Claims
- 1. In a method of detecting deterioration of a three-way catalyst of an internal combustion engine utilizing an air-fuel mixture having an air-fuel ratio, said engine having (a) an exhaust passage, said three-way catalyst being arranged in said exhaust passage, (b) a first air-fuel ratio sensor arranged in said exhaust passage at a location upstream of said three-way catalyst for detecting an air-fuel ratio of exhaust gases in said exhaust passage, and (c) a second air-fuel ratio sensor arranged in said exhaust passage at a location downstream of said three-way catalyst for detecting an air-fuel ratio of exhaust gases in said exhaust passage, the improvement comprising the steps of:
- (1) obtaining a first signal and a second signal based on respective signals outputted from said first and second air-fuel ratio sensors when at least one of the conditions (i) when a fuel supply to said engine is increased and (ii) when a fuel supply to said engine is interrupted, is met;
- (2) correcting at least one of a waveform of a signal outputted from said first air-fuel ratio sensor and a waveform of a signal outputted from said second air-fuel ratio sensor, based on said first and second signals while said engine is in a predetermined stable operating condition;
- (3) comparing said waveform of said signal outputted from said first air-fuel ratio sensor with said waveform of said signal outputted from said second air-fuel ratio sensor, after said correction; and
- (4) determining from results of said comparison whether or not said three-way catalyst is deteriorated.
- 2. A method according to claim 1, wherein said waveform comparing step comprises comparing (i) a first area defined between said waveform of said signal outputted from said first air-fuel ratio sensor and said first signal with (ii) a second area defined between said waveform of said signal outputted form said second air-fuel ratio sensor and said second signal.
- 3. A method according to claim 2, wherein a difference between said first area and said second area is compared with a predetermined reference value, and it is determined that said three-way catalyst is deteriorated when said difference is smaller than said predetermined reference value.
- 4. A method according to claim 2, wherein a ratio between said first area and said second area is compared with a predetermined reference value, and it is determined that said three-way catalyst is deteriorated when said ratio is smaller than said predetermined reference value.
- 5. A method according to any of claims 2, 3, or 4, wherein at least one of said first and second areas is corrected by a ratio between said first and second signals.
- 6. A method according to claim 1 or 2, wherein said first and second signals are average values of respective output values from said first and second air-fuel ratio sensors outputted at least one of when the fuel supply to said engine is increased and when the fuel supply to said engine is interrupted.
- 7. A method according to any of claims 1 to 4, wherein said predetermined stable operating condition of said engine is a condition in which a vehicle on which said engine is installed is stably cruising.
- 8. A method according to any of claims 1 to 4, wherein said comparison of said step (2) is carried out while the air-fuel ratio is controlled to a predetermined higher value and a predetermined lower value, alternately at predetermined time intervals.
- 9. In a method of detecting deterioration of a three-way catalyst of an internal combustion engine utilizing an air-fuel mixture having an air-fuel ratio, said engine having (a) an exhaust passage, said three-way catalyst being arranged in said exhaust passage, (b) a first air-fuel ratio sensor arranged in said exhaust passage at a location upstream of said three-way catalyst for detecting an air-fuel ratio of exhaust gases in said exhaust passage, and (c) a second air-fuel ratio sensor arranged in said exhaust passage at a location downstream of said three-way catalyst for detecting an air-fuel ratio of exhaust gases in said exhaust passage, the improvement comprising the steps of:
- (1) obtaining a first signal and a second signal based on respective signals outputted from said first and second air-fuel ratio sensors when a fuel supply to said engine is increased;
- (2) obtaining a third signal and a fourth signal based on respective signals outputted from said first and second air-fuel ratio sensors when the fuel supply to said engine is interrupted;
- (3) correcting at least one of a waveform of a signal outputted from said first air-fuel ratio sensor and a waveform of a signal outputted from said second air-fuel ratio sensor, based on said first to fourth signals while said engine is in a predetermined stable operating condition;
- (4) comparing said waveform of said signal outputted from said first air-fuel ratio sensor with said waveform of said signal outputted from said second air-fuel ratio sensor, after said correction; and
- (5) determining from results of said comparison whether or not said three-way catalyst is deteriorated.
- 10. A method according to claim 9, wherein said comparison of said step (3) comprises comparing a first area which is defined between said waveform of said signal outputted from said first air-fuel ratio sensor and said first and third signals with a second area which is defined between said waveform of said signal outputted from said second air-fuel ratio sensor and said second and fourth signals.
- 11. A method according to claim 10, wherein a difference between said first area and said second area is compared with a predetermined reference value, and it is determined that said three-way catalyst is deteriorated when said difference is smaller than said predetermined reference value.
- 12. A method according to claim 10, wherein a ratio between said first area and said second area is compared with a predetermined reference value, and it is determined that said three-way catalyst is deteriorated when said ratio is smaller than said predetermined reference value.
- 13. A method according to any of claims 10, 11, or 12, wherein at least one of said first and second areas is corrected by a ratio between a differnece between said first and third signals and a difference between said second and fourth signals.
- 14. A method according to claim 9 or 10, wherein said first and second signals are average values of respective output values from said first and second air-fuel ratio sensors outputted when the fuel supply to said engine is increased, and said third and fourth signals are average values of respective output values from said first and second air-fuel ratio sensors outputted when the fuel supply to said engine is interrupted.
- 15. A method according to any of claims 9 to 12, wherein said predetermined stable operating condition of said engine is a condition in which a vehicle on which said engine is installed is stably cruising.
- 16. A method according to any of claims 9 to 12, wherein said comparison of said step (3) is carried out while the air-fuel ratio is controlled to a predetermined higher value and a predetermined lower value, alternately at predetermined time intervals.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2-117890 |
May 1990 |
JPX |
|
Parent Case Info
This application is continuation of application Ser. No. 07/694,831, filed May 2, 1991, now abandoned.
US Referenced Citations (15)
Continuations (1)
|
Number |
Date |
Country |
Parent |
694831 |
May 1991 |
|