Method of determining a handover position and laboratory automation system

Information

  • Patent Grant
  • 10197586
  • Patent Number
    10,197,586
  • Date Filed
    Thursday, March 29, 2018
    6 years ago
  • Date Issued
    Tuesday, February 5, 2019
    5 years ago
Abstract
A method for determining a handover position of a gripping device and to a laboratory automation system being able to perform such a method are presented. A position determining device is used in order to determine a handover position based on magnetic forces of a handover electro-magnetic actuator that is part of a laboratory sample distribution system of the laboratory automation system.
Description
BACKGROUND

The present disclosure relates to a method of determining a handover position of a gripping device and to a laboratory automation system.


Laboratory automation systems typically comprise a laboratory sample distribution system and a number of laboratory stations. Known laboratory sample distribution systems are typically used in such laboratory automation systems in order to transport samples contained in sample containers between different laboratory stations. Such laboratory sample distribution systems provide for a high throughput and for reliable operation.


Laboratory stations are typically placed just beside the laboratory sample distribution system such that samples can be transported to and from the laboratory stations using the laboratory sample distribution system. In order to pick up and return sample containers containing samples to be analyzed or to be processed otherwise, laboratory stations typically comprise or are positioned in the vicinity of respective gripping devices that are able to grip and collect a sample container that is transported by the laboratory sample distribution system. However, it has been found that calibration of such gripping devices is critical because even a small displacement when gripping a sample container can result in malfunction or even in destruction of the sample container. Thus, calibration or teach-in of such gripping devices is typically done manually and is time consuming.


Therefore, there is a need for a system and a method that allows for easier teach-in of gripping devices.


SUMMARY

According to the present disclosure, a method of determining a handover position of a gripping device is presented. The gripping device can be assigned to a laboratory sample distribution system having a transport plane and a plurality of electro-magnetic actuators positioned below the transport plane. The handover position can be assigned to a handover electro-magnetic actuator. The method can comprise grabbing, by the gripping device, a position determining device such that the position determining device is held fixedly by the gripping device. The position determining device can comprise a magnetically active device. The method can also comprise positioning the position determining device, while being held by the gripping device, on the transport plane; activating the handover electro-magnetic actuator such that it generates a magnetic field interacting with a magnetic field generated by the magnetically active device such that an attractive force is applied on the position determining device; moving the position determining device, while being held by the gripping device, by the attractive force to a first position; detecting the first position; and determining the handover position based at least in part on the first position.


In accordance with one embodiment of the present disclosure, a laboratory automation system is presented. The laboratory automation system can comprise a plurality of analyzing stations, a number of gripping devices, and a laboratory sample distribution system. The laboratory sample distribution system can comprise a number of sample container carriers configured to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. The laboratory sample distribution system can also comprise a transport plane configured to support the sample container carriers and a number of electro-magnetic actuators stationary arranged below the transport plane. The electro-magnetic actuators can be configured to move a sample container carrier on top of the transport plane by applying a magnetic force to the sample container carrier. The laboratory sample distribution system can also comprise a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths. For each gripping device, a handover electro-magnetic actuator can be assigned out of the number of electro-magnetic actuators. A sample container can be handed over to or from the gripping device while a sample container carrier carrying the respective sample container is positioned above the handover electro-magnetic actuator. The laboratory automation system can also comprise a process control unit. The process control unit can be configured to control the gripping devices and the laboratory sample distribution system such that the above method is performed.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a system and a method that allows for easier teach-in of gripping devices. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a laboratory automation system according to an embodiment of the present disclosure.



FIG. 2 illustrates typical steps in determining a handover position according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A method of determining a handover position of a gripping device is disclosed. Such a handover position will typically be used by the gripping device after the method has been performed, for example during everyday operation. In other words, after the handover position has been determined, the gripping device can use (drive to) the determined handover position to remove a sample container from a sample container carrier and/or to insert a sample container into a sample container carrier. The handover position can e.g. be represented by planar i.e. x-y-coordinates denoting a specific position on (in) the transport plane.


The gripping device, e.g. in form of a pick-and-place device, can be assigned to a laboratory sample distribution system having a transport plane and a plurality of electro-magnetic actuators positioned below the transport plane. Typically, such a gripping device can be positioned just beside the laboratory sample distribution system, and specifically beside the transport plane.


The handover position can be assigned to a handover electro-magnetic actuator. The handover electro-magnetic actuator can typically be an electro-magnetic actuator on which a sample container to be gripped by the gripping device can be placed during operation.


The method can comprise gripping, by the gripping device, a position determining device such that the position determining device can be held fixedly by the gripping device. The position determining device can comprise a magnetically active device, e.g. in form of a permanent magnet. The method can also comprise positioning the position determining device, while being held by the gripping device, on top of the transport plane, activating the handover electro-magnetic actuator such that it generates a magnetic field interacting with a magnetic field generated by the magnetically active device such that an attractive force is applied to the position determining device, moving the position determining device, while being held by the gripping device, by the attractive force to a first position, detecting the first position, and determining the handover position based on the first position.


By use of the method, calibration, or teaching, of a gripping device can be done automatically, which can consume less time and can be less error-prone than manual calibration.


It can be noted that when moving the position determining device while being held by the gripping device by the attractive force to the first position, the gripping device can typically allow for movement of the position determining device in a horizontal plane, for example in x-y-coordinates.


According to an embodiment, the handover position can be determined as being identical to the first position. This can correspond to a simple and reliable embodiment of the method.


According to an embodiment, determining the handover position can comprise moving the position determining device, by the gripping device, on the transport plane in each direction of a group of directions for a given amount of displacement, each moving starting from the first position, to a respective intermediate position; after each step of moving in a direction, moving the position determining device while being held by the gripping device to a respective further position by the attractive force; detecting each respective further position; and determining the handover position based on the first position and/or based on the respective further positions.


Such an implementation has been proven to increase the accuracy with which a position at which a sample container will be placed during operation is determined. Especially, due to the fact that the position determining device can be moved in each of a group of directions, a potential error that occurred due to a friction-induced stop at the first determination step can be avoided.


According to an embodiment, the group of directions can comprise two, three or four directions. Typically, an embodiment having four directions has been proven suitable.


According to an embodiment, all directions contained in the group of directions can be arranged with equal angle between each two circularly neighboring directions. This can allow for a simple and suitable arrangement of the directions. For example, if four directions are used, respective right angles can be present between each two neighboring directions.


According to an embodiment, the given amount of displacement can less than 10 mm in one embodiment, less than 5 mm in another embodiment, and less than 3 mm in yet another embodiment. Such values have been proven suitable for typical applications.


According to an embodiment, the handover position can be determined as a center of a polygon defined by the further positions. This can allow for a suitable determination of the handover position corresponding to an average value of the respective further positions.


It can be noted that it may not be necessary to move the position determining device back to the first position every time before moving the gripping device into the respective direction. It can also be moved directly to the respective intermediate position, which can be calculated.


According to an embodiment, the handover electro-magnetic actuator can be deactivated before each step of moving the position determining device in one of the directions and can be reactivated after the step. This can allow for movement of the position determining device by the gripping device without influence from a magnetic field generated by the electro-magnetic actuator.


According to an embodiment, this first position and/or the further positions can be represented by planar coordinates on the transport plane after being detected. Such planar coordinates can, for example, be determined by respective position sensors, which can, for example, be based on optical detection or laser-based distance measurements.


According to an embodiment, the step of positioning, by the gripping device, the position determining device on the transport plane can be performed such that the gripping device can be positioned over or beside the handover electro-magnetic actuator. This can correspond to a coarse positioning of the position determining device such that the remaining method steps can be performed in order to perform a fine positioning.


According to an embodiment, the step of positioning the position determining device, while being held by the gripping device, on the transport plane can be performed manually or by hand. This can allow for an efficient, fast and reliable placement of the position determining device on the intended electro-magnetic actuator at which the handover position can be determined.


According to an embodiment, electro-magnetic actuators surrounding the handover electro-magnetic actuator can be activated such that they can generate respective magnetic fields interacting with the magnetic field generated by the magnetically active device such that a repulsive force can be applied on the position determining device at least during each step of moving the position determining device by the attractive force. This can further improve the determination of the handover position, as has been shown by experiments.


According to an embodiment, the position determining device can comprise a number of rows, or ball-bearings, for contacting the transport plane. This can reduce friction between the position determining device and the transport plane and can thus improve the accuracy in determining of the handover position.


A magnetically active device can be positioned at a lower end of the position determining device. Such a magnetically active device can, for example, be a permanent magnet and can interact with magnetic fields generated by the electro-magnetic actuators. For example, the position determining device can be shaped similarly to a pen or similarly to a laboratory tube that can easily be gripped by the gripping device.


A laboratory automation system is presented. The laboratory automation system can comprise a plurality of analyzing stations, a number of gripping devices and a laboratory sample distribution system.


The laboratory sample distribution system can comprise a number of sample container carriers configured to carry one or more sample containers. Each sample container carrier can comprise at least one magnetically active device. It can further comprise a transport plane configured to support the sample container carriers. It can further comprise a number of electro-magnetic actuators stationary arranged in rows and columns below the transport plane. The electro-magnetic actuators can be configured to move a sample container carrier on top of the transport plane by applying a magnetic force to the sample container carrier.


The laboratory sample distribution system can further comprise a control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths. Especially, the control device can be configured to activate the electromagnetic actuators such that the sample container carriers can move simultaneously and independently from one another along pre-calculated routes.


For each gripping device, a handover electro-magnetic actuator can be assigned out of the number of electro-magnetic actuators. A sample container can be handed over to or from the gripping device while a sample container carrier carrying the respective sample container is positioned above the handover electro-magnetic actuator.


The laboratory automation system can further comprise a process control unit. The process control unit can be configured to control the gripping device and the laboratory sample distribution system such that the above method can be performed.


By use of the laboratory automation system, the advantages as discussed above with respect to the method can be made use of for a laboratory automation system. With respect to the method, all embodiments and variations as discussed herein can be applied.


The sample containers can typically be designed as tubes made of glass or transparent plastic and typically can have an opening at an upper end. The sample containers can be used to contain, store and transport samples such as blood samples or chemical samples.


The transport plane can also be denoted as transport surface. The transport plane can support the sample container carriers, what can also be denoted as carrying the sample container carriers.


The electro-magnetic actuators can typically be built as electromagnets, having a solenoid surrounding a ferromagnetic core. These electro-magnetic actuators may be energized in order to provide for a magnetic field that can be used to move or drive the sample container carriers. The at least one magnetically active device in each sample container carrier may be a permanent magnet. Alternatively, or additionally, an electromagnet can be used.


The control device can typically be a microprocessor, a microcontroller, a field-programmable gate array, a standard computer, or a similar device. In a typical embodiment, the control device can comprise a processor and storage. Program code can be stored in the storage in order to control the behavior of the processor when the storage code is executed on the processor.


The same statements as just given with respect to the control device also apply to the process control unit. It can be noted that the process control unit and the control device can be separate entities, or they can be embodied in a single entity.


The sample container carriers can typically be configured to move in two dimensions on the transport plane. The electro-magnetic actuators may be arranged in two dimensions below the transport plane. The electro-magnetic actuators may be arranged in a grid or matrix having rows and columns along which the electro-magnetic actuators can be arranged.


The laboratory stations can, for example, be pre-analytical, analytical and/or post-analytical (laboratory) stations. The stations may be arranged adjacent to the laboratory sample distribution system.


Pre-analytical stations may be configured to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.


Analytical stations may be configured to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte exists.


Post-analytical stations may be configured to perform any kind of post-processing of samples, sample containers and/or sample container carriers.


The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.


It can be noted that performing the method by the laboratory automation system can include manual operation, as has already been indicated above with respect to the method. For example, the laboratory automation system can be configured to display a signal to a user that a manual operation has to be performed.


According to an embodiment, the magnetically active device of the position determining device can generate a stronger magnetic field than each of the magnetically active devices of the sample container carriers. This can allow for a highly reliable determination of the handover position; as higher magnetic forces apply on the position determining device that can especially overcome holding forces exerted by the gripping device even when the gripping device is put into a released mode.


According to an optional embodiment, the gripping device can position the position determining device, while being held by the gripping device, on the transport plane. Then, the position determining device, while being held by the gripping device, can be moved to a rotor transport unit. Then, the rotor transport unit can move or rotate the position determining device, while being held by the gripping device, to one or more transfer positions allocated to the rotor transport unit, thus teaching the one or more transfer positions into a coordinate system of the gripping device.


According to an optional embodiment, the position determining device can be transferred over the transport plane to a specific position of the laboratory automation system known by the gripping device. In other words, the coordinates of the specific position can be known by the gripping device. The gripping device can then grip the position determining device and use the position determining device for teaching in one or more functional positions actually not known by the gripping device. In other words, the gripping device can grip the position determining device using known coordinates and then use the position determining device for teaching in coordinates of the functional positions.


Referring initially to FIG. 1, FIG. 1 shows a laboratory automation system 10. The laboratory automation system 10 can comprise a first laboratory station 20, a second laboratory station 30 and a laboratory sample distribution system 100. It can further comprise a gripping device 25, e.g. in the form of a pick-and-place device.


The laboratory sample distribution system 100 can comprise a transport plane 110. Below the transport plane 110, a plurality of electro-magnetic actuators 120 can be arranged. Each electro-magnetic actuator 120 can comprise a respective ferromagnetic core 125.


A number of position sensors 130, embodied as Hall-sensors, can be distributed over the transport plane 110.


The laboratory sample distribution system 100 can further comprise a plurality of sample container carriers 140. A sample container carrier 140 can carry a respective sample container 145, embodied as laboratory tube. It can be noted that only one laboratory sample container carrier 140 carrying a respective sample container 145 is shown in FIG. 1 for exemplary purposes. A typical sample distribution system 100 can comprise a plurality of such sample container carriers 140.


Each sample container carrier 140 can comprise a magnetically active device in the form of a permanent magnet that is not visible in FIG. 1. Thus, magnetic fields generated by the electro-magnetic actuators 120 can drive a sample container carrier 140 over the transport plane 110. Furthermore, the magnetic field generated by the permanent magnet of a sample container carrier 140 can be detected by the position sensors 130, so that a feedback regarding the position of a sample container carrier 140 can be obtained.


Both the electro-magnetic actuators 120 and the position sensors 130 can be electrically connected to a control device 150. The control device 150 can drive the electro-magnetic actuators 120 such that the sample container carriers 140 can move along corresponding transport paths. It can also determine the position of each sample container carrier 140.


The laboratory stations 20, 30 can be arranged adjacent to the transport plane 110. It can be noted that these two laboratory stations 20, 30 are only shown for exemplary purposes in FIG. 1, and that a typical laboratory automation system 10 can comprise a more than two laboratory stations 20, 30.


Adjacent to the first laboratory station 20, the gripping device 25 in the form of a robot arm can be provided. The gripping device 25 can currently carry a position determining device 27 in the form of a pen held in a vertical orientation. The position determining device 27 can comprise a magnetically active device in the form of a permanent magnet at its lower end. However, this permanent magnet is not visible in FIG. 1.


Just beside the first laboratory station 20, a specific one of the electro-magnetic actuators 120 can be defined as a handover electro-magnetic actuator 121. If a sample container 145 is to be brought to or collected from the first laboratory station 20, a sample container carrier 140 carrying the specific sample container 145 can be moved to and then held by the handover electro-magnetic actuator 121. The sample container 145 can be gripped by the gripping device 25 and can then be handed over to the first laboratory station 20. The same principle works basically in reverse order when a sample container 145 is to be collected from the first laboratory station 20 and is to be transported away by a sample container carrier 140.


When the first laboratory station 20 is placed adjacent to the laboratory sample distribution system 100 for the first time, the gripping device 25 can also be installed. Then, the gripping device 25 can be calibrated so that it can grip a sample container 145 contained in a sample container carrier 140 that has been moved on the handover electro-magnetic actuator 121. This can be done using the position determining device 27, as will be shown further below with respect to FIG. 2.



FIG. 2 shows a top view on the horizontal surface of the handover electro-magnetic actuator 121.


At first, the position determining device 27 can be placed manually at a starting position 200. The gripping device 25 can be put into a released state such that the position determining device 27 can move almost freely in a horizontal direction or plane while being held by the gripping device 25. Then the handover electro-magnetic actuator 121 can be activated, such that the position determining device 27 can be moved to a first position 201 due to the applied magnetic force.


In a very simple implementation of the method, the first position 201 can now be used as a handover position. However, in a refined implementation, the first position 201 can be used in order to further refine the handover position.


As shown in FIG. 2, a first direction 210, a second direction 220, a third direction 230 and a fourth direction 240 can each be defined starting at the first position 201. The four directions 210, 220, 230, 240 can be oriented rectangular with respect to each respective neighboring directions, and all displacements with respect to the first position 201 can have the same length.


The position determining device 27 can be moved in each of these four directions 210, 220, 230, 240 to respective intermediate positions 211, 221, 231, 241. It can be noted that these intermediate positions 211, 221, 231, 241 can be reached by action of the gripping device 25. Every time after having reached one of the respective intermediate positions 211, 221, 231, 241, the gripping device 25 can be released again such that the position determining device 27 can move essentially freely in horizontal direction. Then, the handover electro-magnetic actuator 121 can be activated in each case, and the position determining device can move to respective further positions 212, 222, 232, 242. This process can be repeated until all intermediate positions 211, 221, 231, 241 have been used.


The further positions 212, 222, 232, 242 can form a polygon that is shown in dashed lines in FIG. 2. This polygon can have a center, which can be denoted as a center of mass of a two-dimensional form. This center of mass can be calculated and taken as the handover position 250.


As is shown in FIG. 2, the handover position 250 being determined by this method can be different from the first position 201. In general, the handover position 250 as determined by the method just described can be more accurate than the first position 201.


If a sample container carrier 140 is moved to the handover electro-magnetic actuator 121, the gripping device can be moved to the handover position 250 and can thus grip correctly the sample container 145 contained in the sample container carrier 140.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A method of determining a handover position of a gripping device, wherein the gripping device is assigned to a laboratory sample distribution system having a transport plane and a plurality of electro-magnetic actuators positioned below the transport plane and wherein the handover position is assigned to a handover electro-magnetic actuator, the method comprising: grabbing, by the gripping device, a position determining device such that the position determining device is held fixedly by the gripping device, wherein the position determining device comprises a magnetically active device;positioning the position determining device, while being held by the gripping device, on the transport plane;activating the handover electro-magnetic actuator such that it generates a magnetic field interacting with a magnetic field generated by the magnetically active device such that an attractive force is applied on the position determining device;moving the position determining device, while being held by the gripping device, by the attractive force to a first position;detecting the first position; anddetermining the handover position based at least in part on the first position.
  • 2. The method according to claim 1, wherein the handover position is determined as being identical to the first position.
  • 3. The method according to claim 1, wherein determining the handover position comprises, moving the position determining device, by the gripping device, on the transport plane in each of a group of directions for a given amount of displacement, every time starting from the first position, to a respective intermediate position;after each step of moving in a direction, moving the position determining device while being held by the gripping device to a respective further position by the attractive force;detecting each respective further position; anddetermining the handover position based at least in part on the respective further positions.
  • 4. The method according to claim 3, wherein the group of directions comprises two, three or four directions.
  • 5. The method according to claim 3, wherein all directions contained in the group of directions are arranged with equal angle between each two circularly neighboring directions.
  • 6. The method according to claim 3, wherein the given amount of displacement is less than 10 mm.
  • 7. The method according to claim 3, wherein the given amount of displacement is less than 5 mm.
  • 8. The method according to claim 3, wherein the given amount of displacement is less than 3 mm.
  • 9. The method according to claim 3, wherein the handover position is determined as a center of a polygon defined by the further positions.
  • 10. The method according to claim 3, wherein the handover electro-magnetic actuator is deactivated before each step of moving the position determining device in one of the directions and is reactivated after that step.
  • 11. The method according to claim 3, wherein the first position and/or the further positions are represented by planar coordinates on the transport plane after being detected.
  • 12. The method according to claim 1, wherein positioning, by the gripping device, the position determining device on the transport plane is performed such that the gripping device is positioned over or besides the handover electro-magnetic actuator.
  • 13. The method according to claim 1, wherein positioning the position determining device, while being held by the gripping device, on the transport plane is performed manually.
  • 14. The method according to claim 1, wherein electro-magnetic actuators surrounding the handover electro-magnetic actuator are activated such that they generate respective magnetic fields interacting with the magnetic field generated by the magnetically active device such that a repulsive force is applied on the position determining device at least during each step of moving the position determining device by the attractive force.
  • 15. The method according to claim 1, wherein the position determining device comprises a number of rolls or ball-bearings for contacting the transport plane.
  • 16. A laboratory automation system, the laboratory automation system comprising: a plurality of analyzing stations; a number of gripping devices;a position determining device fixedly held by at last one of the number of gripping devices;a laboratory sample distribution system comprisinga number of sample container carriers configured to carry one or more sample containers, each sample container carrier comprising at least one magnetically active device,a transport plane configured to support the sample container carriers,a number of electro-magnetic actuators stationary arranged below the transport plane, the electro-magnetic actuators configured to move a sample container carrier on top of the transport plane by applying a magnetic force to the sample container carrier, anda control device configured to control the movement of the sample container carriers on top of the transport plane by driving the electro-magnetic actuators such that the sample container carriers move along corresponding transport paths, wherein for each gripping device, a handover electro-magnetic actuator is assigned out of the number of electro-magnetic actuators, wherein a sample container is to be handed over to or from the gripping device while a sample container carrier carrying the respective sample container is positioned above the handover electro-magnetic actuator; anda process control unit, wherein the process control unit is configured to control the gripping devices and the laboratory sample distribution system such that a method according to claim 1 is performed.
  • 17. The laboratory automation system according to claim 16, wherein the magnetically active device of the position determining device generates a stronger magnetic field than each of the magnetically active devices of the sample container carriers.
Priority Claims (1)
Number Date Country Kind
15188622 Oct 2015 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2016/073884, filed Oct. 6, 2016, which is based on and claims priority to EP 15188622.3, filed Oct. 6, 2015, which is hereby incorporated by reference.

US Referenced Citations (166)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
9902572 Mahmudimanesh et al. Feb 2018 B2
9939455 Schneider et al. Apr 2018 B2
9952242 Riether Apr 2018 B2
9969570 Heise et al. May 2018 B2
9989547 Pedain Jun 2018 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly et al. Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180074087 Heise et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
Foreign Referenced Citations (86)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
06-26808 Jun 1989 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Dec. 8, 2016 in Application No. PCT/EP2016/073884, 11 pages.
Related Publications (1)
Number Date Country
20180217176 A1 Aug 2018 US
Continuations (1)
Number Date Country
Parent PCT/EP2016/073884 Oct 2016 US
Child 15939360 US