Method of destroying tissue cells by electroporation

Information

  • Patent Grant
  • 10335224
  • Patent Number
    10,335,224
  • Date Filed
    Friday, September 11, 2015
    9 years ago
  • Date Issued
    Tuesday, July 2, 2019
    5 years ago
Abstract
An apparatus and method for performing non-invasive treatment of the human face and body by electroporation in lieu of cosmetic surgery is provided. The apparatus comprises a high voltage pulse generator and an applicator having two or more electrodes in close mechanical and electrical contact with the patient's skin for applying the pulses to the patient's skin. The applicator may consist of two pieces with one electrode having a sharp tip and another having a flat surface. High voltage pulses delivered to the electrodes create at the tip of the sharp electrode an electric field high enough to cause death of relatively large subcutaneous fat cells by electroporation. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.
Description
FIELD OF THE INVENTION

The present invention relates generally to electroporation of tissues and, specifically, to apparatus and methods for reducing subcutaneous fat deposits, performing virtual face lifts, and body sculpturing.


BACKGROUND OF THE INVENTION

“Cosmetic surgery” is a phrase used to describe broadly surgical changes made to a human body with the usual, though not always, justification of enhancing appearance. This area of medical practice constitutes an ever-growing industry around the world. Obviously, where such a procedure fails to deliver an enhanced appearance, the procedure fails to meet the desired goal. One of the reasons that the majority of current procedures fail to deliver upon their promise is that, for the most part, current procedures are invasive, requiring incisions and suturing, and can have serious and unpleasant side effects, including but not limited to scarring, infection, and loss of sensation.


One of the more common forms of cosmetic surgery is the “face-lift.” A face-lift is intended to enhance facial appearance by removing excess facial skin and tightening the remaining skin, thus removing wrinkles. A face-lift is traditionally performed by cutting and removing portions of the skin and underlying tissues on the face and neck. Two incisions are made around the ears and the skin on the face and neck is separated from the subcutaneous tissues. The skin is stretched, excess tissue and skin are removed by cutting with a scissors or scalpel, and the skin is pulled back and sutured around the ears. The tissue tightening occurs after healing of the incisions because less skin covers the same area of the face and neck and also because of the scars formed on the injured areas are contracting during the healing process.


Traditional face-lift procedures are not without potential drawbacks and side effects. One drawback of traditional cosmetic surgery is related to the use of scalpel and scissors. The use of these devices sometimes leads to significant bleeding, nerve damage, possible infection and/or lack of blood supply to some areas on the skin after operation. Discoloration of the skin, alopecia (boldness), is another possible side effect of the standard cosmetic surgery. The overall quality of the results of the surgery is also sometimes disappointing to the patients because of possible over-corrections, leading to undesired changes in the facial expression. Additionally, face-lift procedures require a long recovery period before swelling and bruising subside.


The use of lasers to improve the appearance of the skin has been also developed. Traditional laser resurfacing involves application of laser radiation to the external layer of the skin—the epidermis. Destruction of the epidermis leads to rejuvenation of the epidermis layer. The drawback of the laser resurfacing procedure is possible discoloration of the skin (red face) that can be permanent.


Another laser procedure involves using optical fibers for irradiation of the subcutaneous tissues, such as disclosed in U.S. Pat. No. Re36,903. This procedure is invasive and requires multiple surgical incisions for introduction of the optical fibers under the skin. The fibers deliver pulsed optical radiation that destroys the subcutaneous tissues as the tip of the fiber moves along predetermined lines on the face or neck. Debulking the subcutaneous fat and limited injury to the dermis along the multiple lines of the laser treatment results in contraction of the skin during the healing process, ultimately providing the face lift. The drawback of the method is its high price and possibility of infection.


Electrosurgical devices and methods utilizing high frequency electrical energy to treat a patient's skin, including resurfacing procedures and removal of pigmentation, scars, tattoos and hairs have been developed lately, such as disclosed in U.S. Pat. No. 6,264,652. The principle drawback of this technology is collateral damage to the surrounding and underlying tissues, which can lead to forming scars and skin discoloration.


Other forms of cosmetic surgery are also known. One example is liposuction, which is an invasive procedure that involves inserting a suction device under the skin and removing fat tissues. As with other invasive surgical procedures, there is always a risk of infection. In addition, because of the invasive nature of the procedure, physicians usually try to minimize the number of times the procedure must be performed and thus will remove as much fat tissue as possible during each procedure. Unfortunately, this procedure has resulted in patient deaths when too much tissue was removed. Assuming successful removal of excess fat tissue, further invasive surgery may be required to accomplish desired skin tightening.


The prior art to date, then, does not meet the desired goal of performing cosmetic surgery in a non-invasive manner while causing minimal or no scarring of the exterior surface of the skin and at the same time resulting in the skin tightening.


OBJECTS OF THE INVENTION

It is an object of the present invention to provide an apparatus and method which uses electroporation to cause necrosis of cells in the subcutaneous layer of fat and the interior side of the dermis, resulting in the contraction and tightening of the skin. In particular, it is an object of the present invention to provide method and apparatus for performing face and neck lift and others similar procedures on the face in a non-invasive manner.


Another object of the present invention is to provide an apparatus and method for significant bulk reduction of the number of subcutaneous fat cells in the body, resulting in a significant weight loss.


Still another object of the present invention is to provide non-invasive apparatus and method for cosmetic and weight loss procedures.


Still another object of the invention is to provide an apparatus and method for selective removal of fat in different areas to enable changing the shape of the body, or body sculpturing.


SUMMARY OF THE DISCLOSURE

The present invention provides an apparatus and method for creation of a controlled injury or alteration to the subcutaneous tissue and/or underside of the dermis, with the following healing process leading to the contraction of the skin; and/or to the controlled destruction of fat cells, leading to their permanent loss. In the present invention the damage to the subcutaneous tissue, underside of the dermis, and/or fat cells is caused by electroporation.


An apparatus in accord with the current invention comprises a voltage pulse generator, an applicator with two or multiple electrodes of different shapes and sizes and a cable connecting the electrodes to the pulse generator. The pulse generator produces set of high voltage pulses of predetermined amplitude, duration and number to cause necrosis in a treated area of subcutaneous tissues.


A method in accord with the current invention comprises application of electrical pulses to the electrodes positioned on the skin in a treatment area. For a face lift, flat and needle-like electrodes are used, the last one providing a strong and non-uniform electric field predominantly normal to the surface of the skin. The amplitude, duration and number of applied pulses are selected to cause necrosis of fat cells to a predetermined depth in the subcutaneous tissue and a limited necrosis of the underside of the dermis. A number of lines of predetermined pattern are exposed to electroporation. Later, during the healing process the skin on the treated area contracts. The injury to the tissues made by electroporation is very gentle and selective; it does not produce scars on the epidermis, the most external layer of the skin.


A method of weight loss and body sculpturing in accord with the present invention comprises application of electroporation pulses to a significant volume of fat tissue. In this case both electrodes are flat and attached to the arms of a forceps. The electrodes are moveable towards and away from each other and are capable of pinching skin with underlying subcutaneous fat and electroporating it. Application of flat, parallel electrodes produces a electric field is uniform in the tissue that effects only fat cells.


For weight loss a voltage generator coupled to multiple needle type electrodes may be used.


In another embodiment of the present invention, an electroporation apparatus for bulk weight loss may comprise apparatus for production of a pulsed magnetic field and its application to the area to be treated. In this embodiment of the present invention, a curl electric field for the electroporation of subcutaneous fat is created by the pulsed magnetic field. Curl electric field causes eddy currents in the tissue and at an appropriate amplitude above kills the fat cells.





BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the present invention will be appreciated from the following specification when read in conjunction with the accompanying drawings wherein:



FIG. 1 is a schematic illustration of an apparatus with an applicator having an array of symmetric electrodes shown during electroporation treatment.



FIG. 2 is a schematic illustration of an apparatus with an applicator having one flat electrode and one a needle like electrode shown during electroporation treatment.



FIGS. 3A, 3B, and 3C are schematic illustrations of different applicators of the present apparatus wherein FIG. 3A illustrates an applicator with two needle like electrodes; FIG. 3B illustrates an applicator having an array of needle like electrodes; and FIG. 3C illustrates applicator having one flat electrode and one needle like electrode.



FIG. 4a is a perspective view of a forceps type applicator with two flat electrodes in an open position.



FIG. 4b is a schematic illustration of the forceps flat electrodes in closed position shown during electroporation treatment.



FIG. 5 is a schematic illustration of an apparatus for electroporation treatment for weight loss with electrodeless applicator.



FIG. 6 is a frontal view of a human head with schematically shown electroporation treatment for removal of the forehead wrinkles and glabellar frown lines.



FIG. 7 is a lateral view of a human head with schematically shown electroporation treatment for a neck lift.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The term “electroporation” (EP) refers to the use of electric field pulses to induce microscopic pores in the cell membranes called “electropores”. Depending on the parameters of the electric pulse, an electroporated cell can survive the pulse or die. The cause of death of an electroporated cell is believed to be a chemical imbalance, resulting from the fluid communication with the extra cellular environment through the pores. The number and size of electropores created depends on the product of the amplitude E and duration t of the pulse. Below a certain limit, no electropores are induced at all. This limit is different for different cells and depends, principally, on their sizes. The smaller the cell, the higher the product of the amplitude and duration must be to induce pores. Above the lower limit the number of pores and their effective diameter increases with the product Et. Until an upper limit is achieved, cells survive pulsing and restore their viability thereafter. Above the upper limit the pores diameters and number become too large for a cell to survive. It cannot repair itself by any spontaneous or biological process and dies. As noted, a cell's vulnerability to an electric field depends on its size: the larger the cell, the lower the electric field required for killing it. If cells of different sizes are exposed to the same electric field, the largest cells are the first to die. Thus, application of an electric field having preselected parameters can result in selectively killing particular cells.


A desirable target for cell death using the present invention is adipose tissue, commonly called fat. Adipose cells do not proliferate in adults. Their number is fixed at a very early age. Adipose cells can change their size by accumulating or loosing lipids and be responsible for significant, up to two-fold increase in the body weight. Cutting down in the number of large adipose cells results in a significant weight loss in the fat tissue and the whole body. If fat cells are destroyed by any means, their content is metabolized by the body, i.e., scavenged by macrophages, and their number is not restored. The loss of adipose cells, then, is permanent.


Adipose tissue consists of lipid-filled cells ranging in size from 25 to 200 microns. An applied electric field affects the various sized cells differently as previously mentioned. For example, if an electric field, equal to the upper electroporation limit for 100 micron cells (about 10-20 V/mm) is applied to a fat tissue, all cells with sizes from 100 micron and above, will die. The dead cells will be disposed later by macrophages, and the body will metabolize the lipids stored in these cells. Small adipose cells, for which the applied electric field is below the upper electroporation limit, survive any number of electric pulses without any morphological or functional damage.


Pulsed electric fields can be applied to fat deposits inside the body by different methods. In a first method two electrodes are applied to the skin over the fat tissue at some distance from each other and electric microsecond pulses are applied by the electrodes to the tissue. The pulse electric field, created by these two electrodes is non-uniform; it is higher near the electrodes and decreases with the depth. The electric field at the fat deposits should reach several tens of volts per mm to be able to kill adipose cells of large diameters. At the skin level the non-uniform electric field will be significantly higher. To be harmless for the skin cells, the field should not exceed the value of the upper electroporation limit for skin cells. The cells in the epidermic basal layer of the skin, which is responsible for the mitotic division and continuous rejuvenation of the skin, have dimensions of about 10 microns or less (6-10 microns). This is 10 or more times less than that of the targeted adipose cells, which is about 100 microns and larger as noted earlier. The upper electroporation limit for the skin cells in accordance with their size is therefore about 10 times higher than that of adipose cells of 100 microns diameter.


A second method of applying an electric field to the subcutaneous adipose tissue or the skin is by applying short magnetic pulses preferentially normally to the skin. The transient magnetic field creates curl electric field in the skin and the underlying tissues. This curl electric field causes eddy currents in the cells. If the magnitude of this transient electric field reaches the upper electroporation limit for the cells, it will kill them exactly as does the potential electric field created by charged electrodes.


The depth of penetration of the electric field in the skin and the fat tissue under it depends on the distance between the electrodes, their shape and size. The larger the size of electrodes and the distance between them, the deeper the penetration will be. If the electrodes are small enough and the distance between them is short, the electric field penetrates only into the skin and does not reach the underlying tissues.


If pulsed electric field penetrates only in the skin and its amplitude is high enough to kill skin cells (several hundred volts per mm), electroporation can be used for selective cell killing. The dead cells are removed by macrophages and the skin shrinks during the healing process. This skin shrinkage can be planned in advance both in terms of directions and degree. By selecting a number, direction and length of the electroporation “cuts” the operator can control the future shrinks. This method can be used for correcting wrinkles and skin pouches on the face, the neck, and on the upper and lower eye lids.


The skin electroporation treatment together with fat reducing electroporation treatment can be used as alternative to cosmetic surgery for the face lift, the upper and lower eye lid surgery, the forehead lift and body sculpturing practically in all parts of the human body.


An electroporation treatment presents several notable advantages over present cosmetic surgery procedures. First, an electroporation treatment is sterile. The most upper layer of the skin, comprising horny dead cells, is very resistant to any damage from an electroporation treatment; it protects the lower layers of the skin from infection.


The electroporation virtual facelift and body sculpturing can be performed in step by step fashion in a multi-session process. This method allows taking into account actual results of previous sessions and directs process of reshaping of the face or body to desired objectives. The treatment can be performed by a medical professional or by the patient him/herself.


With the foregoing generalized explanation of the present invention, apparatus in accord therewith may be described. Referring to FIG. 1, an electroporation system 10 in accord with the invention is schematically shown with a cross section of a piece of skin 12 with subcutaneous tissue 14 during electroporation treatment. Electroporation system 10 includes a power supply 16 for generating high voltage pulses that are sent though an appropriate electrical connector 18 to an applicator 20. Applicator 20 includes electrodes 22 and 24 that engage skin 12 and will be appropriately insulated to ensure safe handling. Additionally, the applicator will preferably be configured so as to ensure ease of handling, and thus could take many forms. The electrodes 22 and 24 may take the form of needle electrodes. The electric field created between the electrodes 22 and 24 is depicted with field lines 26 and is applied to the skin 12 and subcutaneous tissue or fat 14. In the areas close to the electrodes the electric field has an amplitude exceeding the upper electroporation limit, thus causing death to fat cells. This area of fat cell necrosis is indicated at 28.


In FIG. 2 an alternative embodiment 40 of the present invention is shown with an applicator having two members: a needle-like electrode 42 and a flat electrode 44. If desired, the system 40 may include an insulating handle 46 configured to be held by an operator to facilitate the manual manipulation of the electrode 42. The high voltage pulse power supply 16 is connected to the applicator electrodes 42 and 44 by appropriate electrical connectors 48. Both electrodes 42 and 44 are engaged with skin 12. Electric field lines 26 depict an electric field between the electrodes 42 and 44. The area 28, where the electric field is the highest, is the treatment area where the amplitude of the electric field exceeds the upper electroporation limit and causes cell death.


In FIGS. 3A-3C, different versions of applicators are schematically shown. FIG. 3A illustrates an applicator 60 with two needle-like electrodes 64. FIG. 3B shows an applicator 64 with an array of needle-like electrodes 64. FIG. 3C depicts an applicator 66 like that shown in FIG. 2 and comprising a needle-like electrode 42 and a flat electrode such as electrode 44.



FIGS. 4a and 4b illustrate another embodiment 80 of an electroporation system in accord with the present invention useful for bulk fat reduction. System 80 includes an applicator 82 comprising a body or support member 84 supporting calipers or forceps apparatus 86. The calipers apparatus 86 includes a pair of pivotable arms 88 mounted at the distal end thereof. The arms 88 support a pair of electrodes 90 and 92. Applicator 82 may include a pistol grip 94 mounted on a proximal end of the elongated tubular support member 84 for enabling ease of manipulation of same. The electrodes 90 and 92 are mounted on a moveable linkage so that the electrodes are moveable toward and away from each other. A power supply 16 and electrical connectors 48 are also included within a system 80 to provide pulse electrical power to the electrodes 90 and 92.



FIG. 4b schematically illustrates an electroporation treatment utilizing system 80. As shown in the figure, a “fold” of skin 12 with underlying subcutaneous tissue—fat—14 is compressed between arms 88 and thus electrodes 90 and 92. A uniform electric field 26 is applied to the skin 12 and subcutaneous tissue 14 clamped between electrodes. Only the large fat cells are killed in this field configuration because the cells of the dermis are spared death because of their small size.



FIG. 5 schematically illustrates another embodiment of the present invention including an electrodeless system 100. System 100 includes a high pulse current power supply 16 and an appropriate electrical connector 18 extending to an applicator 102. Applicator 102 comprises a housing 104 and an electromagnetic coil 106 disposed therein. Coil 106 generates a magnetic field 108 that is applied to the skin 12 and the subcutaneous tissues 14. The pulsed magnetic field 108 in the tissue exists only about 10 microseconds. The energy of rapidly changing magnetic field transforms into a curt electric field 110, which creates eddy currents in tissue and provides the electroporation treatment for killing the fat cells in the tissue 14. Preferably, the curl electric field generated in the subcutaneous tissue is in the range of 30 to 50 Volt/mm, and the duration of the pulses is 5 to 20 microseconds.



FIG. 6 schematically illustrates a frontal view of human head 120 with glabellar frown lines 122 and forehead wrinkles 124. An embodiment of the present invention Such as system 40 is shown in application. Electrode 44 is shown applied to the forehead and the needle electrode 42 is moved over the skin where treatment is desired. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. An exemplary line of treatment 126 is shown in the Figure. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.



FIG. 7 depicts a lateral view of a human head 130 during a neck lift electroporation procedure using an electroporation system in accord with the present invention such as system 40. The figure illustrates an exemplary line of electroporation treatment 132.


The present invention having thus been described, other modifications, alterations, or substitutions may now suggest themselves to those skilled in the art, all of which are within the spirit and scope of the present invention. It is therefore intended that the present invention be limited only by the scope of the attached claims below.

Claims
  • 1. A method of treating a living human body by destroying tissue cells, comprising: positioning one or more electrodes over skin cells of the living human body, the skin cells of the living human body overlying fat cells of the living human body, the one or more positioned electrodes defining a target area containing fat cells to be killed in the living human body; andtreating the living human body by applying electrical pulses through the one or more positioned electrodes in an amount above an upper limit of electroporation to irreversibly open pores in membranes of the fat cells in the target area, thereby killing the fat cells in the target area.
  • 2. The method of claim 1, wherein the step of treating includes applying electrical pulses through the skin cells in an amount below an upper limit of electroporation for the skin cells, thereby selectively killing the fat cells in the target area.
  • 3. The method according to claim 1, wherein the step of positioning one or more electrodes includes positioning at least one flat electrode over the surface of the skin cells.
  • 4. The method according to claim 1, wherein the step of positioning one or more electrodes includes engaging at least one flat electrode over the surface of the skin cells and then positioning at least one needle-like electrode near the fat cells.
  • 5. The method according to claim 1, wherein the step of positioning the one or more electrodes includes positioning an array of electrodes over the skin cells of the living human body defining the target area.
  • 6. The method according to claim 1, wherein the step of positioning includes positioning an array of fixedly spaced apart electrodes near the target area.
  • 7. The method according to claim 1, wherein the step of applying includes applying electrical pulses each having a duration in a range of 10 microseconds and 100 milliseconds.
  • 8. The method according to claim 1, wherein the step of applying includes applying electrical pulses whose amplitude is in a range of 20 Volt/mm and 2000 Volt/mm and whose duration for each pulse is in a range of 10 microseconds and 100 milliseconds.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. application Ser. No. 14/176,889, filed Feb. 10, 2014, now U.S. Pat. No. 8,906,006, which is a continuation of U.S. application Ser. No. 13/556,455, filed Jul. 24, 2012, now U.S. Pat. No. 8,647,338, which is a continuation of U.S. application Ser. No. 12/501,225, filed Jul. 10, 2009, now U.S. Pat. No. 8,251,986, which is a continuation of U.S. application Ser. No. 11/106,835, now U.S. Pat. No. 7,938,824, filed Apr. 15, 2005, which is a continuation of U.S. application Ser. No. 09/931,672, filed Aug. 17, 2001, now U.S. Pat. No. 6,892,099, which claims priority to U.S. provisional application Ser. No. 60/267,106, filed Feb. 8, 2001 and to U.S. provisional application Ser. No. 60/225,775, filed Aug. 17, 2000, all of which are incorporated herein by reference.

US Referenced Citations (206)
Number Name Date Kind
1653819 Northcott et al. Dec 1927 A
3730238 Butler May 1973 A
3746004 Jankelson Jul 1973 A
3871359 Pacela Mar 1975 A
4016886 Doss et al. Apr 1977 A
4037341 Odle et al. Jul 1977 A
4216860 Heimann Aug 1980 A
4226246 Fragnet Oct 1980 A
4262672 Kief Apr 1981 A
4267047 Henne et al. May 1981 A
4278092 Borsanyi et al. Jul 1981 A
4299217 Sagae et al. Nov 1981 A
4311148 Courtney et al. Jan 1982 A
4336881 Babb et al. Jun 1982 A
4344436 Kubota Aug 1982 A
4392855 Oreopoulos et al. Jul 1983 A
4406827 Carim Sep 1983 A
4407943 Cole et al. Oct 1983 A
4416276 Newton et al. Nov 1983 A
4447235 Clarke May 1984 A
4469098 Davi Sep 1984 A
4489535 Veltman Dec 1984 A
4512765 Muto Apr 1985 A
4580572 Granek et al. Apr 1986 A
4636199 Victor Jan 1987 A
4672969 Dew Jun 1987 A
4676258 Inokuchi et al. Jun 1987 A
4676782 Yamamoto et al. Jun 1987 A
4687471 Twardowski et al. Aug 1987 A
4716896 Ackerman Jan 1988 A
4723549 Wholey et al. Feb 1988 A
D294519 Hardy, Jr. Mar 1988 S
4756838 Veltman Jul 1988 A
4772269 Twardowski et al. Sep 1988 A
4798585 Inoue et al. Jan 1989 A
4810963 Blake-Coleman et al. Mar 1989 A
4813929 Semrad Mar 1989 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4822470 Chang Apr 1989 A
4836204 Landymore et al. Jun 1989 A
4840172 Augustine et al. Jun 1989 A
4863426 Ferragamo et al. Sep 1989 A
4885003 Hillstead Dec 1989 A
4886496 Conoscenti et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4889634 El-Rashidy Dec 1989 A
4907601 Frick Mar 1990 A
4919148 Muccio Apr 1990 A
4920978 Colvin May 1990 A
4921484 Hillstead May 1990 A
4946793 Marshall, III Aug 1990 A
4976709 Sand Dec 1990 A
4981477 Schon et al. Jan 1991 A
4986810 Semrad Jan 1991 A
4987895 Heimlich Jan 1991 A
5019034 Weaver et al. May 1991 A
5031775 Kane Jul 1991 A
5052391 Silberstone et al. Oct 1991 A
5053013 Ensminger et al. Oct 1991 A
5058605 Slovak Oct 1991 A
5071558 Itoh Dec 1991 A
5098843 Calvin Mar 1992 A
5122137 Lennox Jun 1992 A
5134070 Casnig Jul 1992 A
5137517 Loney et al. Aug 1992 A
5141499 Zappacosta Aug 1992 A
D329496 Wotton Sep 1992 S
5156597 Verreet et al. Oct 1992 A
5173158 Schmukler Dec 1992 A
5186715 Phillips et al. Feb 1993 A
5186800 Dower Feb 1993 A
5188592 Hakki Feb 1993 A
5190541 Abele et al. Mar 1993 A
5192312 Orton Mar 1993 A
5193537 Freeman Mar 1993 A
5209723 Twardowski et al. May 1993 A
5215530 Hogan Jun 1993 A
5222997 Montgomery Jun 1993 A
5224933 Bromander Jul 1993 A
5227730 King et al. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5273525 Hofmann Dec 1993 A
D343687 Houghton et al. Jan 1994 S
5277201 Stern Jan 1994 A
5279564 Taylor Jan 1994 A
5281213 Milder et al. Jan 1994 A
5283194 Schmukler Feb 1994 A
5290263 Wigness et al. Mar 1994 A
5308325 Quinn et al. May 1994 A
5308338 Helfrich May 1994 A
5318543 Ross et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5328451 Davis et al. Jul 1994 A
5334167 Cocanower Aug 1994 A
D351661 Fischer Oct 1994 S
5383917 Desai et al. Jan 1995 A
5389069 Weaver Feb 1995 A
5391158 Peters Feb 1995 A
5403311 Abele et al. Apr 1995 A
5405320 Twardowski et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5425752 Vu'Nguyen Jun 1995 A
5439440 Hofmann Aug 1995 A
5439444 Andersen et al. Aug 1995 A
5458597 Edwards et al. Oct 1995 A
5458625 Kendall Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5484400 Edwards et al. Jan 1996 A
5484401 Rodriguez et al. Jan 1996 A
5533999 Hood et al. Jul 1996 A
5536240 Edwards et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540737 Fenn Jul 1996 A
5546940 Panescu et al. Aug 1996 A
5562720 Stern et al. Oct 1996 A
5575811 Reid et al. Nov 1996 A
D376652 Hunt et al. Dec 1996 S
5582588 Sakurai et al. Dec 1996 A
5586982 Abela Dec 1996 A
5588424 Insler et al. Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5599294 Edwards et al. Feb 1997 A
5599311 Raulerson Feb 1997 A
5616126 Malekmehr et al. Apr 1997 A
5620479 Diederich Apr 1997 A
5626146 Barber et al. May 1997 A
5630426 Eggers et al. May 1997 A
D380272 Partika et al. Jun 1997 S
5634899 Shapland et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5645855 Lorenz Jul 1997 A
5672173 Gough et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5674267 Mir et al. Oct 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5690620 Knott Nov 1997 A
5697905 d'Ambrosio Dec 1997 A
5700252 Klingenstein Dec 1997 A
5702359 Hofmann et al. Dec 1997 A
5707332 Weinberger Jan 1998 A
5718246 Vona Feb 1998 A
5720921 Meserol Feb 1998 A
5728143 Gough et al. Mar 1998 A
5735847 Gough et al. Apr 1998 A
5752939 Makoto May 1998 A
5778894 Dorogi et al. Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782882 Lerman et al. Jul 1998 A
5800378 Edwards et al. Sep 1998 A
5800484 Gough et al. Sep 1998 A
5807272 Kun et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5810762 Hofmann Sep 1998 A
5810804 Gough et al. Sep 1998 A
5830184 Basta Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5843026 Edwards et al. Dec 1998 A
5843182 Goldstein Dec 1998 A
5863290 Gough et al. Jan 1999 A
5865787 Shapland et al. Feb 1999 A
5866756 Giros et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5873849 Bernard Feb 1999 A
5904648 Arndt et al. May 1999 A
5913855 Gough et al. Jun 1999 A
5919142 Boone et al. Jul 1999 A
5919191 Lennox et al. Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5944710 Dev et al. Aug 1999 A
5947284 Foster Sep 1999 A
5947889 Hehrlein Sep 1999 A
5954745 Gertler et al. Sep 1999 A
5957919 Laufer Sep 1999 A
5968006 Hofmann Oct 1999 A
5983131 Weaver et al. Nov 1999 A
5984896 Boyd Nov 1999 A
5991697 Nelson et al. Nov 1999 A
5999847 Elstrom Dec 1999 A
6004339 Wijay Dec 1999 A
6009347 Hofmann Dec 1999 A
6009877 Edwards Jan 2000 A
6010613 Walters et al. Jan 2000 A
6012885 Taylor et al. Jan 2000 A
6016452 Kasevich Jan 2000 A
6029090 Herbst Feb 2000 A
6041252 Walker et al. Mar 2000 A
6043066 Mangano et al. Mar 2000 A
6050994 Sherman Apr 2000 A
6055453 Hofmann et al. Apr 2000 A
6059780 Gough et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068121 McGlinch May 2000 A
6068650 Hofmann et al. May 2000 A
6071281 Burnside et al. Jun 2000 A
6074374 Fulton Jun 2000 A
6074389 Levine et al. Jun 2000 A
6085115 Weaver et al. Jul 2000 A
6090016 Kuo Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
6102885 Bass Aug 2000 A
20010044596 Jaafar Nov 2001 A1
Foreign Referenced Citations (16)
Number Date Country
2297846 Feb 1999 CA
4000893 Jul 1991 DE
0218275 Apr 1987 EP
0339501 Nov 1989 EP
0378132 Jul 1990 EP
0528891 Mar 1993 EP
0533511 Mar 1993 EP
0935482 Aug 1999 EP
WO9104014 Apr 1991 WO
WO9634571 Nov 1996 WO
WO9639531 Dec 1996 WO
WO9810745 Mar 1998 WO
WO9814238 Apr 1998 WO
WO9901076 Jan 1999 WO
WO9904710 Feb 1999 WO
WO0020554 Apr 2000 WO
Non-Patent Literature Citations (85)
Entry
Cowley, Lifestyle Good news for boomers, Newsweek, Dec. 30, 1996.
Sharma, et al, Poloxamer 188 decrease susceptibility of artificial lipid membranes to electroporation, Biophysical Journal, 1996, vol. 71, pp. 3229-3241.
Blad, Baldetorp, Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography, Physiol. Meas., 1996, 17, pp. A105-A115.
Ho, Mittal, Electroporation of cell membranes: a review, Critical Reviews in Biotechnology, 1996, 16(4), pp. 349-362.
Gilbert, et al, Rapid report novel electrode designs for electrochemotherapy, Biochimica et Biophysica Acta, Feb. 11, 1997, 1134, pp. 9-14.
Zlotta, et al, Possible mechanisms fo action of transsurethral needle ablation of the prostate on benign prostatic hyperplasia systems: A neurohistochemical study, Journal of Urology, Mar. 1997, vol. 157, No. 3, pp. 894-899.
Duraiswami et al, Solution of electrical impedance tomography equations using boundary element methods, Boundary Element Technology XII, Apr. 1997, pp. 227-237.
Naslund, Transurethral needle ablation of the prostate, Urology, Aug. 1997, vol. 50, No. 2, pp. 167-172.
Boone, et al, Review imaging with electricity: Report of the European concerted action on impedance tomography, Journal of Medical Engineering & Technology, Nov. 1997, vol. 21, No. 6, pp. 201-232.
Lurquin, Review: Gene transfer by electroporation, Molecular Biotechnology, 1997, vol. 7, pp. 5-31.
Hapala, Breaking the barrier: methods for reversible permeabilization of cellular membranes, Critical Reviews in Biotechnology, 1997, 17(2), pp. 105-122.
Duraiswami, et al, Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography, Chemical Engineering Science, 1997, vol. 52, No. 13, pp. 2185-2196.
Pinero, et al, Apoptotic and necrotic cell death are both induced by electroporation in HL60 human promyeloid leukaemia cells, Apoptosis, 1997, 2, pp. 330-336.
Miklavcic, et al, The importance of electric field distribution for effective in vivo electroporation of tissues, Biophysical Journal, May 1998, vol. 74, pp. 2152-2158.
Issa, et al, Recent Reports: The TUNA procedure for BPH: Review of the technology, Infections in Urology, Jul. 1998.
Lundqvist, et al, Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes, Proc. Natl. Acad. Sci. USA, Sep. 1998, Vo. 95, pp. 10356-10360.
Issa, et al, Specialty Surgery: The TUNA procedure for BPH: Basic procedure and clinical results, Infections in Urology, Sep. 1998.
Dev, et al, Sustained local delivery of heparin to the rabbit arterial wall with an electroporation catheter, Catheterization and Cardiovascular Diagnosis, 1998, 45, pp. 337-345.
Duraiswami, et al, Efficient 2D and3D electrical impedance tomography using dual reciprocity boundary element techniques, Engineering Analysis with Boundary Elements, 1998, 22, pp. 13-31.
Mir, et al, Effective treatment of cutaneous and subcutaneous malignant tumors by electrochemotherapy, 1998, British Journal of Cancer, 77 (12), pp. 2336-2342.
Sersa, et al, Tumor blood flow modifying effect of electrochemotherapy with Bleomycin, Anticancer Research, 1999, 19, pp. 4017-4022.
Thompson, et al, To determine whether the temperature of 2% lignocaine gel affects the initial discomfort which may be associated with its instillation into the male urethra, BJU International, 1999, 84, pp. 1035-1037.
Yang, et al, Dielectric properties of human luekocyte subpopulations determined by electrorotation as a cell separation criterion, Jun. 1999, vol. 76, pp. 3307-3014.
Huang, Rubinsky, Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells, Biomedical Microdevices, 1999, 2:2, pp. 145-150.
Mir, Orlowski, Mechanisms of electrochemotherapy, Advanced Drug Delivery Reviews, 1999, 35, pp. 107-118.
Jaroszeski, et al, In vivo gene delivery by electroporationi, Advanced Drug Delivery Reviews, 1999, 35, pp. 131-137.
Gehl, et al, In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution, Biochimica et Biophysica Acta, 1999, 1428, pp. 233-240.
Heller, et al, Clinical applications of electrochemotherapy, Advanced Drug Delivery Reviews, 1999, 35, 119-129.
Dev, et al, Medical applications of electroporation, IEEE Transactions on Plasma Science, Feb. 2000, vol. 28, No. 1, pp. 206-222.
Eppich, et al, Pulsed electric fields for seletion of hematopoietic cells and depletion of tumor cell contaminants, Nature America, Aug. 2000, vol. 18, pp. 882-887.
Mir, Therapeutic perspectives of in vivo cell electropermeabilization, Bioelectrochemistry, 2000, 53, pp. 1-10.
Al-Khadra, et al, The role of electroporation in defibrillation, Circulation Research, Oct. 27, 2000, 87, pp. 797-804.
Miklavcic, et al, A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy, Biochimica et Biophysica Acta, 2000, 1523, pp. 73-83.
Rubinsky, Cryosurgery, Annu. Rev. Biomed. Eng. 2000, 2, pp. 157-187.
Jaroszeski, et al, In vivo gene delivery by electroporation, Advanced Drug Delivery Reviews, 1999, 35, pp. 131-137.
Mir, Orlowski, Introduction: Electropermeabilization as a new drug delivery approach, Methods in Molecular Medicine, 2000, vol. 37, pp. 99-117.
O'Brien, et al, Investigation of the Alamar Blue (resarzurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur J Biochem, 2000, 267, pp. 5421-5426.
Neumann, Rosenheck, Permeability changes induced by electric impulses in vesicular membranes, J. Membrane Biol., 1972, 10, pp. 279-290.
Crowley, Electrical breakdown of bimolecular lipid membranes as an electromechanical instability, Biophysical Journal, 1973, vol. 13, 711-724.
Zimmerman, et al, Dielectric breakdown of cell membranes, Biophysical Journal, 1974, vol. 14, pp. 881-899.
Organ, Electrophysiologic principles of radiofrequency lesion making, Appl. Neurophysiol., 1976, 39, pp. 69-76.
Kinosita, Jr., Tsong, Hemodialysis of human erythrocytes by a transient electric field, Biochemistry, 1977, vol. 74, No. 5, pp. 1923-1927.
Kinsoita, Jr., Tsong, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Aug. 1977, vol. 268, pp. 438-441.
Kinosita, Jr., Tsong, Voltage-induced pore formation and hemolysis of human erythrocytes, Biochimica et Biophysica Acta, 1977, pp. 227-242.
Baker, Knight, Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes, Nature, Dec. 1978, vol. 276, pp. 620-622.
Gauger, Bentrup, A study of dielectric membrane breakdown in the Fucus egg, J. Membrane Biol., 1979, 48, pp. 249-264.
Erez, Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monactive electrocoagulation, Transactions of theASME, Feb. 1980, vol. 102, pp. 42-49.
Neumann, et al, Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, 1982, vol. 1, No. 7, pp. 841-845.
Seibert, et al, Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice, Cancer Research, May 1983, 43, pp. 2223-2239.
Brown, Phototherapy of tumors, World J. Surg., 1983, 7, 700-709.
Onik, et al, Ultraonic characteristics of frozen liver, Cryobiology, 1984, 21, pp. 321-328.
Gilbert, et al, The use of ultrsound imaging for monitoring cryosurgery, IEEE Frontiers of Engineering and computing in Health Care, 1984, pp. 107-111.
Onik, et al, Sonographic monitoring of hepatic cryosurgery in an experimental animal model, AJR, May 1985, 144, pp. 1043-1047.
Griffiths, The importance of phase measurement in e lectrical impedance tomography, Phys. Med. Biol., Nov. 1987, vol. 32, No. 11, pp. 1435-1444.
Okino, Mohri, Effects of high-voltage electrical impulse and an anticancer drug on in vivo growing tumors, Jpn. J. Cancer Res., Dec. 1987, 78, pp. 1319-1321.
Kinosita, Jr. et al, Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope, Biophys. J., Jun. 1988, vol. 53, pp. 1015-1019.
Amasha, et al, Quantitative assessment of impedance tomography for temperature measurements in microwave hyperthermia, Clin. Phys. Physiol. Meas., 1988, vol. 9, Suppl. A, pp. 49-53.
Asmai, et al, Dielectric properties of mouse lymphocytes and erythrocytes, Biochimica et Biophysica Acta, 1989, 1010, pp. 49-55.
Griffiths, Zhang, A dual-frequency electrical impedance tomography system, Phys. Med. Biol., 1989, vol. 34, No. 10, pp. 1465-1476.
Rowland, et al, Transvenous ablation of atrioventricular conduction with a low energy power source, Br Heart J, 1989, 62, pp. 361-366.
Marsazalek, et al, Schwan equation and transmembrane potential induced by alternating electric field, Biophysical Journal, Oct. 1990, vol. 58, pp. 1053-1058.
Tekle, et al, Electroporation by using bipolar oscillating electric field: An improved method for DNA transfection of NIH 3T3 cells, Biochemistry, May 1991, vol. 88, pp. 4230-4234.
Mir, et al, Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses, Eur. J. Cancer, 1991, vol. 27, No. 1, pp. 68-72.
Mir, et al, Electrochemotherapy, a novel antitumor treatment: first clinical trial, Cancerology, 1991, 313, pp. 613-618.
Narayan, Dahiya, Establishment and characterization of a human primay prostatic adenocarcinoma cell line (ND-1_, The Journal of Urology, Nov. 1992, vol. 148, pp. 1600-1604.
Griffiths, et al, Measurement of pharyngeal transit time by electrical impedance tomography, Clin. Phys. Physiol. Meas., 1993, vol. 13, Suppl. A, pp. 197-200.
Rols, et al, Highly efficient transfection of mammalian cells by electric field pulses application to large volumes of cell culture by using a flow system, Eur. J. Biochem., 1992, 205, pp. 115-121.
Brown, et al, Blood flow imaging using electrical impedance tomography, Clin. Phys. Physiol. Meas., 1992, vol. 13, Suppl. A, pp. 175-179.
Foster, et al, Production of prostatic lesions in canines usign transrectally administered high-intensity focused ultrasound, Eur Urol, 1993, pp. 330-336.
Shiina, et al, Percutaneous ethanol injection therapy for hepatocellular carcinoma: Results in 146 patients, AJR, May 1993, 160, pp. 1023-1028.
Salford, et al, A new brain tumour therapy combining bleomycin with in vivo electropermeabilization, Biochemical and Biohysical Research Communications, Jul. 30, 1993, vol. 194, No. pp. 938-943.
Glidewell, NG, The use of magnetic resonance imaging data and the inclusion of anisotropic regions in electrical impedance tomography, ISA, 1993, pp. 251-257.
Gascoyne, et al, Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis, Biochimca et Biophysica Acta, 1993, 1149, pp. 119-126.
Foster, et al, High-intensity focused ultrsound in the treatment of prostatic disease, Eur Urol, 1993, 23(suppl1), pp. 29-33.
Andreason, Electroporation as a technique for the ransfer of macromolecules into mamalian cell lines, J. Tiss. Cult. Meth., 1993, 15, pp. 56-62.
Weaver, Electroporation: A general phenomenon for manipulating cells and tissues, Journal of Cellular Biochemistry, 1993, 51, pp. 426-435.
Barber, Electrical impedance tomography applied potential tomography, Advances in Biomedical Engineering, 1993, IOS Press, pp. 165-173.
Cook, et al, ACT3: a high-speed, high-precision electrical impedance tomograph, IEEE Transactions on Biomedical Engineering, 1994, vol. 41, No. 8, pp. 713-722.
Alberts, et al, Molecular biology of the Cell, Biocchemical education, 1994, 22(3), pp. 164.
Hughes, et al, An analysis of studies comparing electrical impedance tomography with x-ray videofluoroscopy in the assessment of swallowing, Physiol. Meas. 1994, 15, pp. A199-A209.
Mazurek, et al, Effect of Short HV Pulses in Bacteria and Fungi, 1995, vol. 2, No. 3, pp. 418-425.
Griffiths, Tissue spectroscopy with electrical impedance tomography: Computer simulations, IEEE Transactions on Biomedical Engineering, Sep. 1995, vol. 42, No. 9, pp. 948-954.
Gencer, et al, Electrical impedance tomography: Induced-currentimaging achieved with a multiple coil system, IEEE Transactions on Biomedical Engineering, Feb. 1996, vol. 43, No. 2, pp. 139-149.
Weaver, Chizmadzhev, Theory of electroporation: a review, Biolectrochemistry and Bioenergetics, 1996, vol. 41, pp. 135-160.
Gimsa, et al, Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: Dispersion of the cytoplasm, Biophysical Journal, Jul. 1996, vol. 71, pp. 495-506.
Related Publications (1)
Number Date Country
20160338761 A1 Nov 2016 US
Provisional Applications (2)
Number Date Country
60267106 Feb 2001 US
60225775 Aug 2000 US
Continuations (6)
Number Date Country
Parent 14535762 Nov 2014 US
Child 14851508 US
Parent 14176889 Feb 2014 US
Child 14535762 US
Parent 13556455 Jul 2012 US
Child 14176889 US
Parent 12501225 Jul 2009 US
Child 13556455 US
Parent 11106835 Apr 2005 US
Child 12501225 US
Parent 09931672 Aug 2001 US
Child 11106835 US