A1
20060206064 Kagan et al. Sep 2006 A1
20060206160 Cigaina et al. Sep 2006 A1
20060249165 Silverman et al. Nov 2006 A1
20060253142 Bjerken Nov 2006 A1
20060257444 Tropsha et al. Nov 2006 A1
20060257445 Tropsha et al. Nov 2006 A1
20060257446 Tropsha et al. Nov 2006 A1
20060282107 Hashiba et al. Dec 2006 A1
20060293742 Dann et al. Dec 2006 A1
20070004963 Benchetrit Jan 2007 A1
20070010794 Dann et al. Jan 2007 A1
20070010864 Dann et al. Jan 2007 A1
20070010865 Dann et al. Jan 2007 A1
20070010866 Dann et al. Jan 2007 A1
20070021761 Phillips Jan 2007 A1
20070038308 Geitz Feb 2007 A1
20070239284 Skerven et al. Oct 2007 A1
Foreign Referenced Citations (4)
Number Date Country
0137 878 Nov 1983 EP
1520531 Apr 2005 EP
WO 0110290 Feb 2001 WO
WO 2007136468 Nov 2007 WO
Related Publications (1)
Number Date Country
20090164028 A1 Jun 2009 US