The present application is a National Stage Application under 35 USC § 371 of PCT Application No. PCT/GB2018/053365, filed Nov. 21, 2018, which claims priority to U.K. Application No. 1719581.9, filed Nov. 24, 2017, the entire disclosures of which being hereby expressly incorporated herein by reference.
The present disclosure relates to a method of identifying at least one design point for a turbine, and designing the turbine according to the design point. It further relates to a turbine produced by the design method, and a turbocharger including the turbine.
Turbomachines are machines that transfer energy between a rotor and a fluid. For example, a turbomachine may transfer energy from a fluid to a rotor or may transfer energy from a rotor to a fluid. Two examples of turbomachines are a power turbine, which uses the rotational energy of a rotor driven by a fluid to do useful work, for example, generating electrical power; and a compressor which uses the rotational energy of the rotor to compress a fluid.
Turbochargers are well known turbomachines for supplying air to an inlet of an internal combustion engine at pressures above atmospheric pressure (boost pressures). A conventional turbocharger essentially comprises an exhaust gas driven turbine wheel mounted on a rotatable shaft within a turbine housing connected downstream of an engine outlet manifold. Rotation of the turbine wheel rotates a compressor wheel mounted on the other end of the shaft within a compressor housing. The compressor wheel delivers compressed air to an engine inlet manifold.
The turbocharger shaft is conventionally supported by bearings such as journal and thrust bearings, including appropriate lubricating systems, located within a central bearing housing connected between the turbine and compressor wheel housings. After driving the turbine wheel the exhaust gas exits the turbine through a gas outlet which is at the opposite end of the rotational axis of the turbine wheel from the bearing housing.
It is well-known for the multiple cylinders of an internal combustion engine to be partitioned into two groups of cylinders, and for the exhaust gas emitted by the respective groups of cylinders to be transmitted into two respective gas inlets of a turbocharger. The gas inlets are in fluid communication with a chamber of the housing containing the turbine wheel via respective gas inlet volutes. The volutes are spaced from each other along the rotational axis of the turbine wheel, such that a first of the volutes is closer to the bearing housing (the “bearing housing side volute”—BH), and the other is closer to the turbine outlet side (the “turbine outlet side volute”—TO). The volutes may be circumferentially-spaced from each other about the rotational axis of the turbine wheel (“double-entry” volutes”), or axially-spaced but not circumferentially-spaced (“twin-entry” volutes). The term “full admission”, or “equal admission”, refers to the assumption that gas in both of the turbine entries have equal mass flow rates and pressures. However, the reality is that the two gas inlets in fact receive different mass flow rates and inlet pressures (a phenomenon called “partial admission”). Furthermore, flow entering each volute is unsteady, and the exhaust gas entering a first of the volutes may have different a pressure waveform from that of gas entering the other volute, which is furthermore out of phase with the pressure waveform of gas entering the first volute.
In general terms, the disclosure proposes that a turbine with multiple gas inlets is designed by a process of, for a given engine, obtaining time series data characterizing the available turbine power at each gas inlet volute (which depends upon the bias of the engine between the groups of cylinders which feed exhaust gas into the respective gas inlet volutes), obtaining an isentropic power associated with each data point of the time series, and using the isentropic power of the data points to obtain a design point. The turbine is then designed based on the design point, such as by optimising one or more design parameters of the turbine based on the design point.
For example, the design point may be an isentropic-power weighted mean turbine expansion ratio, and a isentropic-power weighted mean scroll pressure ratio. Since the design point is selected based on isentropic-power weighted parameters, the design point is not unduly affected by points in the engine cycle at which the available power is low.
A different candidate design point may be obtained for each of the volutes, and then the design point is selected from among the candidate design points. Each candidate design point may be produced by filtering the time series data using a respective filter, and using the remaining points to generate the mean turbine expansion ratio and mean scroll pressure ratio.
For example, the filter for each volute may be such as to retain (e.g. only) data points for which a calculated scroll pressure ratio of the data point indicates that the scroll pressure is greater for that volute than for the other volute.
Once the design point has been obtained, there may be a step of determining whether the design point meets at least one pre-determined criterion indicating that high turbine power is delivered at equal flow. For example, the criterion may be whether the magnitude of a logarithm of a scroll pressure ratio associated with the design point is below a threshold. If the criterion is met, then optionally the turbine may be designed by a conventional process, i.e. without using the design point obtained using the isentropic power of the data points.
Otherwise, the design process may include one or more design steps, in each of which an optimization process is carried out in which one or more parameters of the turbine are iteratively varied based on the design point, thereby resulting in (candidate) turbine designs. The design steps may be computer assisted.
In an embodiment, the design process includes a first design step in which first parameters of the turbine are generated (i.e. a turbine is designed), for example by an optimisation process based on the design point. This optimization process may be performed multiple times, each time producing a respective candidate turbine design which has a respective value of the parameter “reaction”. From the optimised designs, a reaction value is chosen, and the final turbine design has the chosen reaction value. Optionally, in a second design step, parameters of the turbine are generated (i.e. a final turbine design is produced) by an optimization process based on the design point and the chosen reaction value.
Here the parameter “reaction” is conventionally defined as the change of enthalpy in the turbine rotor blades compared to the overall change of enthalpy in the turbine. Reaction is measure of how much gas expansion occurs in the turbine wheel relative to the total turbine stage (housing plus wheel). A low reaction signifies that there is a relatively large wheel (exducer) and a relatively small housing, while a high reaction indicates that there is a small wheel (exducer) and relatively large housing. The two-step design process means that a reaction associated with relatively high efficiency may be selected, and then the turbine designed with that reaction as a constraint.
The reaction may alternatively be expressed as a ratio (CAhousing/CAwheel) of a critical area CAhousing of the housing, and a critical area CAwheel of the turbine wheel. The critical area of the housing, CAhousing, is the cross-sectional area of the volutes measured at a plane that intersects the rotational axis of the turbocharger where the combined cross-sectional area of the volutes is at its smallest, upstream of the opening into the chamber. The critical area of the wheel, CAwheel, is defined as the smallest area along the meridional length of the wheel (that is, along the flow path defined between the blades) transverse to the flow path. This is usually located in the exducer of the wheel.
Accordingly, in the first design step, each optimization process may be performed using a respective value of the ratio (CAhousing/CAwheel), which is kept constant during the optimization process. Similarly, the step of choosing the reaction value amounts to a selection of a value for the ratio (CAhousing/CAwheel), and the second design step is performed by an optimization process which does not vary the selected ratio (CAhousing/CAwheel).
An independent aspect of the disclosure is a process of designing a turbine comprising (i) obtaining a design point, (ii) for each of a plurality of reaction values, designing a candidate turbine using the design point, and (iii) selecting a reaction value from among the plurality of reaction values, the final turbine design using the selected reaction value. It is not necessary to this expression of the disclosure that the design point is selected based on isentropic power values.
A non-limiting embodiment of the disclosure will now be described, for the sake of example only, with reference to the following figures, in which:
The turbine housing 15 has two exhaust gas inlet volutes 19a, 19b located annularly around the turbine wheel 14, and an axial exhaust gas outlet 10. The volutes 19a, 19b are symmetrical with respect to each other in a mirror plane perpendicular to the axial direction (note that in other known turbine housings the volutes are not symmetrical; furthermore in “double entry” turbines the volutes are circumferentially spaced, such as by 180 degrees, about the rotational axis 2 of the turbine). The compressor housing 17 has an axial air intake passage 31 and a volute 32 arranged annularly around the compressor chamber 38. The volute 32 is in gas flow communication with a compressor outlet 33. The compressor chamber 38 is connected to the volute 32 by a radially-extending diffuser space 39 (also referred to here as a “diffuser”) which is a gap between a radially-extending shroud surface 25 of the housing 17, and a radially extending hub surface 26 of the bearing housing 13. The diffuser 39 is rotationally symmetric about the rotational axis 2 of the shaft 18.
In use, exhaust gas is provided to the two exhaust gas inlet volutes 19a, 19b from an exhaust manifold (also referred to as an outlet manifold) of the engine (not shown) to which the turbocharger is attached. The inlet volutes 19a, 19b are divided by a divider wall 20 which extends radially inwardly from the radially outer wall 21 of the turbine housing 15, to a tip 22. The exhaust gas exits the inlet volute 19a through a gap between the tip 22 of the divider wall 20 and a first shroud surface 23 of the turbine 11. The exhaust gas exits volute 19b through a gap between the tip 22 of the divider wall 20 and a second shroud surface 24 of the turbine 11. Thus, the exhaust gas passes from the exhaust gas inlet volutes 19a, 19b to the exhaust gas outlet 10 via a turbine wheel 14, which is rotated by the exhaust gas. In variants, the second shroud 24 surface may be provided as a surface of the bearing housing or some other component, instead of being a surface of the turbine housing 15.
The turbine wheel 14 in turn rotates the compressor wheel 16 which thereby draws intake air through the compressor inlet 31 and delivers boost air to an inlet manifold of the engine via the diffuser 39, the volute 32 and then the outlet 33.
It is known that through a combustion cycle, the flow entering the exhaust gas inlet volutes 19a, 19b varies. We use the following notation. A quantity with a superscript dot (e.g. {dot over (p)}) denotes a variable which takes a respective value at each of a number of respective angular positions of the turbine wheel (e.g. a respective value at angular positions spaced apart by, for example, one degree), also referred to as the crank angle. Such a quantity must be measured (or calculated) at high frequency. By contrast, a quantity with a superscript dash (e.g.
where {dot over (m)}ex,1 is the mass which flows along volute 19a per second, and {dot over (m)}ex,2 is the mass which flows along volute 19b per second. An MFR of 0.5 means that both volutes are contributing equally to the mass flow.
However, a situation in which the pressures in the volutes 19a, 19b are not equal is referred to as “partial admission”.
We use the following abbreviations:
Thus, the pressure at the gas inlet 31 is {dot over (P)}3,1, while the pressure at the gas inlet 32 is P3,2.
The expansion ratios (ER) are defined as follows:
where
The (instantaneous) scroll pressure ratio (S{dot over (P)}R) is defined as the ratio of the turbine inlet pressures, which can be calculated either from partial admission maps or on-engine data by high-speed data acquisition (HSDA).
Typically, diagrams of this parameter are plotted using the logarithmic parameter log10 (S{dot over (P)}R), in order for the scale to be symmetric between the two volutes.
The (instantaneous) turbine inlet expansion ratio is defined as:
It is known to plot the respective values {dot over (P)}ι against S{dot over (P)}R over a cycle, giving a diagram such as that shown in
D. Luckmann, et al., “Advanced Measurement and Modeling Methods for Turbochargers”, MTZ 0612016 Volume 77 includes a plot of the efficiency of a conventional twin-entry turbine for various values of values {dot over (P)}ι against S{dot over (P)}R. The efficiency is not symmetrical with respect to log10 (S{dot over (P)}R), but instead is typically higher when log10 (S{dot over (P)}R) is negative (i.e. the pressure is greater in the BH gas inlet volute than in the TO gas inlet volute) than when it is positive.
Turing to
In step 101 of the method 100, the isentropic turbine power bias of the real engine is identified. Step 101 is performed by measuring {dot over (P)}3,1 and {dot over (P)}3,2 at high frequency (typically 12 to 120 kHz depending on engine speed and resolution required), and converting this time-series of data points into desired quantities as follows using mean (i.e. time-averaged over the engine cycle) quantities which are available from a supplier of the engine and/or are measured at low frequency, such as
In step 102, a design point is obtained as follows.
The respective turbine isentropic powers for the gas inlets 19a and 19b, for any given crank angle, are defined as:
where cp is the specific heat capacity of the exhaust gas. Eqns. (4) and (5) indicate the total available power which the turbine could in principle generate using the exhaust of the real engine, rather than what the turbine actually recovers, which is a function of the design of the turbine.
and are calculated straightforwardly using Eqn. (1) and the time-series of data points. Note that in a variant of the embodiment, if high frequency data {dot over (P)}4 is available, Eqn. (1) may be calculated by using {dot over (P)}4 instead of the mean value
Instantaneous measurements of {dot over (T)}3,1 and {dot over (P)}3,2 may be hard to obtain at high frequency, but from the ideal gas law we obtain, for an ideal gas:
where γ is the polytropic index of the gas. In a real gas, we would expect the polytropic index to be greater than γ. We have found, from a one-dimensional engine numerical simulation illustrated in
is well obeyed for a value of n of 1.5. In
The instantaneous mass flow rate {dot over (m)}ex,1 and {dot over (m)}ex,2 are also difficult to measure exactly, but they can be expressed as:
Here A1 and A2 are the respective critical areas of the gas inlet volutes. That is, CAhousing=A1+A2. Cd is a parameter called the “discharge coefficient”.
Thus, by approximating γ as above by n=1.5, and using values for Cd and R given in standard tables, {dot over (m)}ex,1 and {dot over (m)}ex,2 can be calculated for any crank angle using Eqn. (8).
Note that Cd may not be not known in advance. If not, it can be worked out by an iterative process. First, we assume a value for Cd, work out what value this would imply for {dot over (m)}ex,1, then find the mean of {dot over (m)}ex,1 over time, and compare it to the known value of
and then uses
The accuracy of this approach is demonstrated in
Inserting the calculated values of , , {dot over (T)}3,1, {dot over (T)}3,2, {dot over (m)}ex,1 and {dot over (m)}ex,2 into Eqn. (4) and (5), gives the values of {dot over (W)}t,1,is and {dot over (W)}t,2,is illustrated by lines 221 and 222 in
Respective candidate design points for each of the volutes 19a, 19b are calculated as follows. For each of the volutes, the sub-steps illustrated in
In a first sub-step 301, the data points for the real engine illustrated in
In sub-step 302, for each of the filtered (i.e. remaining) data points, the product is calculated of the respective instantaneous isentropic power for the volute (i.e. {dot over (W)}t,1,is or {dot over (W)}t,2,is respectively) and the respective scroll pressure ratio S{dot over (P)}R.
In sub-step 303, an isentropic power weighted mean SPR is calculated, by:
where in each case the sum is over the filtered data points, and “Isentropic power” refers to {dot over (W)}t,1,is or {dot over (W)}t,2,is respectively.
In sub-step 304, for each of the filtered data points, the product is calculated of the respective instantaneous isentropic power for the volute (i.e. {dot over (W)}t,1,is or {dot over (W)}t,2,is respectively) and the respective turbine expansion ratio {dot over (P)}ι.
In sub-step 305, the isentropic power weighted mean Pi is calculated, by:
where in each case the sum is over the filtered data points, and “Isentropic power” refers to {dot over (W)}t,1,is or {dot over (W)}t,2,is is respectively.
For each gas inlet volute 19a, 19b, the candidate design point is the isentropic power weighted mean Pi and the isentropic power weighted mean SPR.
There is then a process of selecting one of the two candidate design points as the design point to be used in the design process of steps 104-107. One or more criteria can be used for this, such as the candidate design point for which the isentropic power is highest. Alternatively, the embodiment may determine which of the two candidate design points the locus of
In step 103 a determination is made of whether the design point (i.e. the selected candidate design point) exhibits one or more criteria indicating that equal flow predominates. For example, the design point may have an isentropic power weighted mean SPR with an absolute value less than a predetermined threshold. If the one or more criteria are met, then the turbine may be designed by a conventional method which does not take into account the design point obtained in step 102. This possibility is not illustrated in
However, if the one or more criteria are not met, the turbine is designed by the process of steps 104-107 using the design point to select parameters of the turbine.
Step 104 is a first design step, based on the design points. This step may be performed using a known optimisation process which is familiar to turbine designers, to optimise the design of the wheel and/or housing subject to the design point. The shape of both the gas inlet volutes is modified during the optimization process. The optimization process is carried out multiple times, each time using a different respective value of the ratio (CAhousing/CAwheel) (i.e. a different respective reaction value), thereby generating multiple respective turbine designs.
The curve for a relatively low value of reaction is shown as line 261, and the curve for a relatively high value is shown as line 262. For comparison,
In step 105, the distribution of turbine efficiency for each of the turbine designs obtained in step 104, is calculated. From the result, an optimal reaction value for a turbine for the real engine is selected.
In step 106, using the reaction selected in step 105, the critical areas of the wheel and housing are calculated. This is done using the selected reaction and another assumed constraint, such as a total mass flow associated with the real internal combustion engine (e.g. specified by a manufacturer of the engine).
In step 107, an optional further design step is carried out using the design point and the critical areas obtained in step 106, to obtain a final turbine design. This optimization step can be carried out using the same optimisation process as used in step 104. Note that if the optimal reaction value selected at step 105 is one of the reaction values used in step 104, then step 107 can be omitted. That is, the corresponding one of the candidate turbine designs produced in step 104 can be used as the final turbine design.
In step 108, a turbo-charger including a turbine according to the final turbine design is produced (manufactured). This can be done using a conventional manufacturing process, such as casting.
The explanation of the embodiment above includes an explanation of how representative operating points 241, 242 are obtained in the embodiment. Brinkert et al, “Konsequente Weiterentwicklung von Stoss-/Stauaufladung am 4-Zylinder Ottomotor”, Dresden Supercharging Conference 2014 also describes a process for obtaining average operating points from pulsatile turbine data. However, this method does not employ isentropic power weighted points, does not involve a filtration of the design points, and is believed to be inferior. Nor does this reference disclose a use for the average operating points.
Although only a single embodiment of the disclosure has been described in detail, many variations are possible within the scope of the disclosure defined by the appended claims. For example, in a variant the embodiment, S{dot over (P)}R may instead be defined as the reciprocal of the right side of Eqn. (2).
In a further variant, rather than using the isentropic powers associated with the respective data points to obtain isentropic-power weighted means, it would alternatively be possible to use the isentropic power in other ways, e.g. to filter out data points for which the isentropic power is less than a threshold (e.g. a certain proportion of its maximum value), and to obtain the design points using the remaining data points.
Furthermore, in other variants of the embodiment, the method of
Furthermore, embodiments are possible in which the designed turbine is not a twin-type (in which both gas input volutes 19a, 19b enter the wheel chamber at the same rotational position about the axis 2 of the turbine wheel), but instead are of a type in which the volutes open into the wheel chamber at angular positions which are spaced from other by a 180 rotation about the rotational axis 2 of the wheel.
Number | Date | Country | Kind |
---|---|---|---|
1719581 | Nov 2017 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2018/053365 | 11/21/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/102190 | 5/31/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8579603 | Oklejas | Nov 2013 | B2 |
9347367 | Nasir | May 2016 | B2 |
9617931 | de Cesare | Apr 2017 | B2 |
10451087 | Richards | Oct 2019 | B2 |
20060013707 | Oklejas | Jan 2006 | A1 |
20090090106 | Muller | Apr 2009 | A1 |
20150013332 | Nasir | Jan 2015 | A1 |
20150337747 | de Cesare | Nov 2015 | A1 |
20160003196 | Hang et al. | Jan 2016 | A1 |
20160195109 | Richards | Jul 2016 | A1 |
20200300160 | Hughes | Sep 2020 | A1 |
20200380180 | Hasler et al. | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
105275853 | Jan 2016 | CN |
102015219459 | Feb 2017 | DE |
2930337 | Oct 2015 | EP |
2017053184 | Feb 2018 | GB |
101679189 | Nov 2016 | KR |
2018073608 | Apr 2018 | WO |
WO-2018073608 | Apr 2018 | WO |
Entry |
---|
Search Report issued by the United Kingdom Intellectual Property Office, dated Apr. 27, 2018, for related application GB1719581.9; 5 pages. |
International Search Report and Written Opinion issued by the European Patent Office, dated Feb. 1, 2019 for International Application No. PCT/GB2018/053365; 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/GB2018/053365, dated Jun. 4, 2020, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200380180 A1 | Dec 2020 | US |