The present invention relates to a method of detecting helicase activity, in particular but not exclusively, relates to a method of detecting helicase activity by using a luminescent probe. The present invention also refers to a method of screening a luminescent probe, and a series of metal complexes.
Helicases unwind double-stranded DNA (dsDNA), double-stranded RNA (dsRNA) or displace nucleic acid-binding proteins by using energy from ATP hydrolysis. Helicase is an essential enzyme in cells for the reading, replication, and repair of genomes. However, helicases are also implicated in a number of viral diseases due to their critical role in facilitating viral replication and proliferation. Viral helicase inhibitors have been developed for the treatment of hepatitis C and herpes simplex viral infections. Due to its biological and medical importance, the development of efficient assays for monitoring the nucleic acid unwinding activity of helicase is of great interest.
Conventional techniques for the detection of helicase activity typically involve radioactive labeling in conjunction with gel electrophoresis. However, this method is discontinuous, time-consuming, inefficient, and necessitates the use of stringent safety procedures to control radiographic exposure, thus limiting the scope of their application.
Over the past several years, oligonucleotides have been considered as attractive signal transducing units for the detection of biologically and environmentally important analytes. Oligonucleotides offer salient advantages in biosensing applications, such as their relatively small size, low cost, facile synthesis and modification, good thermal stability, and reusability. In particular, the G-quadruplex motif, which is a non-canonical DNA secondary structure composed of planar stacks of four guanines stabilized by Hoogsteen hydrogen bonding, has attracted particular interest in sensing applications. The extensive structural polymorphism of G-quadruplexes has rendered them as versatile signal-transducing elements for the development of DNA-based probes.
Min and co-workers in H. Jang, Y.-K. Kim, H.-M. Kwon, W.-S. Yeo, D.-E. Kim and D.-H. Min, Angew. Chem. Int. Ed, 2010, 49, 5703-5707; and in H. Jang, S.-R. Ryoo, Y.-K. Kim, S. Yoon, H. Kim, S. W. Han, B.-S. Choi, D.-E. Kim and D.-H. Min, Angew. Chem. Int. Ed, 2013, 52, 2340-2344, have reported a fluorescent assay for hepatitis C virus (HCV) NS3 helicase activity and severe acute respiratory syndrome coronavirus (SARS-CoV, SCV) helicase nsP13 activity by utilizing graphene and a fluorescently-labelled dsDNA substrate. Ali and co-workers in S. Siddiqui, I. Khan, S. Zarina and S. Ali, Enzyme Microb. Technol, 2013, 52, 196-198 have utilized SYBR Green dye, which is fluorescent in the presence of dsDNA but not ssDNA, for the detection of helicase activity. A similar principle was utilized by Kowalczykowski and co-workers to construct a switch-off platform for helicase activity using ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 or thiazole orange. The groups of Frick and Boguszewska-Chachulska in C. A. Belon and D. N. Frick, BioTechniques, 2008, 45, 433-440; and A. M. Boguszewska-Chachulska, M. Krawczyk, A. Stankiewicz, A. Gozdek, A.-L. Haenni and L. Strokovskaya, FEBS Lett., 2004, 567, 253-258 have reported an approach for monitoring helicase activity using molecular beacons. Recently, Balci and coworkers in K. S. Lee, H. Balci, H. Jia, T. M. Lohman and T. Ha, Nat. Commun., 2013, 4, 1878-1887; J. B. Budhathoki, S. Ray, V. Urban, P. Janscak, J. G. Yodh and H. Balci, Nucleic Acids Res., 2014, 42, 11528-11545; and H. Balci, S. Arslan, S. Myong, Timothy M. Lohman and T. Ha, Biophys. J., 2011, 101, 976-984 utilized single-molecule Forster resonance energy transfer (FRET) imaging to monitor helicase activity. Although these reports demonstrate that DNA oligonucleotides may be integrated as functional and structural elements for the construction of luminescent platforms for the detection of helicase, there still remains a need for developing a label-free and sensitive method for determining helicase activity in a more cost-effective and highly efficient manner.
In accordance with a first aspect of the present invention, there is provided a method of detecting helicase activity in a test solution, comprising the steps of: (a) providing a substrate solution containing a double-stranded DNA, wherein said double-stranded DNA is a substrate for a helicase to be detected; (b) introducing the substrate solution to the test solution to form a reaction solution; (c) applying a luminescent probe into the reaction solution to form a mixture; and (d) measuring a luminescent response of the luminescent probe in the mixture, wherein the luminescent response corresponds to the helicase activity in the test solution.
Preferably, in step (b), the double-stranded DNA is unwound to provide a single-stranded DNA and a G-quadruplex-forming DNA in the presence of the helicase, in which the G-quadruplex-forming DNA can fold to form a G-quadruplex DNA.
More preferably, the luminescent probe interacts with the G-quadruplex DNA to generate the luminescent response.
It is preferable that the G-quadruplex DNA comprises a sequence of SEQ ID NO: 1.
Advantageously, the luminescent probe is a luminescent iridium (III) complex, the luminescent iridium (III) complex comprises: an iridium-containing dimer; and a nitrogen-containing ligand having at least two nitrogen atoms, wherein the nitrogen-containing ligand is a derivative of pyridine.
More advantageously, the iridium-containing dimer ligand has at least two benzene rings; and the nitrogen-containing ligand is selected from the group consisting of 2,9-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, S-chloro-1,10-phenanthroline, 4,7-dichloro-1,10-phenanthroline, 5,5′-dimethyl-2,2′-bipyridine, 4,7-diphenyl-1,10-phenanthroline, 4,4′-diphenyl-2,2′-bipyridine, pyrazino[2,3-f][1,10]phenanthroline and a derivative thereof.
Preferably, the test solution comprises cells.
It is further preferable that the helicase is hepatitis C virus helicase.
In accordance with a second aspect of the present invention, there is provided a luminescent iridium (III) (Ir(III)) complex comprising, an iridium-containing dimer; and a nitrogen-containing ligand having at least two nitrogen atoms, wherein the nitrogen-containing ligand is a derivative of pyridine.
Preferably, the nitrogen-containing ligand is selected from the group consisting of 2,9-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 5-chloro-1,10-phenanthroline, 4,7-dichloro-1,10-phenanthroline, 5,5′-dimethyl-2,2′-bipyridine, 4,7-diphenyl-1,10-phenanthroline, 4,4′-diphenyl-2,2′-bipyridine, pyrazino[2,3-f][1,10] phenanthroline and a derivative thereof.
It is preferable that the iridium-containing dimer comprises at least two benzene rings. More preferably, the iridium-containing dimer comprises a chemical structure selected from the group consisting of the following structures:
Advantageously, the iridium (III) complex comprises one of the following structures:
In accordance with a third aspect of the present invention, there is provided a method of screening a luminescent probe for detecting helicase activity, comprising the steps of: (i) measuring luminescent responses of a luminescent probe candidate towards a G-quadruplex DNA, a double-stranded DNA, and a single-stranded DNA respectively; and (ii) determining selectivity of the luminescent probe candidate towards the G-quadruplex DNA over the double-stranded DNA, and the single-stranded DNA based on the luminescent responses measured in step (i).
Preferably, the helicase is capable of unwinding the double-stranded DNA to provide the single-stranded DNA and a G-quadruplex-forming DNA in which the G-quadruplex-forming DNA folds to form the G-quadruplex DNA.
It is preferable that the G-quadruplex DNA comprises a sequence of SEQ ID NO: 1.
Advantageously, the selectivity of the luminescent probe candidate towards the G-quadruplex DNA over the double-stranded DNA is determined if a ratio between the luminescent response of the luminescent probe candidate towards the G-quadruplex DNA and that towards the double-stranded DNA is larger than 1; and the selectivity of the luminescent probe candidate towards the G-quadruplex DNA over the single-stranded DNA is determined if a ratio between the luminescent response of the luminescent probe candidate towards the G-quadruplex DNA and that towards the single-stranded DNA is larger than 1.
Preferably, the helicase is a hepatitis C virus NS3 helicase.
More preferably, the method of the third aspect further comprises the step of (iii) measuring a luminescent response of the luminescent probe candidate towards the helicase.
Advantageously, the selectivity of the luminescent probe candidate towards the G-quadruplex DNA over the helicase is determined if a ratio between the luminescent response of the luminescent probe candidate towards the G-quadruplex DNA and that towards the helicase is larger than 1.
Accordingly, the present invention provides a novel and highly advantageous approach to detect helicase activity in a test solution, namely by using a luminescent probe such as a Ir(III) complex. In addition, a series of luminescent Ir(III) complexes proved to achieve prominent effect on detecting the presence of G-quadruplex DNA so as to generate luminescent responses for detection of helicase activity.
The above and other objects and features of the present invention will become apparent from the following description of the invention, when taken in conjunction with the accompanying drawings, in which:
The present invention, in a first aspect, relates to a method of detecting helicase activity in a test solution. Said method comprises the steps of: (a) providing a substrate solution containing a double-stranded DNA, wherein said double-stranded DNA is a substrate for a helicase to be detected; (b) introducing the substrate solution to the test solution to form a reaction solution; (c) applying a luminescent probe into the reaction solution to form a mixture; and (d) measuring a luminescent response of the luminescent probe in the mixture, wherein the luminescent response corresponds to the helicase activity in the test solution.
The term “helicase” as used in the present invention generally refers to a class of enzymes which is capable of separating two annealed nucleic acid strands such as double-stranded DNA, self-annealed RNA and RNA-DNA hybrid. Preferably, helicase is β helicase that works on double-stranded DNAs. In preferred embodiments, the helicase is virus helicase such as hepatitis virus helicase. In a most preferred embodiment, the helicase is hepatitis C virus NS3 helicase. The helicase activity in the present invention preferably refers to the unwinding activity of the helicase on nucleic acids strands. The expressions “oligonucleotide” and “oligomer” as used in this application generally refer to short, single-stranded nucleic acid fragments, e.g. short DNA fragments. The skilled person would understand that “double-stranded oligonucleotide” refers to “double-stranded DNA”.
The method of the present invention provides a double-stranded DNA which can be unwound by the helicase to be detected. The double-stranded DNA may be obtained from natural source or obtained by artificial creation. The double-stranded DNA is preferably provided in a form of solution containing a buffer solution to form a substrate solution, wherein the buffer solution prevents substantial change in the pH. Preferably, the double-stranded DNA (dsDNA) is unwound by the helicase under suitable conditions to provide two single-stranded DNAs (ssDNAs), for example, the reaction solution is heated to a temperature of about 37° C. for at least 30 minutes, preferably 2 hours, to allow the helicase to unwind the double-stranded DNA.
In preferred embodiments of the present invention, one of the ssDNAs is a guanine-rich (G-rich) DNA, i.e. G-quadruplex-forming DNA which further folds to form a G-quadruplex DNA, and another one is a cytosine-rich (C-rich) DNA being a complementary sequence to the G-rich sequence. More preferably, the G-quadruplex-forming DNA includes a sequence of SEQ ID NO: 1. Said sequence enables the G-quadruplex-forming DNA to fold under conditions, namely in the presence of cations such as potassium ions (K+).
The formed G-quadruplex DNA of the present invention can interact with the luminescent probe to generate a luminescent response for detection. Preferably, the luminescent probe binds to the G-quadruplex DNA with molecular interactions. In particular, such binding is of advantageous that it suppresses the non-radiative decay of the excited state of the luminescent probe and allows an enhanced luminescent response such as improved quantum yield and longer lifetime. The detection of the luminescent response, i.e. step (d), may be carried out by using UV/Vis absorption spectrometer, depending on the emission wavelength of the luminescent probe. The skilled person would appreciate that other common means can also be applied for measuring the luminescent response. In some preferred embodiments, the measuring step in step (d) of the method includes steps of exciting the mixture with a radiating source at a wavelength of about 360 nm, and recording the results of said excitation at emission wavelengths range between 500-720 nm.
In preferred embodiments, the luminescent probe is a luminescent iridium (III) (Ir(III)) complex. In particular, the Ir(III) complex, as will be discussed in more detail later, comprises an iridium-containing dimer; and a nitrogen-containing ligand having at least two nitrogen atoms, wherein the nitrogen-containing ligand is a derivative of pyridine.
In some embodiments, the test solution may be a biological sample or chemical sample, preferably a biological sample. The biological sample, without limitation, refers to any sample which comprises cells or cellular material which may be obtained in vivo or in vitro.
In further embodiments, the method of detecting helicase activity further comprises the steps of adding a quenching reagent, e.g. ethylenediaminetetraacetic acid (EDTA), to the reaction solution after step (b) to quench the unwinding activity of the helicase and, preferably, subsequently diluting the reaction solution to a suitable concentration prior to step (c). Preferably, the reaction solution is diluted by adding a buffer solution. In particular, said dilution allows the helicase to have a concentration of 0 to 0.9 μM in the reaction solution so as to facilitate the detection of helicase activity as it has been surprisingly found that the luminescence responses of the helicase of said concentration range in the solution present a linear range of detection.
With reference to
Luminescent Ir(III) Complexes
In general, luminescent transition metal complexes have notable advantages over organic dyes for sensory applications. Firstly, metal complexes generally emit in the visible region with a long phosphorescence lifetime, allowing them to be readily distinguished from a fluorescent background arising from endogenous fluorophores in the sample matrix by the use of time-resolved fluorescent spectroscopy. Secondly, the precise and versatile arrangement of co-ligands on the metal centre allows the interactions of metal complexes with biomolecules to be fine-tuned for maximum selectivity and sensitivity. Thirdly, these metal complexes often possess interesting photophysical properties that are strongly affected by subtle changes in their local environment. In this regard, the present invention further provides a series of luminescent transition metals such as Ir(III) complexes to establish a label-free, sensitive and efficient assay on detecting helicase activity.
In a second aspect of the present invention, there is provided with a luminescent Ir(III) complex having an iridium-containing dimer and a nitrogen-containing ligand with at least two nitrogen atoms. In preferred embodiments, the luminescent Ir(III) complex includes an iridium-containing dimer having at least two benzene rings; and a nitrogen-containing ligand (N̂N ligand) which is a derivative of pyridine. In particular, the iridium-containing dimer includes at least two carbon-nitrogen-containing ligands (ĈN ligand) and each of them bearing a benzene ring.
In some preferred embodiments, the ĈN ligand has a chemical structure selected from the group consisting of the following structures:
In some preferred embodiments, the nitrogen-containing ligand (N̂N ligand) has at least two nitrogen atoms and, in particular, selected from the group consisting of 1,10-phenanthroline (phen), 2,9-diphenyl-1,10-phenanthroline (2,9-dpphen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (dmdpphen), 5,6-dimethyl-1,10-phenanthroline (dmphen), 5-chloro-1,10-phenanthroline (chlorophen), 4,7-dichloro-1,10-phenanthroline (dcphen), 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (5,5-dmbpy), 4,7-diphenyl-1,10-phenanthroline (4,7-dpphen), 4,4′-diphenyl-2,2′-bipyridine (dpbpy), and pyrazino[2,3-f][1,10]phenanthroline (pyphen). The chemical structures of the above N̂N ligands are shown below.
Some specific examples of the preferred luminescent Ir(III) complexes include those having one of the following structures:
Screening G-Quadruplex-Selective Probes
In a further aspect of the present invention, the G-quadruplex DNA is used to identify a potent luminescent probe for detecting the respective helicase activity. The potent luminescent probe is a luminescent compound that can selectively recognize the G-quadruplex DNA to give the corresponding luminescent response. The potent luminescent probe may also be applied to determine the unknown helicase activity. In order to determine the selectivity of the luminescent compound towards the G-quadruplex DNA, the luminescent responses of the luminescent compound towards the G-quadruplex DNA, dsDNA, ssDNA, as well as the respective helicase are considered.
In some preferred embodiments, there are provided with various luminescent probe candidates. The luminescent responses of the luminescent probe candidates towards each of the G-quadruplex DNA, dsDNA, ssDNA, and the respective helicase are measured. Preferably, the selectivity of the luminescent probe candidate towards the G-quadruplex DNA is determined if:
More preferably, the potent luminescent probe at least has a selectivity towards the G-quadruplex DNA over the dsDNA and ssDNA.
In one embodiment of the present invention, seven luminescent Ir(III) complexes 1-7, as shown in
To further validate the suitability of complex 9 as a G-quadruplex-selective probe, the inventors performed G-quadruplex fluorescent intercalator displacement (G4-FID) and fluorescence resonance energy transfer (FRET) melting assays to determine the selectivity of complex 9 for G-quadruplex DNA. The G4-FID assay also showed that complex 9 was able to displace thiazole orange (TO) from G-quadruplex DNA (G4DC50=ca. 5 μM, half-maximal concentration of compound required to displace 50% TO from DNA) with higher efficacy than from duplex DNA (
Luminescent Detection of HCV NS3 Helicase Activity, and Optimization
The characterization and photophysical properties of the Ir(III) complexes 1-17 are given in the ESI (Table 2). Given the promising G-quadruplex-selective luminescent behaviour exhibited by complex 9, one preferred embodiment of the present invention sought to employ complex 9 as a G-quadruplex-selective probe to construct a label-free luminescent detection platform for helicase activity in aqueous solution. This embodiment first investigated the luminescence response of complex 9 and the ON1-ON2 duplex substrate to helicase. Upon incubation with helicase and the duplex substrate, the luminescence of complex 9 was significantly enhanced. The luminescence enhancement of the system was possibly due to the unwinding of the duplex substrate by helicase, which allows the formation of the G-quadruplex motif in the presence of K+ that is subsequently recognized by complex 9 (
Further control experiments were conducted. In particular, a designed mutant DNA sequence (ON1m, corresponding to SEQ ID NO: 4), which is unable to form a G-quadruplex structure in the presence of helicase due to the lack of guanine residues, was also used to confirm the action of complex 9. A slight decrease was observed in the luminescence of complex 9 in response to helicase for the mutant DNA sequences, indicating that the formation of the G-quadruplex motif was important for the luminescent enhancement of the system (
Various studies have been performed to investigate the ability of helicases to unfold G-quadruplex structures. One study in J. B. Budhathoki, S. Ray, V. Urban, P. Janscak, J. G. Yodh and H. Balci, Nucleic Acids Res., 2014, 42, 11528-11545 reported that Bloom's syndrome helicase (BLM) could unfold telomeric G-quadruplex in the absence of ATP, while another study in J.-q. Liu, C.-y. Chen, Y. Xue, Y.-h. Hao and Z. Tan, J. Am. Chem. Soc., 2010, 132, 10521-10527 reported that BLM translocation was hindered by G-quadruplex motifs, with unwinding efficiency being dependent on the stability of the G-quadruplex structure, which is in turn influenced by loop size or ionic strength. For example, the unfolding activity of BLM towards a particular G-quadruplex sequence was completely stopped in 150 mM K+. Therefore, it was important to investigate whether HCV NS3 helicase could unfold the G-quadruplex structure used in the present invention. With reference to
After optimization of the concentrations of complex 9 (
Selectivity of G-Quadruplex-Based HCV NS3 Helicase Activity Assay
In a specific preferred embodiment, the selectivity of HCV NS3 helicase activity assay in the present invention was evaluated by investigating the response of the system to S1 nuclease (S1), endonuclease IV (Endo), DpnI, exonuclease I (ExoI), EcoRI, RNase, DNase or single-stranded DNA binding protein (SSB). With reference to
Application of HCV NS3 Helicase Activity Detection Assay in Biological Samples
To evaluate the robustness of the system, the performance of G-quadruplex-based sensing platform for helicase activity of the present invention was investigated in the presence of cellular debris. According to
Application of HCV NS3 Helicase Activity Detection Assay in Inhibitors Screening
In one embodiment of the present invention, the G-quadruplex-based assay is applied for screening potential helicase inhibitors. In particular, ciprofloxacin was chosen as an inhibitor of helicase. With reference to
Experimental Section
Materials
Reagents, unless specified, were purchased from Sigma Aldrich (St. Louis, Mo.) and used as received. Iridium chloride hydrate (IrCl3.xH2O) was purchased from Precious Metals Online (Australia). Helicase was purchased from Prospec Inc. (Ness-Ziona, Israel). S1 nuclease (S1), endonuclease IV (Endo), DpnI, exonuclease I (ExoI), EcoRI, RNase, DNase, single-stranded DNA binding protein (SSB) was purchased from New England Biolabs Inc. (Beverly, Mass., USA). All oligonucleotides were synthesized by Techdragon Inc. (Hong Kong, China).
General Experimental
Mass spectrometry was performed at the Mass Spectroscopy Unit at the Department of Chemistry, Hong Kong Baptist University, Hong Kong (China). Deuterated solvents for nuclear magnetic resonance (NMR) purposes were obtained from Armar and used as received.
1H and 13C NMR were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz (1H) and 100 MHz (13C). 1H and 13C chemical shifts were referenced internally to solvent shift (acetone-d6: 1H d 2.05, 13C d 29.8; CD3Cl: 1H d 7.26, 13C d 76.8). Chemical shifts (8) are quoted in ppm, the downfield direction being defined as positive. Uncertainties in chemical shifts are typically ±0.01 ppm for 1H and ±0.05 for 13C. Coupling constants are typically ±0.1 Hz for 1H-1H and ±0.5 Hz for 1H-13C couplings. The following abbreviations are used for convenience in reporting the multiplicity of NMR resonances: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. All NMR data was acquired and processed using standard Bruker software (Topspin).
Photophysical Measurement
Emission spectra and lifetime measurements for complexes were performed on a PTI TimeMaster C720 Spectrometer (Nitrogen laser: pulse output 337 nm) fitted with a 380 nm filter. Error limits were estimated: λ (±1 nm); τ (±10%); φ (±10%). All solvents used for the lifetime measurements were degassed using three cycles of freeze-vac-thaw.
Luminescence quantum yields were determined using the method of Demas and Crosby [Ru(bpy)3][PF6]2 in degassed acetonitrile as a standard reference solution (Φr=0.062) and calculated according to the following equation:
Φs=Φr(Br/Bs)(ns/nr)2(Ds/Dr)
G4-FID Assay
The FID assay was performed as described. The Pu27 G-quadruplex DNA (0.25 μM) in Tris-HCl buffer (20 mM Tris, 100 mM KCl, pH 7.0) were annealed by heating at a temperature of 72-98° C., in particular 95° C., for at least 10 min. Indicated concentration of thiazole orange (0.5 μM for Pu27 G-quadruplex DNA and 0.5 μM for ds17) was added and the mixture was incubated for at least 30 minutes, in particular 1 hour. Emission measurement was taken after addition of each indicated concentration of complex 9 followed by an equilibration time for 5 minutes. The fluorescence area was converted into percentage of displacement (PD) by using the following equation. PD=100−[(FA/FA0)×100] (FA0=fluorescence area of DNA-TO complex in the absence of complex 9; FA=fluorescence area in the presence of complex 9).
FRET Melting Assay
The ability of complex 9 to stabilize G-quadruplex DNA was investigated using a fluorescence resonance energy transfer (FRET) melting assay. The labeled G-quadruplex-forming oligonucleotide F21T, consisting of a sequence 5′-FAM-(SEQ ID NO: 5)-TAMRA-3′ (donor fluorophore FAM: 6-carboxyfluorescein; acceptor fluorophore TAMRA: 6-carboxytetramethylrhodamine), was diluted to 200 nM in a potassium cacodylate buffer (100 mM KCl, pH 7.0), and then heated from room temperature to 95° C. in the presence of the indicated concentrations of complex 9. The labeled duplex-forming oligonucleotide F10T, consisting of a sequence 5′-FAM-TATAGCTA-HEG-(SEQ ID NO: 6)-3′ (HEG linker: [(—CH2—CH2—O—)6]), was treated in the same manner, except that the buffer was changed to 10 mM lithium cacodylate (pH 7.4). Fluorescence readings were taken at intervals of 0.5° C. in a range of 25 to 95° C.
Synthesis
In one embodiment of the present invention, luminescent Ir(III) complexes 1 to 17 as shown in
A precursor Ir(III) complex dimer [Ir2(ĈN)4Cl2] was prepared. A suspension of [Ir2(ĈN)4Cl2] (0.2 mmol) and a N̂N ligand selected from 1,10-phenanthroline (phen), 2,9-diphenyl-1,10-phenanthroline (2,9-dpphen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (dmdpphen), 5,6-dimethyl-1,10-phenanthroline (dmphen), 5-chloro-1,10-phenanthroline (chlorophen), 4,7-dichloro-1,10-phenanthroline (dcphen), 2,2′-bipyridine (bpy), 5,5′-dimethyl-2,2′-bipyridine (5,5-dmbpy), 4,7-diphenyl-1,10-phenanthroline (4,7-dpphen), 4,4′-diphenyl-2,2′-bipyridine (dpbpy), and pyrazino[2,3-f][1,10]phenanthroline (pyphen) (0.44 mmol) in a mixture of dichloromethane:methanol (1:1, 20 mL) was refluxed overnight under a nitrogen atmosphere. The resulting solution was then allowed to cool to room temperature, and filtered to remove unreacted cyclometallated dimer. An aqueous solution of ammonium hexafluorophosphate (excess) was added to the filtrate and the filtrate was reduced in volume by rotary evaporation until precipitation of the crude product occurred. The precipitate was then filtered and washed with several portions of water (2×50 mL) followed by diethyl ether (2×50 mL). The product was recrystallized by acetonitrile:diethyl ether vapor diffusion to yield the corresponding complex. The obtained complexes 1 to 17 were characterized by 1H NMR, 13C NMR, high resolution mass spectrometry (HRMS) and elemental analysis.
Complex 1. Yield: 59%. 1H NMR (400 MHz, Acetone-d6) δ 8.11-8.09 (d, J=8.0 Hz, 2H), 7.65-7.61 (m, 4H), 7.05-7.01 (d, J=8.0 Hz, 2H), 6.49 (s, 2H), 6.36-6.32 (m, 2H), 6.15-6.03 (m, 10H), 5.86 (s, 2H), 5.69-5.67 (t, J=8.0 Hz, 2H), 5.32-5.30 (t, J=8.0 Hz, 2H), 4.33 (s, 2H); 13C NMR (100 MHz, Acetone-d6) δ 166.9, 150.1, 142.5, 140.6, 140.5, 139.6, 133.0, 131.3, 129.5, 129.3, 128.7, 128.6, 128.5, 128.1, 126.4, 121.9, 112.0, 108.6; HRMS: Calcd for C42H30IrN6[M−PF6]+: 811.2161 Found: 811.2142; Anal. (C42H30N6IrPF6) C, H, N: calcd 52.77, 3.16, 8.79; found 52.54, 3.20, 8.56.
Complex 2. Reported in D.-L. Ma, L.-J. Liu, K.-H. Leung, Y.T. Chen, H.-J. Zhong, D. S.-H. Chan, H.-M. D. Wang and C.-H. Leung, Angew. Chem. Int. Ed, 2014, DOI:10.1002/anie.201404686.
Complex 3. Yield: 53%. 1H NMR (400 MHz, Acetone-d6) δ 9.84 (d, J=2.6 Hz, 2H), 9.32 (s, 2H), 8.78 (d, J=8.3 Hz, 2H), 8.26 (d, J=3.7 Hz, 2H), 7.89 (d, J=8.4 Hz, 2H), 7.70 (dd, J=8.0, 1.0 Hz, 2H), 7.09-7.00 (m, 2H), 6.81 (td, J=7.5, 1.2 Hz, 2H), 6.28 (dd, J=7.6, 1.0 Hz, 2H), 2.26 (s, 6H), 1.67 (s, 6H); 13C NMR (100 MHz, Acetone-d6) δ 184.42, 166.53, 154.18, 149.89, 142.75, 140.60, 134.21, 133.43, 130.96, 129.21, 128.29, 127.99, 124.40, 123.26, 113.34, 100.89, 27.44, 11.12; HRMS: Calcd For C36H30IrN6O2 [M]+: 771.2059 Found: 771.2081; Anal. (C36H30IrN6O2PF6) C, H, N: calcd 47.21, 3.30, 9.18; Found 47.33, 2.92, 9.01.
Complex 4. 1H NMR (400 MHz, Acetone-d6) δ 9.84 (d, J=2.4 Hz, 2H), 9.32 (s, 2H), 8.78 (d, J=8.4 Hz, 2H), 8.26 (d, J=3.6 Hz, 2H), 7.89 (d, J=8.4 Hz, 2H), 7.70 (dd, J=8.0, 1.2 Hz, 2H), 7.09-7.00 (m, 2H), 6.80-6.82 (m, 2H), 6.28 (dd, J=7.6, 1.2 Hz, 2H), 2.26 (s, 6H), 1.67 (s, 6H); 13C NMR (100 MHz, Acetone-d6) δ 184.4, 166.5, 154.2, 149.9, 142.8, 140.6, 134.2, 133.4, 131.0, 129.2, 128.3, 128.0, 124.4, 123.3, 113.3, 100.9, 27.4, 11.1; MALDI-TOF-HRMS: Calcd For C36H3oIrN6O2[M−PF6]+: 771.2059 Found: 771.2081; Anal.: (C36H30IrN6O2+0.5H2O) C, H, N: calcd 46.75, 3.38, 9.09; found 46.70, 3.43, 9.07.
Complex 5. Yield: 57%. 1H NMR (400 MHz, Acetone-d6) δ 8.58-8.56 (d J=8.0 Hz, 2H), 8.26 (s, 2H), 8.67 (s, 2H), 8.21-8.19 (d, J=8.0 Hz 2H), 8.06-8.04 (d, J=8.0 Hz, 2H), 7.98-7.96 (d, J=8.0 Hz, 2H), 7.83-7.81 (t, J=4.0 Hz, 2H), 7.63-7.60 (m, 10H), 7.16-7.14 (t, J=4.0 Hz, 2H), 7.10-6.98 (d, J=8.0 Hz, 2H), 6.97-6.95 (t, J=4.0Hz, 2H), 6.71-6.99 (d, J=8.0Hz, 2H), 2.07 (s, 6H); 13C NMR (100 MHz, Acetone-d6) δ 169.6, 162.8, 151.4, 150.5, 149.4, 148.7, 146.7, 140.0, 136.6, 134.1, 130.8, 130.7, 130.5, 130.0, 127.8, 127.0, 126.4, 124.8, 123.9, 118.7, 26.3; HRMS: Calcd for C48H36IrN4 [M−PF6]+: 861.2569, Found: 861.2553; Anal (C48H36N4IrPF6+H2O) C, H, N: calcd 56.30, 3.74, 5.47; found 56.04, 3.42, 5.49.
Complex 6. Reported in F. Gärtner, S. Denurra, S. Losse, A. Neubauer, A. Boddien, A. Gopinathan, A. Spannenberg, H. Junge, S. Lochbrunner, M. Blug, S. Hoch, J. Busse, S. Gladiali and M. Beller, Chem. Eur. J., 2012, 18, 3220-3225.
Complex 7. Reported in K.-H. Leung, H.-Z. He, V. P.Y. Ma, D. S.-H. Chan, C.-H. Leung and D.-L. Ma, Chem. Comm., 2013, 49, 771-773.
Complex 8. Yield: 56%. 1H NMR (400 MHz, CD3CN-d3) δ 8.81-8.79 (d, J=8.0 Hz, 1H), 8.68-8.67 (d, J=4.0 Hz, 1H), 8.61-8.60 (d, J=4.0 Hz, 1H), 8.48-8.46 (d, J=8.0 Hz, 1H), 8.41-8.34 (m, 4H), 8.25-8.22 (d J=8.0 Hz, 2H), 8.15 (s, 1H), 7.98-7.95 (q, J=4.0 Hz, 1H), 7.88-7.85 (q, J=4.0 Hz, 1H), 7.75-7.73 (d, J=8.0 Hz, 2H), 7.28-7.24 (m, 4H), 7.21-7.17 (t, J=8.0 Hz, 2H), 6.92-6.87 (t, J=8.0 Hz, 2H), 6.86-6.81 (t, J=8.0 Hz, 2H), 6.69-6.66 (d, J=8.0 Hz, 2H); 13C NMR (100 MHz, CD3CN-d3) δ 171.2, 150.7, 150.2, 148.5, 147.1, 147.0, 141.24, 141.21, 139.0, 136.5, 135.7, 135.6, 132.1, 131.7, 131.6, 131.5, 131.0, 130.1, 129.7, 128.6, 128.58, 128.4, 128.39, 128.1, 127.6, 125.1, 125.0, 124.0, 119.0; HRMS: Calcd for C42H27IrN4Cl [M−PF6]+: 815.1542 Found: 815.1535; Anal (C42H27IrN4ClPF6+H2O) C, H, N: calcd 51.56, 2.99, 5.73; Found 51.75, 2.92, 5.90.
Complex 9. Reported in C. Dragonetti, L. Falciola, P. Mussini, S. Righetto, D. Roberto, R. Ugo, A. Valore, F. De Angelis, S. Fantacci, A. Sgamellotti, M. Ramon and M. Muccini, Inorg. Chem., 2007, 46, 8533-8547.
Complex 10. Yield: 59%. 1H NMR (400 MHz, Acetone-d6) δ 8.73 (d J=5.6 Hz, 2H), 8.54 (d, J=8.4 Hz, 2H), 8.48 (d, J=8.4 Hz, 2H), 8.41 (s, 2H), 8.30 (d, J=1.2 Hz, 2H), 8.27 (d, J=8.0 Hz, 2H), 7.81 (d, J=8.0 Hz, 2H), 7.33-7.27 (m, 4H), 7.22 (t, J=8.0 Hz, 2H), 6.97 (t, J=7.6 Hz, 2H), 6.88 (t, J=9.8 Hz, 2H), 6.65 (d J=7.2 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 171.1, 150.9, 150.1, 148.4, 148.3, 147.0, 145.8, 141.3, 135.6, 131.9, 131.5, 130.1, 130.0, 128.8, 128.7, 128.4, 127.7, 126.0, 125.0, 124.1, 119.0; HRMS: Calcd for C42H26Cl2IrN4[M−PF6]+: 849.1164, Found: 849.1168. Anal: (C42H26Cl2IrN4PF6+H2O) C, H, N: calcd 49.81, 2.79, 5.53; found 49.63, 2.85, 5.47.
Complex 11. Yield: 58%. 1H NMR (400 MHz, Acetone-d6) δ 8.53 (d, J=8.4 Hz, 2H), 8.47 (d, J=8.8 Hz, 2H), 8.35 (d, J=8.8 Hz, 2H), 8.06 (d, J=8.0 Hz, 2H), 7.88 (d, J=8.0 Hz, 2H), 7.82-7.79 (m, 4H), 7.44 (d, J=8.8 Hz, 2H), 7.37 (t, J=1.2 Hz, 2H), 7.08 (t, J=8.0 Hz, 2H), 6.99 (t, J=8.0 Hz, 2H), 6.81 (t, J=1.2 Hz, 2H), 6.49 (d, J=8.0 Hz, 2H), 2.81 (s, 6H); 13C NMR (100 MHz, Acetone-d6) δ 171.8, 165.4, 149.2, 148.9, 148.6, 147.1, 141.0, 139.5, 134.0, 131.5, 131.1, 130.1, 130.0, 128.6, 128.4, 128.0, 127.4, 127.3, 124.8, 123.5, 118.2, 25.2; HRMS: calcd for C44H32IrN4[M−PF6]+: 809.2256 found: 809.2304. Anal: (C44H32IrN4PF6+2H2O) C, H, N: calcd 53.38, 3.67, 5.66; found 53.10, 3.50, 5.65.
Complex 12. Yield: 63%. 1HNMR (400 MHz; Acetone-d6): δ 8.52 (d, J=8.5 Hz, 2H), 8.34 (d, J=8.9 Hz, 2H), 8.06 (dd, J=7.9, 1.2 Hz, 2H), 7.96 (dd, J=8.1, 1.4 Hz, 2H), 7.77 (s, 2H), 7.68-7.62 (m, 10H), 7.51 (dd, J=7.4, 2.1 Hz, 4H), 7.46 (ddd, J=8.0, 7.0, 1.0 Hz, 2H), 7.15-7.06 (m, 4H), 6.85-6.81 (m, 2H), 6.58 (dd, J=7.8, 0.9 Hz, 2H), 2.08 (s, 6H). 13C NMR (100 MHz; Acetone-d6): δ 170.9, 163.9, 150.5, 148.75, 148.55, 147.6, 146.1, 140.0, 135.8, 133.4, 130.6, 130.1, 129.60, 129.53, 129.19, 129.10, 127.8, 127.35, 127.22, 126.8, 126.6, 124.2, 124.0, 122.6, 117.4, 24.3. MALDI-TOF-HRMS: Calcd: 961.2880, Found: 961.2846. Anal. Calcd for C56H40F6IrN4P+2H2O, C, 58.89; H, 3.88, N, 4.91, Found: C, 59.115; H, 3.58; N, 4.935.
Complex 13. 1H NMR (400 MHz, Acetone-d6) δ 9.62 (d, J=8.0 Hz, 2H), 9.19 (s, 2H), 8.87 (d, J=5.2 Hz, 2H), 8.57 (d, J=8.4 Hz, 2H), 8.49 (d, J=8.4 Hz, 2H), 8.34 (d, J=1.2 Hz, 2H), 8.32-8.23 (m, 2H), 7.79 (d, J=8.2 Hz, 2H), 7.38 (d, J=8.4 Hz, 2H), 7.27-7.23 (m, 4H), 6.92-6.71 (m, 4H), 6.69 (d, J=0.8 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 171.3, 151.3, 151.1, 149.0, 148.5, 147.8, 147.1, 141.3, 140.0, 136.1, 135.6, 131.7, 131.5, 130.6, 130.1, 128.9, 128.7, 128.4, 127.6, 125.3, 124.1, 119.0; HRMS: Calcd for C44H28IrN6[M−PF6]+: 833.2005, Found: 833.1926. Anal: (C44H28IrN6PF6+2.5H2O) C, H, N: calcd51.66, 3.25, 8.32; found 51.77, 3.08, 8.64.
Complex 14. Yield: 60%. 1H NMR (400 MHz, Acetone-d6) δ 8.94 (d, J=1.6 Hz, 2H), 8.55-8.53 (m, 4H), 8.87 (d, J=5.2 Hz, 2H), 8.39 (d, J=6.0 Hz, 2H), 8.28 (d, J=7.6 Hz, 2H), 8.02 (d, J=5.6 Hz, 2H), 7.90-7.88 (m, 6H), 7.58-7.53 (m, 8H), 7.43 (t, J=8.0 Hz, 2H), 7.20-7.18 (m, 4H), 6.86 (t, J=8.0 Hz, 2H), 6.61 (d, J=8.0 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 171.3, 157.2, 152.3, 151.8, 149.1, 148.5, 147.0, 141.3, 136.2, 135.4, 132.0, 131.6, 131.5, 130.3, 128.9, 128.4, 127.7, 126.4, 125.8, 123.8, 122.7, 119.0; HRMS: Calcd for Cs2H36IrN6[M−PF6]+: 909.2569 Found: 909.2590. Anal: (C52H36IrN6PF6) C, H, N: calcd59.25, 3.44, 5.32; found 59.03, 3.63, 5.10.
Complex 15. Yield: 54%. 1H NMR (400 MHz, Acetone-d6) δ 9.09 (d, J=8.4 Hz, 1H), 8.89 (d, J=7.6 Hz, 1H), 8.81 (d, J=4.8 Hz, 1H), 8.72 (d, J=4.8 Hz, 1H), 8.61 (s, 1H), 8.27-8.23 (m, 1H), 8.16-8.13 (m, 1H), 7.93 (d, J=7.2 Hz, 2H), 7.55 (d, J=8.0 Hz, 2H), 7.16 (t, J=8.0 Hz, 2H), 7.09 (t, J=7.6 Hz, 2H), 6.93-6.90 (m, 2H), 6.79-6.75 (m, 2H), 6.54-6.51 (m, 2H), 5.54 (t, J=7.6 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 164.7, 153.1, 152.5, 149.5, 149.2, 149.0, 147.5, 139.7, 139.6, 137.9, 135.4, 134.3, 133.4, 133.3, 133.2, 131.5, 130.7, 130.6, 130.3, 129.1, 127.5, 127.4, 124.2, 124.1, 123.7, 123.6, 123.5, 122.5, 113.4, 113.3, 112.8; HRMS: Calcd for C38H25ClIrN6[M−PF6]+: 793.1458 Found: 793.1422. Anal.: (C38H25ClIrN6PF6+H2O) C, H, N: calcd47.73, 2.85, 8.79; found 47.75, 3.16, 8.50.
Complex 16. Yield: 53%. 1H NMR (400 MHz, Acetone-d6) δ 9.04 (dd, J=8.5, 1.3 Hz, 1H), 8.84 (dd, J=8.3, 1.3 Hz, 1H), 8.62 (s, 1H), 8.54 (dd, J=5.1, 1.3 Hz, 1H), 8.46 (dd, J=5.0, 1.4 Hz, 1H), 8.18 (dd, J=8.5, 5.1 Hz, 1H), 8.07 (dd, J=8.3, 5.1 Hz, 1H), 7.45-7.41 (m, 2H), 7.29 (dd, J=7.3, 2.5 Hz, 2H), 7.20-7.13 (m, 2H), 7.06 (tt, J=7.4, 1.2 Hz, 2H), 5.00 (dtd, J=10.6, 8.6, 2.3 Hz, 2H), 4.60 (dtd, J=10.6, 8.6, 5.2 Hz, 2H), 3.76 (dddd, J=12.0, 10.7, 8.5, 3.4 Hz, 2H), 3.08 (dddd, J=11.9, 10.8, 7.9, 3.9 Hz, 2H); 13C NMR (100 MHz, Acetone-d6) δ 181.34, 153.95, 153.43, 150.56, 150.30, 149.60, 148.13, 138.31, 135.79, 133.87, 133.31, 132.18, 131.66, 131.19, 130.05, 128.21, 128.08, 127.63, 122.88, 72.39, 50.31; MALDI-TOF-HRMS: Calcd For C30H23ClIrN4O2 [M]+: 699.1126, Found: 699.1136; Anal: (C30H23ClIrN4O2PF6) C, H, N: calcd42.68, 2.75, 6.64, found 42.98, 2.87, 6.71.
Complex 17. Reported in P. M. Griffiths, F. Loiseau, F. Puntoriero, S. Serroni and S. Campagna, Chem.Comm., 2000, 2297-2298.
Total Cell Extract Preparation
The TRAMPC1 (ATCC® CRL2730™) cell line were purchased from American Type Culture Collection (Manassas, Va. 20108 USA). Prostate cancer cells were trypsinized and resuspended in TE buffer (10 mM Tris-HCl 7.4, 1 mM EDTA). After incubation on ice for 10 minutes, the lysate was centrifuged and the supernatant was collected.
Luminescence Response of Ir(III) Complexes 1-17 Towards Different Forms of DNA
The G-quadruplex DNA-forming sequence (PS2. M) was annealed in Tris-HCl buffer (20 mM Tris, 100 mM KCl, pH 7.0) and were stored at −20° C. or less than −20° C. before use. Complex 1-17 (1 μM) was added to 5 μM of ssDNA, dsDNA or PS2. M G-quadruplex DNA in Tris-HCl buffer (20 mM Tris, pH 7.0).
Detection of Enzymes Activities
The random-coil oligonucleotides ON1 (100 μM) and ON2 (100 μM) were incubated in Tris buffer (20 mM, pH 7.0). The solution was heated at a temperature of 72-98° C., in particular 95° C., for at least 30 seconds in particular 10 min, cooled to room temperature at 0.1° C./s, and further incubated at room temperature for 1 hour to ensure formation of the duplex substrate. The annealed product was stored at −20° C. before use. For assaying enzyme activity, 50 μL of Tris buffered solution (5 mM Tris-HCl, 5 mM NaCl, 1 mM MgCl2, 1 mM ATP, 0.1 mM DTT, pH 7.9) with the indicated concentrations of helicase or S1, Endo, DpnI, ExoI, EcoRI, RNase, DNase, and SSB were added to a solution containing the duplex substrate (0.25 μM). The mixture was heated to 37° C. for at least 30 minutes, e.g. 2 hours, to allow the indicated enzymes-catalyzed unwinding of the duplex substrate to take place. The duplex unwinding reaction was quenched by the addition of EDTA at a final concentration of 20 mM, and the mixture was subsequently diluted using Tris buffer (20 mM Tris, 20 mM KCl, 150 mM NH4Ac, pH 7.2) to a final volume of 500 μL. Finally, 1 μM of complex 9 or suramin, TBBT and ciprofloxacin were added to the mixture. Emission spectra were recorded in the 500-720 nm range using an excitation wavelength of 360 nm.
For the detection of helicase activity in cell extract, 50 μL of Tris buffered solution (5 mM Tris-HCl, 5 mM NaCl, 1 mM MgCl2, 1 mM ATP, 0.1 mM DTT, pH 7.9) and the indicated concentrations of helicase were added to a solution containing the duplex substrate (0.25 μM) and cell extract. The mixture was heated to 37° C. for at least 30 minutes, e.g. 2 hours, to allow the helicase-catalyzed unwinding of the duplex substrate to take place. The duplex unwinding reaction was quenched by the addition of EDTA at a final concentration of 20 mM, and the mixture was subsequently diluted using Tris buffer (20 mM Tris, 20 mM KCl, 150 mM NH4Ac, pH 7.2) to a final volume of 500 μL. Finally, 1 μM of complex 9 was added to the mixture. Emission spectra were recorded in the 500-720 nm range using an excitation wavelength of 360 nm.
A library of 17 luminescent Ir(III) complexes containing various ĈN and N̂N ligands were screened according to the present invention for their ability to act as G-quadruplex probes. In the preferred embodiment, Ir(III) complex 9 was used to be a G-quadruplex-selective luminescent probe. The inventors also developed a label-free luminescent assay for helicase activity utilizing the G-quadruplex-selective property of complex 9. Compared to previously reported radiographic or luminescent assays that require multiple steps and/or the use of isotopically or fluorescently labeled nucleic acids, the present invention's label-free approach is faster and cost-effective as expensive and tedious pre-labeling or immobilization steps are avoided. On the other hand, the labeling of an oligonucleotide with a fluorophore may disrupt the interaction between the oligonucleotide with its cognate target. Finally, the present invention developed a label-free DNA-based detection platform employs luminescent transition metal complexes, which offer several advantages compared to the relatively more popular organic fluorophores, such as long phosphorescence lifetimes, large Stokes shift values and modular syntheses. Additionally, the assay could function effectively in diluted cell extract, and its application for the screening of helicase inhibitors was also demonstrated. It is envisioned that the present invention can be applied in various applications, in particular in biochemical and biomedical research.
If desired, the different functions discussed herein may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the above-described features may be optional or may be combined. Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described.
Other aspects and advantages of the invention will be apparent to those skilled in the art from a review of the preceding description.
Throughout this specification, unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. It is also noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as “comprises”, “comprised”, “comprising” and the like can have the meaning attributed to it in U.S. Patent law; e.g., they can mean “includes”, “included”, “including”, and the like; and that terms such as “consisting essentially of” and “consists essentially of” have the meaning ascribed to them in U.S. Patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.
Other definitions for selected terms used herein may be found within the detailed description of the invention and apply throughout. Unless otherwise defined, all other technical terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the invention belongs.
Citation or identification of any reference in this document shall not be construed as an admission that such reference is available as prior art for the present application.