1. Field of the Invention
The present invention relates to a method of detecting a reaction of a DNA and a DNA-binding protein, more particularly, a method of detecting the reaction using fluorescence correlation spectroscopy (FCS).
2. Description of the Related Art
Patent Publication 1 (Japanese Patent No. 3169610) describes a method of screening a molecule which can bind to a test sequence selected in a double-stranded DNA.
Patent Publication 2 (Japanese Patent No. 2953783) describes an effective method of identifying a drug which is active at a gene transcription level.
Patent Publication 3 (Jpn. Pat. Appln. KOKAI Publication No. 2001-321199) describes a method of quantitating a DNA-binding protein in a biological sample.
Patent Publication 4 (Jpn. Pat. Appln. KOKAI Publication No. 2003-88369) describes a method of detecting DNA endonuclease activity utilizing fluorescence correlation spectroscopy (FCS), and a relationship between a size of a molecular weight and a length of a translational diffusion time.
Patent Publication 5 (Jpn. Pat. Appln. KOKAI Publication No. 2002-543414) describes a method of characterizing a fluorescent molecule or other particle in a sample, and describes that a translational diffusion time is obtained from fluorescence intensity multiple distribution analysis (FIMDA) and fluorescence autoconvoluted intensity distribution analysis (FACID).
Among the aforementioned prior art, the detecting methods described in Patent Publication 2 (Japanese Patent No. 2953783), Patent Publication 3 (Jpn. Pat.
Appln. KOKAI Publication No. 2001-321199) and Patent Publication 4 (Jpn. Pat. Appln. KOKAI Publication No. 2003-88369) use a radioisotope, or perform selection by an electrophoresis method or immobilization of a molecule on a solid substrate, when a particular sequence or a molecule having a particular sequence is detected, and therefore there is a problem that operation is troublesome and it takes a time for obtaining detection results.
Patent Publication 4 (Jpn. Pat. Appln. KOKAI Publication No. 2003-88369) and Patent Publication 5 (Jpn. Pat. Appln. KOKAI Publication No. 2002-543414) do not describe a method of detecting a reaction of a DNA and a DNA-binding protein.
An object of the present invention is to provide a method of detecting a reaction of a DNA and a DNA-binding protein simply and in a short time.
A feature of the present invention which attains the aforementioned object is to mix a solution containing a fluorescently labeled double-stranded DNA with a transcription factor TFIID, and to obtain a translational diffusion time of a substance having a fluorescent label in the mixed solution by fluorescence correlation spectroscopy. According to the present invention, information for obtaining a translational diffusion time is obtained by mixing a solution and measuring by fluorescence correlation spectroscopy. Therefore, according to the present invention, a reaction of a double-stranded DNA and a transcription factor TFIID which is a DNA-binding protein can be simply detected in a short time, without performing troublesome operation such as utilization of a radioisotope and selection by an electrophoresis method or immobilization of a molecule on a solid substrate.
In addition, when each experiment is performed using a solution having a double-stranded DNA concentration in a sample of 2 nM to 5 nM, the particle number in a confocal volume becomes 2 to 5 at the time of FCS measurement. As a result, FCS measurement can be performed precisely, and thereby a binding reaction between a double-stranded DNA and a DNA-binding protein can be detected precisely. In particular, even when the particle number in a confocal volume is 2 to 3, precise detection is possible. Therefore, the detection method of the present invention is suitable also when a large amount of a double-stranded DNA or a DNA-binding protein can not be prepared, or when detection result is desired with only a small amount of a sample.
(2) Another feature of the present invention is to mix a solution containing a fluorescently labeled double-stranded DNA, a transcription factor TFIID and a transcription factor TFIIB, and to obtain a translational diffusion time of a substance having a fluorescent label in the mixed solution by fluorescence correlation spectroscopy. In this case, a translational diffusion time of a reaction product is extended by adding a transcription factor TFIIB, and therefore the binding can be detected more precisely. In addition, when an anti-TFIIB antibody is further added to the mixed solution, a translational diffusion time of a reaction product is further extended, and therefore the binding can be detected more precisely.
In the case of detecting whether or not a transcription factor TFIID-binding sequence is contained in a double-stranded DNA, a fluorescent label is attached to a double-stranded DNA, and any method of claims 1 to 3 is performed. If binding is detected, this results in that a transcription factor TFIID-binding sequence is contained in a double-stranded DNA.
In the case of detecting whether or not a transcription factor TFIID is contained in a test solution, the test solution and a fluorescently labeled double-stranded DNA having a transcription factor TFIID-binding sequence are mixed, and a translational diffusion time of a substance having a fluorescent label in the mixed solution is obtained by fluorescence correlation spectroscopy. In this case, the presence of a transcription factor TFIID can be detected more precisely, by adding either a transcription factor TFIIB, or adding a transcription factor TFIIB and an anti-TFIIB antibody.
Another feature of the present invention is to mix a solution to be detected with a solution containing a fluorescently labeled double-stranded DNA having a transcription factor AP-1-binding sequence, and to obtain a translational diffusion time of a substance having a fluorescent label in a mixed solution by fluorescence correlation spectroscopy. According to this feature, information for obtaining a translational diffusion time is obtained by mixing a solution and measuring by fluorescence correlation spectroscopy. Therefore, according to this feature, a reaction of a double-stranded DNA and a transcription factor AP-1 which is a DNA-binding protein can be simply detected in a short time, without performing troublesome operation such as utilization of a radioisotope and selection by an electrophoresis method or immobilization of a molecule on a solid substrate.
Another feature of the present invention is to mix a solution containing a double-stranded DNA to be detected, a transcription factor AP-1, and a fluorescently labeled double-stranded DNA having a transcription factor AP-1-binding sequence, and to obtain a translational diffusion time of a substance having a fluorescent label in a mixed solution by fluorescence correlation spectroscopy.
According to this feature, information for obtaining a translational diffusion time is obtained by mixing a solution and measuring by fluorescence correlation spectroscopy. Therefore, according to this feature, a reaction of a double-stranded DNA and a transcription factor AP-1 which is a DNA-binding protein can be simply detected in a short time, without performing troublesome operation such as utilization of a radioisotope and selection by an electrophoresis method or immobilization of a molecule on a solid substrate.
Another feature of the present invention is to stepwise increase an amount of a solution to be detected, when the solution to be detected is mixed with a fluorescently labeled double-stranded DNA having a transcription factor-binding sequence, and to obtain a translational diffusion time of a substance having a fluorescent label in the mixed solution by fluorescence correlation spectroscopy at each stage. In the case where a transcription factor AP-1 is detected in a cell nucleus extract, a double-stranded DNA having a transcription factor AP-1-binding site is used as a fluorescently labeled double-stranded DNA, and an amount of a cell nucleus extract solution is increased stepwise. In the case where a transcription factor NF-κB is detected in a cell nucleus extract, a double-stranded DNA having a transcription factor NF-κB-binding site is used as a fluorescently labeled double-stranded DNA, an amount of a cell nucleus extract solution is increased stepwise.
Another feature of the present invention is to extract a cell nucleus after adding a tumor necrosis factor TNF-α to the cell, and then mix the obtained cell nucleus extract and a fluorescently labeled double-stranded DNA, and to obtain a translational diffusion time of a substance having a fluorescent label in a mixed solution by fluorescence correlation spectroscopy. In the case where a transcriptional factor AP-1 is detected in a nucleus extract of HeLa cell, stimulation may be performed for 30 minutes with 50 ng/ml of a tumor necrosis factor TNF-α. In the case where a transcription factor AP-1 is detected in a nucleus extract of HeLa cell, stimulation may be performed for 15 minutes. The stimulation with a tumor necrosis factor TNF-α activates a transcription factor in a cell nucleus extract, and makes it easy to bind the activated transcription factor and the double-stranded DNA, and as a result, a transcription factor can be detected precisely.
Another feature of the present invention is to extract a cell nucleus after adding APDC and then a tumor necrosis factor TNF-α to the cell, and mix the obtained cell nucleus extract and a fluorescently labeled double-stranded DNA having a transcription factor AP-1-binding sequence, and to obtain a translational diffusion time of a substance having a fluorescent label in a mixed solution by fluorescence correlation spectroscopy. According to the present invention, the stimulation with APDC and a tumor necrosis factor TNF-α activates a transcription factor AP-1 in a cell nucleus extract, and makes it easy to bind the activated transcription factor and the double-stranded DNA, and as a result, a transcription factor AP-1 can be detected precisely. A time for stimulation with APDC may be 2 hours, and a time for stimulation with a tumor necrosis factor TNF-α may be 30 minutes.
Another feature of the present invention is to compare a translational diffusion time of a reaction product in the case of stimulation with only a tumor necrosis factor TNF-α, with a translational diffusion time of a reaction product in the case of stimulation with both APDC (Ammonium pyrrolidinedithiocarbamate) and a tumor necrosis factor TNF-α, when a transcription factor NF-κB is detected in a cell nucleus extract, based on a translational diffusion time of a reaction product resulting from the reaction of a transcription factor NF-κB and a fluorescently labeled double-stranded DNA having a transcription factor NF-κB-binding sequence. A tumor necrosis factor TNF-α activates a transcription factor NF-κB, and APDC suppresses activation of a transcription factor NF-κB. Therefore, if a translational diffusion time is greater in the case of the stimulation with only a tumor necrosis factor TNF-α, it can be the that a transcription factor NF-κB is contained in a cell nucleus extract. According to this feature, a transcription factor NF-κB can be detected precisely.
When the particle number in a confocal volume is 2 to 5 at the time of FCS measurement, FCS measurement can be performed precisely, and thus a binding reaction between a double-stranded DNA and a DNA-binding protein can be detected precisely. In particular, even when the particle number in a confocal volume is 2 to 3, precise detection is possible. Therefore, the detection method of the present invention is suitable also when a large amount of a double-stranded DNA or a DNA-binding protein can not be prepared, or when detection result is desired with only a small amount of a sample.
In addition, according to the present invention, even when a crude sample such as an unpurified cell nucleus extract is used, a binding reaction between a double-stranded DNA and a transcription factor can be detected precisely. Further, according to the present invention, a reaction product resulting from an inherent double-stranded DNA and a transcription factor can be detected without preventing a binding reaction between them, even in the presence of a double-stranded DNA which is different, only by one base or two bases, from the inherent double-stranded DNA to which a transcription factor inherently binds. Therefore, a measuring method by FCS according to the present invention is useful for detecting a particular DNA-binding protein (such as transcription factor or intranuclear receptor) present in a crude sample such as a cell nucleus extract.
Reference numerals in the figures denotes as follows:
In embodiments of the present invention, various experiments are performed for detecting binding of a DNA and a protein which binds to a particular sequence part in a DNA (hereinafter, referred to as DNA binding protein). Embodiments will be explained as an example by each purpose of experiments. In experiments, after a process of a reaction of a biomolecule, FCS measurement is performed, and a translational diffusion time of the biomolecule is obtained.
Since a magnitude of a translational diffusion time shows a magnitude of a molecular weight, increase or decrease in a molecular weight is seen by comparing a translationial diffusion time before and after a reaction. Increase in a molecular weight shows a binding reaction between biomolecules, decrease in a molecular weight shows a degradation reaction of a biomolecule, and maintenance of a molecular weight shows that there was neither binding nor degradation in a biomolecule.
Therefore, a binding reaction between a DNA and a DNA-binding protein can be detected by detecting increase in a translational diffusion time of a DNA after a reaction of a DNA and a DNA-binding protein, compared with a translational diffusion time of the DNA before the reaction.
According to the present invention, information for obtaining a translational diffusion time is obtained by mixing solutions and measuring by fluorescence correlation spectroscopy. As a result, a reaction of a DNA and a DNA-binding protein can be detected simply and in a short time, without performing troublesome operation such as utilization of a radioisotope and selection by an electrophoresis method, and immobilization of a molecule on a solid substrate.
In addition, according to the present invention, even when a crude sample such as a cell nucleus extract which has not been purified is used, a binding reaction of a double-stranded DNA and a transcription factor can be detected precisely. Further, according to the present invention, a reaction product resulting from an inherent double-stranded DNA and a transcription factor can be detected without preventing a binding reaction between them, even in the presence of a double-stranded DNA which is different, only by one base or two bases, from the inherent double-stranded DNA to which a transcription factor inherently binds. Therefore, a measuring method by FCS according to the present invention is useful for detecting a particular DNA-binding protein (such as transcription factor or intranuclear receptor) present in a crude sample such as a cell nucleus extract.
Summary of experimental contents and experimental results of each Example is shown in Tables 1 to 4, and detail of each Example will be explained later.
In the present Example, a binding reaction of a DNA, and a transcription factor TFIID and a transcription factor TFIIB which are a DNA-binding protein is detected.
As a DNA, a double-stranded DNA 10 shown in
As a DNA-binding protein, a transcription factor TFIID 1 containing TBP (TATA binding protein) and a transcription factor TFIIB 2 are used. Further, as an antibody which binds to a transcription factor TFIIB 2, an anti-TFIIB antibody 3 is used.
As a transcription factor TFIID 1, a transcription factor TFIIB 2 and an anti-TFIIB antibody 3, the following shown in Table 5 are used. A length of a double-stranded DNA 10 is suitably 100 bp or less, particularly desirably 10 to 50 bp. When a length of a double-stranded DNA is in this range, result of FCS measurement is obtained precisely, because an incremental ratio of a molecular weight of the double-stranded DNA is sufficiently great in the case where the double-stranded DNA binds to a transcription factor.
<Preparation and Adjustment of Double-Stranded DNA 10>
First, a double-stranded DNA 10 used in detection experiment is prepared. For preparing the double-stranded DNA 10, the following shown in Table 6 are used.
The oligo DNA 11 and the oligo DNA 12 are reacted in the STE buffer, and the reaction is heated at 95° C. for 5 minutes, and slowly cooled to 20° C. Then, the reaction solution is allowed to stand in a PCR instrument or at room temperature to cause annealing of the oligo DNAs. Exonuclease I and MgCl2 are added to the annealed reaction solution, followed by a reaction at 37° C. for 1 hour. Added amounts of Exonuclease I and MgCl2 are 1 μl relative to 100 μl of the reaction solution, respectively. Thereafter, the reaction solution is purified with a purification kit MERmaid SPIN (BIO 101), and a double-stranded DNA 10 consisting of an oligo DNA 11 and an oligo DNA 12 is extracted with dW.
The extracted double-stranded DNA 10 is measured by fluorescence correlation spectroscopy (FCS), and diluted with dW so as to be around 20 of the particle number (n), thereby preparing a solution of a double-stranded DNA 10 (a concentration of the double-stranded DNA 10 in the solution is 2 nM to 5 nM). When each experiment is performed using the solution of a double-stranded DNA having the particle number (n) of around 20, the particle number in a confocal volume is 2 to 5 at the time of FCS measurement. As a result, FCS measurement is performed precisely, and a binding reaction of a double-stranded DNA and a DNA-binding protein can be detected precisely.
[Experiment 1-1] Experiment of a reaction of a (fluorescently labeled) DNA having a TFIID-binding sequence with a transcription factor TFIID, a transcription factor TFIIB and an anti-TFIIB antibody
(1) FCS Measurement of an Unreacted Double-Stranded DNA 10
The following solution shown in Table 7 is placed in a container, stirred gently with a tip of a chip, slightly tapped, and allowed to stand at room temperature for 30 minutes. Then, FCS measurement is performed to obtain a translational diffusion time.
A DNA-binding protein is not added at this stage, and thus a DNA-protein complex is not formed, and a double-stranded DNA 10 remains unreacted.
(2) Reaction of a Double-Stranded DNA 10 and a Transcription Factor TFIID 1
The following solution shown in Table 10 is placed in a container, stirred gently with a tip of a chip, slightly tapped, and allowed to stand at room temperature for 30 minutes. Then, FCS measurement is performed to obtain a translational diffusion time. A transcription factor TFIID has been adjusted with a buffer for TFIID to 25 ng/μl in advance.
The obtained product is a DNA-protein complex in which a transcription factor TFIID 1 is bound to a binding site 16 of a double-stranded DNA 10.
(3) Reaction of the Reacted Solution of (2) and a Transcription Factor TFIIB 2
1 μl of 85 ng/μl transcription factor TFIIB 2 is added to 20 μl of the reacted solution (2), gently mixed with a tip of a chip, slightly tapped, and allowed to stand at room temperature for 20 minutes. Then, FCS measurement is performed to obtain a translational diffusion time.
The product is a DNA-protein complex in which a transcription factor TFIID 1 and a transcription factor TFIIB 2 are bound to a binding site 16 of a double-stranded DNA 10.
(4) Reaction of the Reacted Solution of (3) and an Anti-TFIIB Antibody 3
1 μl of an anti-TFIIB antibody 3 is added to 20 μl of the reacted solution of (3), gently mixed with a tip of a chip, slightly tapped, and allowed to stand at room temperature for 20 minutes. Then, FCS measurement is performed to obtain a translational diffusion time.
The product is a DNA-protein complex in which a transcription factor TFIID 1 and a transcription factor TFIIB 2 are bound to a binding site 16 of a double-stranded DNA 10, and an anti-TFIIB antibody 3 is further bound to a transcription factor to TFIIB 2.
[Experiment 1-2] Experiment of a reaction of a (fluorescently labeled) DNA having no TFIID-binding sequence with a transcription factor TFIID, a transcription factor TFIIB and an anti-TFIIB antibody
The same reaction experiment as Experiment 1-1 (1) to (4) was performed using an Escherichia coli-derived double-stranded random sequence DNA 17, which dose not contain a binding site 16 to which a transcription factor TFIID binds, in place of a double-stranded DNA 10.
Translational diffusion times of the products obtained in Experiments 1-1 and 1-2 are shown in
Therefore, in the case of detecting whether or not a binding site 16 for a transcription factor TFIID 1 and a transcription factor TFIIB 2 is present in a fluorescently labeled DNA, the presence of a binding site 16 can be detected precisely by adding all of a transcription factor TFIID 1, a transcription factor TFIIB 2 and an anti-TFIIB antibody 3 to a DNA containing solution, and measuring a DNA-protein complex by FCS to obtain a translational diffusion time.
In addition, in the case of detecting whether or not a transcription factor TFIID 1 is present in a solution containing some kind of DNA-binding protein, the presence of a transcription factor TFIID 1 can be detected precisely by adding a transcription factor TFIIB 2 and an anti-TFIIB antibody 3 together with a fluorescently labeled double-stranded DNA 10 having a binding site 16 to a reaction solution, and measuring a DNA-protein complex by FCS to obtain a translational diffusion time.
In the present Example, regarding a binding reaction of a DNA and a transcription factor AP-1 which is a DNA-binding protein, dependency on a concentration of a transcription factor AP-1 is examined.
As a DNA, a double-stranded DNA 20 shown in
As a DNA-binding protein, the following transcription factor AP-15 shown in Table 11 is used.
<Preparation and Adjustment of Double-Stranded DNA 20>
First, a double-stranded DNA 20 used in detection experiment is prepared. For preparing the double-stranded DNA 20, the following shown in Table 12 are used.
The oligo DNA 21 and the oligo DNA 22 are reacted in the STE buffer, and the reaction is heated at 95° C. for 5 minutes, and slowly cooled to 20° C. Then, the reaction solution is allowed to stand in a PCR instrument or at room temperature to cause annealing of the oligo DNAS. Exonuclease I and MgCl2 are added to the annealed reaction solution, followed by a reaction at 37° C. for 1 hour. Added amounts of Exonuclease I and MgCl2 are 1 μl relative to 100 μl of the reaction solution, respectively. Thereafter, the reaction solution is purified by MERmaid SPIN (BIO 101), and a double-stranded DNA 20 consisting of an oligo DNA 21 and an oligo DNA 22 is extracted with dW.
The extracted double-stranded DNA 20 is measured by fluorescence correlation spectroscopy (FCS), and diluted with dW so as to be around 20 to 30 of the particle number (n), thereby preparing a solution of a double-stranded DNA 20.
An unlabeled double-stranded DNA 24 is prepared and extracted in the same way as the double-stranded DNA 20, by using an oligo DNA which has the same sequence but is not fluorescently labeled, in place of the oligo DNA 21 (labeled with a fluorescent label 4). An absorbance (OD260 value) of the extracted double-stranded DNA 24 is measured, and the extract is diluted with dW to an OD260 value of 20, thereby preparing a solution of a double-stranded DNA 24.
[Experiment 2-1] Experiment of a reaction of (fluorescently labeled) DNA having a AP-1-binding sequence and a transcription factor AP-1. The Experiment was performed by adding a transcription factor AP-1 at a different concentration.
In a reaction using a transcription factor AP-15 having a concentration of 0 ng/μl, a DNA-binding protein is not added, and thus a DNA-protein complex is not present, and a double-stranded DNA 20 remains unreacted (see
At a concentration of a transcription factor AP-1 of 600 ng/μl, a translational diffusion time of the product was greatly extended, and concentration dependency was recognized. A difference in a translational diffusion time at a concentration of a transcription factor AP-1 from 600 ng/μl to 1500 ng/μl is small, as compared with a difference in a translational diffusion time at a concentration of up to 300 ng/μl. Accordingly it can be said that binding of a double-stranded DNA 20 and a transcription factor AP-15 approaches saturation at a concentration of 600 ng/μl (see
In addition, an existence ratio of an unreacted double-stranded DNA 20 (K1) having a translational diffusion time of 432 μs and the product (K2) having a translational diffusion time of 862.4 μs is approximately constant at a concentration of a transcription factor AP-1 of 600 ng/μl or higher. Therefore, a binding reaction is sufficiently generated at a concentration of 600 ng/μl. When a concentration of a transcription factor AP-1 is 1500 ng/μl, it is thought that binding of a transcription factor AP-1 with a double-stranded DNA 20 having a constant concentration is in the saturated state (see
[Experiment 2-2] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a transcription factor AP-1, when an (unlabeled) double-stranded DNA having an AP-1-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
The following solution shown in Table 16 is placed in a container, gently stirred with a tip of a chip, slightly tapped, and reacted at 34° C. for 1 hour. Then, FCS measurement is performed to obtain a translational diffusion time. FCS measurement was performed five times after each reaction under the condition of irradiation of laser light at a wavelength of 543 nm and an output of 100 μW for 15 seconds per one time.
[Experiment 2-3] Experiment of a reaction of an (unlabeled) DNA having no AP-1-binding sequence and a transcription factor AP-1. The Experiment was performed by stepwise changing a concentration of the (unlabeled) DNA having no AP-1-binding sequence.
The following solution shown in Table 17 is placed in a container, gently stirred with a tip of a chip, slightly tapped, and reacted at 34° C. for 1 hour. Then, FCS measurement is performed to obtain a translational diffusion time. FCS measurement was performed five times after each reaction under the condition of irradiation of laser light at a wavelength of 543 nm and an output of 100 μW for 15 seconds per one time.
From results of Experiment 2-2, a translational diffusion time of a DNA-protein complex of a double-stranded DNA 20 and a transcription factor AP-15 approached a transcription diffusion time of an unreacted DNA, by adding an unlabeled double-stranded DNA 24. Therefore, it was confirmed that binding of a double-stranded DNA 20 and a transcription factor AP-1 is inhibited (see
In addition, from results of Experiment 2-3, a transcriptional diffusion time of a DNA-protein complex of a double-stranded DNA 20 and a transcription factor AP-15 did not approach a translational diffusion time of an unreacted DNA, even when an unlabeled double-stranded DNA 18 was added (see
From results of competition assay performed in the above Experiment 2-2 and Experiment 2-3, it was demonstrated that a transcription factor AP-1 binds to a specific sequence of a double-stranded DNA.
In the case of detecting whether or not a transcription factor AP-1 is contained in a protein containing solution, the presence of a transcription factor AP-1 can be detected by stepwise adding a protein containing solution to a solution containing a fluorescently labeled double-stranded DNA, and measuring the product by FCS to obtain a translational diffusion time.
In the present Example, regarding a binding reaction of a DNA and a transcription factor in a cell nucleus extract, dependency on a concentration of a cell nucleus extract is examined. As a DNA, the double-stranded DNA 20 used in Example 2 is used.
<Preparation of a Nucleus Extract from a Cell>
For preparing a nucleus extract from a cell, the following shown in Table 18 are used.
HeLa cells are put into the confluent state in a 10 cm dish. After the cells are washed with PBS(−) two times, a medium is exchanged with 0.5% FCS/DMEM, followed by stimulation with 100 ng/ml TNF-α. Cells after two hours from stimulation are washed with PBS(−) two times, and the following operation is performed to obtain an nucleus extract.
(i) Cells are recovered in 1 ml of an ice-cooled low osmotic pressure lysis buffer with a scraper. The buffer contains 10 mM of HEPES at pH 7.4, 10 mM of KCl, 1.5 mM of dithiothreitol, E-64-containing protease inhibitor cocktail, leupeptin, pepstatin A, bestatin, and aprotinin.
(ii) After 15 minutes, incubation is performed at an ice temperature, and 0.05% NP-40 is added. Thereafter, it is centrifuged at 1000 g at 4° C. for 1 minute.
(iii) Nucleus pellets are collected, and re-suspended in 100 μl of a high osmotic pressure extraction buffer. The buffer contains 20 mM of HEPES at pH 7.4, 0.4 mM of NaCl, 1 mM of EDTA, 1 mM of EGTA, 10% glycerol, 0.5 mM of dithiothreitol, E-64-containing protease inhibitor cocktail, leupeptin, pepstatin A, bestatin, and aprotinin.
(iv) After 15 minutes, incubation is performed at an ice temperature, and it is centrifuged at 1000 g at 4° C. for 1 minute.
(v) The supernatant is obtained as a nucleus extract, and an amount of a protein contained in the nucleus extract is quantified using a protein quantification kit. The nucleus extract is dispensed at a small scale, and is stored at −80° C. or lower.
<Preparation of Poly dI-dC copolymer>
A copolymer is added to the nucleus extract so that substances other than a target protein are not adhered to a double-stranded DNA 20. As a copolymer, Poly dI-dC (manufactured by Sigma, P-4929) is used. The copolymer is prepared as follows:
(i) A copolymer is suspended in a regeneration buffer to a concentration of 10 mg/ml, and the suspension is placed in a microcentrifuge tube having a volume of 1.5 ml. The regeneration buffer contains 50 mM of NaCl, 10 mM of Tris-HCl at pH 8.0, and 1 mM of EDTA at pH 8.0.
(ii) The copolymer is treated with ultrasound for 20 seconds at ultrasound setting 4, so as to obtain a uniform length of copolymer.
(iii) The copolymer is heated at 90° C. for 10 minutes, and is cooled to room temperature slowly.
(iv) Each 5 μl is dispensed, and is stored at −20° C.
(v) Before use, 45 μl of distilled water is added to adjust it to a concentration of 1 mg/ml.
[Experiment 3-1] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract. The Experiment was performed by stepwise changing a concentration of a cell nucleus extract.
The following solution shown in Table 19 is placed in a container, gently stirred with a tip of a chip, slightly tapped, and reacted at 34° C. for 1 hour. Then, FCS measurement is performed to obtain a translational diffusion time. FCS measurement was performed five times after each reaction under the condition of irradiation of laser light at a wavelength of 543 nm and an output of 100 μW for 15 seconds per one time.
In a reaction using 0 ng of a cell nucleus extract, a DNA-binding protein is not added, and thus a DNA-protein complex is not present, and a double-stranded DNA 20 remains unreacted. The product obtained after a reaction is a complex in which a DNA-binding protein contained in a cell nucleus extract is bound to a double-stranded DNA 20. Regarding an unreacted double-stranded DNA 20 and products obtained at each concentration of a cell nucleus extract, results of FCS measurement are shown in Table 20.
As a concentration of a cell nucleus extract is increased, a translational diffusion time of the product is increased. Concentration dependency was recognized in a range of a concentration of a cell nucleus extract of up to 30 μg (see
In addition, under the presumption that a transcription factor AP-1 is bound to a double-stranded DNA 20 in a c-Jun/c-Jun homodimer to form a DNA-protein complex, a translational diffusion time of a DNA-protein complex is obtained to be 1113.0 μs from a molecular weight of a DNA-protein complex, because a translational diffusion time is proportion to a cubic root of a molecular weight. In this experiment, a sum of an existence ratio of the reaction product having a translational diffusion of time of 1113.0 μs and an existence ratio of an unreacted double-stranded DNA 20 having a translational diffusion time of 658.5 μs is approximately 100%. Therefore, it can be said that the reaction product obtained in this experiment is a complex in which a transcription factor AP-1 in a cell nucleus extract is bound to a double-stranded DNA 20 (see
[Experiment 3-2] Experiment of a reaction of a (fluorescently labeled) DNA having an NF-κB-binding sequence and a cell nucleus extract. The Experiment was performed by stepwise changing a concentration of a cell nucleus extract.
As a DNA, a double-stranded DNA 30 shown in
The double-stranded DNA 30 is prepared in the same way as the double-stranded DNA 20, using 100 nM of a (fluorescently labeled) oligo DNA 31, and 100 nM of an oligo DNA 32 (see Example 2).
In this Experiment, a binding reaction experiment is performed in the same way as Experiment 3-1, using the following shown in Table 21, and the reaction product is measured by FCS to obtain a translational diffusion time.
As in the case of Experiment 3-1, a DNA-binding protein is not added in a reaction using a cell nucleus extract having a concentration of 0 μg, and thus a DNA-protein complex is not present, and a double-stranded DNA 30 remains unreacted. The product after the reaction is a complex in which a DNA-binding protein contained in a cell nucleus extract is bound to a double-stranded DNA 30. Regarding an unreacted double-stranded DNA 30 and the products obtained at each concentration of a cell nucleus extract, results of FCS measurement are shown in Table 23.
Also in the present experiment as well as in Experiment 3-1, as a concentration of a cell nucleus extract is increased, a translational diffusion time of the product is extended. A translational diffusion time is maximum at 30 μg of a concentration of a cell nucleus extract, and concentration dependency was recognized (see
In addition, under the presumption that the reaction product is a product obtained by binding a double-stranded DNA 30 and a transcription factor NF-κB, and that binding by *p50/p50 and binding by p50/p65 are averagely present, a translational diffusion time of the reaction product is 1468.7 μs. An existence ratio of the reaction product having a translational diffusion time of 1468.7 μs and an existence ratio of an unreacted double-stranded DNA 30 having a translational diffusion time of 568.7 μs are shown in
In the case of detecting whether or not a transcription factor is contained in a cell nucleus extract, as explained in Example 2, the presence of a transcription factor can be detected, by stepwise adding a cell nucleus extract to a solution containing a fluorescently labeled double-stranded DNA having a binding site to which a transcription factor binds, and measuring the product by FCS to obtain a translational diffusion time. In addition, an approximate existence ratio of a DNA-protein complex and an unreacted double-stranded DNA can be detected from the result of FCS measurement, and a molecular weight of a DNA-protein complex and a molecular weight of an unreacted double-stranded DNA.
In the case of detecting whether or not a transcription factor AP-1 is contained in a cell nucleus extract, a fluorescently labeled double-stranded DNA 20 having a binding site 26 to which a transcription factor AP-1 binds is used as a double-stranded DNA. In the case of detecting whether or not a transcription factor NF-κB is contained in a cell nucleus extract, a fluorescently labeled double-stranded DNA 30 having a binding site 33 to which a transcription factor NF-κB binds is used as a double-stranded DNA. It can be said that a transcription factor is contained in a cell nucleus extract, if the following results is obtained: as an addition amount of a cell nucleus extract is increased, a translational diffusion time is extended, and after a maximum value is taken, a translational diffusion time is decreased.
In the present Example, a binding reaction of a DNA and a transcription factor AP-1 in a cell nucleus extract is detected by performing competitive assay in which a competitive DNA is added.
[Experiment 4-1] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having an AP-1-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, a double-stranded DNA 24 which has the same sequence as that of the double-stranded DNA 20 but has not been fluorescently labeled is used. A concentration of a cell nucleus extract is set to be 30 μg at which a binding reaction was sufficiently generated in Experiment 3-1.
The following solution shown in Table 24 is placed in a container, gently stirred with a tip of a chip, slightly tapped, and reacted at 34° C. for 1 hour. Then, FCS measurement is performed to obtain a translational diffusion time. FCS measurement was performed five times after each reaction under the condition of irradiation of laser light at a wavelength of 543 nm and an output of 100 μW for 15 seconds per one time.
[Experiment 4-2] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having a sequence which is slightly different from an AP-1-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, a double-stranded DNA 25 having a sequence, a part of which is different from a double-stranded DNA 20, and which has not been fluorescently labeled is used. The double-stranded DNA 25 is different from a double-stranded DNA 20 in a part of a binding site 26 by only two bases (see
[Experiment 4-3] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having no AP-1-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, an unlabeled double-stranded DNA 18 having an Escherichia coli-derived double-stranded random sequence having no AP-1-binding sequence is used. Experiment 4-3 was performed using the double-stranded DNA 18 in the same way as Experiment 4-1.
Results of Experiments 4-1 to 4-3 are shown in
In addition, from the results of Experiment 4-2, a translational diffusion time of the binding product of a double-stranded DNA 20 and a cell nucleus extract is approximately the same between the case where a double-stranded DNA 25 is added and the case where such competitive DNA 25 is not added. Therefore, regarding a reaction of a double-stranded DNA 20 and a transcription factor AP-15 in a cell nucleus extract, binding inhibition was not recognized by adding a double-stranded DNA 25 having a sequence which is different from that of a double-stranded DNA 20 by only two bases.
In addition, from the results of Experiment 4-3, a translational diffusion time of the binding product of a double-stranded DNA 20 and a cell nucleus extract is approximately the same between the case where a double-stranded DNA 18 is added and the case where such competitive DNA 18 is not added. Therefore, regarding a reaction of a double-stranded DNA 20 and a transcription factor AP-15 in a cell nucleus extract, binding inhibition was not recognized by adding a double-stranded DNA 18.
From the results of competition assay performed in the above Experiments 4-1 to 4-3, it was demonstrated that a transcription factor AP-1 in a cell nucleus extract binds to a specific sequence of a DNA contained in a cell nucleus extract.
In the present Example, a binding reaction of a DNA and a transcription factor NF-κB in a cell nucleus extract is detected by performing competition assay in which a competitive DNA is added.
[Experiment 5-1] Experiment of a reaction of a (fluorescently labeled) DNA having an NF-κB-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having an NF-κB-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, a double-stranded DNA 34 which has the same sequence as that of a double-stranded DNA 30 but has not been fluorescently labeled is used. A concentration of a cell nucleus extract is set to be 30 μg at which a binding reaction was sufficiently generated in Experiment 3-1.
The following solution shown in Table 25 is placed in a container, gently stirred with a tip of a chip, slightly tapped, and reacted at 34° C. for 1 hour. Then, FCS measurement is performed to obtain a translational diffusion time. FCS measurement was performed five times after each reaction under the condition of irradiation of laser light at a wavelength of 543 nm and an output of 100 μW for 15 seconds per one time.
[Experiment 5-2] Experiment of a reaction of a (fluorescently labeled) DNA having an NF-κB-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having a sequence which is slightly different from an NF-κB-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, a double-stranded DNA 35 which has a sequence, a part of which is different from a double-stranded DNA 30, and which has not been fluorescently labeled is used. The double-stranded DNA 35 is different from a double-stranded DNA 30 in a part of a binding site 33 by only one base (see
[Experiment 5-3] Experiment of a reaction of a (fluorescently labeled) DNA having an NF-κB-binding sequence and a cell nucleus extract, when an (unlabeled) double-stranded DNA having no NF-κB-binding sequence is added. The Experiment was performed by stepwise changing a concentration of the (unlabeled) double-stranded DNA.
As the (unlabeled) double-stranded DNA to be added, a double-stranded DNA 18 which has an Escherichia coli-derived double-stranded random sequence having no NF-κB-binding sequence and which has not been fluorescently labeled is used. Experiment 5-3 was performed using the double-stranded DNA 18 in the same way as Experiment 5-1.
Therefore, it was confirmed that binding of a double-stranded DNA 30 and a transcription factor AP-15 in a cell nucleus extract is inhibited by adding a competitive double-stranded DNA 34.
In addition, from the results of Experiment 5-2, a translational diffusion time of the binding product of a double-stranded DNA 30 and a cell nucleus extract is approximately the same between the case where a double-stranded DNA 35 is added and the case where nothing is added. Therefore, regarding a reaction of a double-stranded DNA 35 and a transcription factor NF-κB in a cell nucleus extract, binding inhibition was not recognized by adding a double-stranded DNA 35 having a sequence different from that of a double-stranded DNA 30 by only one base.
In addition, from the results of Experiment 5-3, a translational diffusion time of the binding product of a double-stranded DNA 30 and a cell nucleus extract is approximately the same between the case where a double-stranded DNA 18 is added and the case where such competitive DNA 18 is not added. Therefore, regarding a reaction of a double-stranded DNA 30 and a transcription factor NF-κB in a cell nucleus extract, binding inhibition was not recognized by adding a double stranded DNA 18.
From the results of competition assay performed in the above Experiments 5-1 to 5-3, it was demonstrated that a transcription factor NF-κB in a cell nucleus extract binds to a specific sequence of a DNA contained in a cell nucleus extract.
In the present Example, regarding activation of a transcription factor in a cell nucleus, dependency on stimulation with a tumor necrosis factor TNF-α at the time of extraction of cell nucleus is examined. Specifically, HeLa cell is stimulated using a tumor necrosis factor TNF-α, and a degree of activation of a transcription factor AP-1 and a transcription factor NF-κB in a cell nucleus is detected with the lapse of time. It is known that a transcription factor AP-1 and a transcription factor NF-κB have activity to an extent in a nucleus of HeLa cell, even when the cell is not stimulated with PMA (phorbol 12-myristate 13-acetate), cytokine or the like.
[Experiment 6-1] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract. The Experiment was performed using a cell nucleus extract which is extracted under the condition of a different time length of stimulation with a tumor necrosis factor TNF-α.
50 ng/ml of a tumor necrosis factor TNF-α was added to HeLa cell, and the HeLa cell was stimulated for 0, 15, 30, 60, 120 or 180 minutes. Then, a nucleus extract was prepared from each HeLa cell (for preparation method, see Example 3). A concentration of a nucleus extract was set to be 20 μg.
The following shown in Table 26 are used to perform a binding reaction experiment in the same way as Experiment 3-1.
[Experiment 6-2] Experiment of a reaction of a (fluorescently labeled) DNA having an NF-κB-binding sequence and a cell nucleus extract. The Experiment was performed using a cell nucleus extract which is extracted under the condition of a different time length of stimulation with a tumor necrosis factor TNF-α.
In the same way as Experiment 6-1, 50 ng/ml of a tumor necrosis factor TNF-α was added to HeLa cell, and the HeLa cell was stimulated for 0, 15, 30, 60, 120 or 180 minutes. Then, a nucleus extract was prepared from each HeLa cell.
The following shown in Table 27 are used to perform a binding reaction experiment in the same way as Experiment 3-2.
In the case of detecting whether or not a transcription factor AP-1 is contained in a cell nucleus extract, the presence of a transcription factor can be detected by adding 50 ng/ml of a tumor necrosis factor TNF-α to a cell to stimulate the cell for 30 minutes; extracting a cell nucleus from the cell; reacting the cell nucleus extract with a double-stranded DNA 20; and performing FCS measurement to obtain a translational diffusion time. In addition, in the case of detecting whether or not a transcription factor NF-κB is contained in a cell nucleus extract, 50 ng/ml of a tumor necrosis factor TNF-α is preferably added to a cell to stimulate the cell for 15 minutes.
In the present Example, regarding activation of a transcription factor in a cell nucleus, dependency on stimulation with APDC (Ammonium pyrrolidinedithiocarbamate) and a tumor necrosis factor TNF-α at the time of extraction of cell nucleus is examined. Specifically, HeLa cell is stimulated using APDC and a tumor necrosis factor TNF-α, and a degree of activation of a transcription factor AP-1 and a transcription factor NF-κB in a cell nucleus is detected. It is said that APDC promotes activation of a transcription factor AP-1 and, on the other hand, suppresses activation of a transcription factor NF-κB.
Two hours after addition of APDC, a tumor necrosis factor TNF-α is added to stimulate HeLa cell for 30 minutes, from which a nucleus extract is prepared. A nucleus extract having a concentration of 5, 10 or 20 μg is prepared. Stimulation on a cell is performed in the following two cases.
(I) The case where stimulation with only a tumor necrosis factor TNF-α is performed for 30 minutes. A concentration of a tumor necrosis factor TNF-α is 0, 10, 25 or 50 ng/ml.
(II) The case where stimulation with a tumor necrosis factor TNF-α is performed for 30 minutes, two hours after addition of APDC. A concentration of APDC is 10, 100 or 200 μM relative to a 50 ng/ml of a tumor necrosis factor TNF-α.
[Experiment 7-1] Experiment of a reaction of a (fluorescently labeled) DNA having an AP-1-binding sequence and a cell nucleus extract. The Experiment was performed using a cell nucleus extract which is extracted under the condition of a different concentration of an added tumor necrosis factor TNF-α and a different concentration of an added APDC.
The following shown in Table 28 are used to perform a binding reaction experiment in the same way as Experiment 3-1.
[Experiment 7-2] Experiment of a reaction of a (fluorescently labeled) DNA having an NH-κB-binding sequence and a cell nucleus extract. The Experiment was performed using a cell nucleus extract which is extracted under the condition of a different concentration of an added tumor necrosis factor TNF-α and a different concentration of added APDC.
The following shown in Table 29 are used to perform a binding reaction experiment in the same way as Experiment 3-2.
From the results of Experiments 7-1 and 7-2, it was demonstrated that APDC promotes activation of a transcription factor AP-1 by a tumor necrosis factor TNF-α, and suppresses activation of a transcription factor NF-κB by a tumor necrosis factor TNF-α.
In the case of detecting whether or not a transcription factor AP-1 is contained in a cell nucleus extract, the presence of a transcription factor can be detected by adding a tumor necrosis factor TNF-α to a cell to stimulate the cell for 30 minutes, two hours after addition of APDC; extracting a cell nucleus from the cell; reacting the cell nucleus extract with a double-stranded DNA 20; and performing FCS measurement to obtain a translational diffusion time. A concentration of APDC is preferably not lower than 100 μM and not higher than 200 μM, relative to 50 ng/ml of a tumor necrosis factor TNF-α.
In addition, in the case of detecting whether or not a transcription factor NF-κB is contained in a cell nucleus extract, a transcription factor NF-κB can be detected precisely, by comparing a translational diffusion time obtained when stimulation is performed with only a tumor necrosis factor TNF-α and a translational diffusion time obtained when stimulation is performed with both APDC and a tumor necrosis factor TNF-α. If a translational diffusion time obtained when stimulation is performed with only a tumor necrosis factor TNF-α is greater than the other translational diffusion time, it can be said that a transcription factor NF-κB is contained in a cell nucleus extract.
As shown in the aforementioned respective Examples, information for obtaining a translational diffusion time is obtained by mixing of a sample and measurement by fluorescence correlation spectroscopy (FCS). As a result, result of detection can be obtained simply and in a short time without performing troublesome operation such as utilization of a radioisotope and selection by an electrophoresis method or immobilization of a molecule on a solid substrate. Further, even when a crude sample such as an unpurified cell nucleus extract is used, a DNA-protein complex of a double-stranded DNA and a transcription factor can be detected precisely. Further, even in the presence of a double-stranded DNA which is different, by only 1 base or 2 bases, from an inherent double-stranded DNA to which a transcription factor inherently binds, a DNA-protein complex resulting from the inherent double-stranded DNA and a transcription factor can be detected without preventing a binding reaction between them. Therefore, the measuring method by FCS according to the present invention is useful for detecting a particular DNA-binding protein (such as transcription factor or intranuclear receptor) present in a crude sample such as a cell nucleus extract. In addition, the effect of stimulation with a cytokine on a time-dependent amount of expression of a transcription factor or the effect of APDC can be also detected precisely.
In the aforementioned respective Examples, fluorescent correlation spectroscopy (FCS) was used in order to obtain a translational diffusion time of the product, but Fluorescence Intensity Multiple Distribution Analysis may be used instead of the fluorescence correlation spectroscopy (FCS).
Number | Date | Country | Kind |
---|---|---|---|
2003-175186 | Jun 2003 | JP | national |
This is a Continuation Application of PCT Application No. PCT/JP2004/008857, filed Jun. 17, 2004, which was published under PCT Article 21(2) in Japanese. This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2003-175186, filed Jun. 19, 2003, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP04/08857 | Jun 2004 | US |
Child | 11311827 | Dec 2005 | US |