1. Field of the Invention
The present invention relates to a method of determining a radius of protection associated with a respective navigation parameter of a hybrid inertial navigation system, and associated system.
2. Description of the Related Art
The present invention may be used in the aeronautical field, as in the remainder of the description, but may also be used in any other navigation field.
There is a problem in supplying safe navigation parameters (such as speed and attitude) to the pilot, i.e., in knowing the navigation parameter or parameters and obtaining a respective radius of protection associated with that parameter. A radius of protection gives an uncertainty associated with the navigation parameter: in other words, the pilot knows within a given probability that the error in respect of the navigation parameter cannot be greater than the radius of protection.
There is known the document US2014074397, which discloses a method of providing the integrity of a hybrid navigation system using a Kalman filter. The method consists in determining a main navigation solution for at least one of the roll, pitch, platform heading or vehicle heading parameters using signals from a plurality of GNSS (Global Navigation Satellite System) satellites and inertial measurements. Solution separation is used to determine a plurality of subsolutions for the main navigation solution. This method also includes the determination of a separation between the main navigation solution and each of the subsolutions and a discriminator for each of the separations. The method also includes the determination of a separation variance between the main navigation solution and each of the subsolutions, a satellite failure detection threshold based on the separation of the variances, and a limit of protection that delimits an error in the main navigation solution as a function of the threshold.
Such a method is shown in
Providing a safe speed or safe attitudes necessitates a model of the short-term variation of the input pseudo-distance measurements and an undetected satellite failure rate associated with these short-term variations has the following disadvantages.
The undetected satellite failure rate of 10−4/h is supplied in relation to amplitude errors and not short-term variations that can affect the speed or the attitudes.
In the standards there is no valid model of short-term variations of the pseudo-distances.
Such methods are subject to unmodelled short-term variations of GNSS errors, for example GPS errors (the latter are of course smoothed by the inertia but it is not possible to say in what proportion). The radius of protection associated with the speed covers only certain types of faults and not faults linked to short-term variations.
An object of the present invention is to alleviate these drawbacks, notably by making no hypothesis as to the short-term variations of the GPS measurements.
One aspect of the invention proposes a method of determining at least one radius of protection associated with a respective navigation parameter of a hybrid inertial navigation system by Kalman filtering including the steps of:
Such a method makes it possible to supply safe navigation parameters, i.e. parameters supplied with the associated radius of protection, without making hypotheses as to the measurements used apart from the maximum amplitude of the error that affects them.
In accordance with one embodiment, the step consisting in receiving at the input of the filter a safe position measurement uses a system combining inertia and a satellite navigation system.
In one embodiment, the step consisting in receiving at the input of the filter a safe position measurement uses a spatial augmentation system.
Another aspect of the invention proposes a system for determining at least one radius of protection associated with a respective navigation parameter of a hybrid inertial navigation system, including a Kalman filter adapted to execute the method as described above.
A further aspect of the invention proposes an aircraft including a system as described above.
The invention will be better understood after studying a few embodiments described by way of non-limiting example and illustrated by the appended drawings, in which:
In all the figures, elements having identical references are similar.
The method of determining at least one radius of protection associated with a respective navigation parameter of a hybrid inertial navigation system by Kalman filtering includes steps consisting in:
The step consisting in receiving at the filter input a safe position measurement 20 may use a system combining inertia and a satellite navigation system or a spatial augmentation system.
There follows a detailed, non-limiting embodiment for determining the safe speed parameter.
The safe speed is computed using a velocity integrity Kalman filter (VIKF) or coasting filter (CF) that updates on the position of the location (latitude and longitude). A bias with no model noise is added to the measurement with a fixed propagation and that is decorrelated from the other states between measurements. There are two bias states: one state for the latitude and one state for the longitude. The remainder of the description concentrates on only one bias state, the second one functioning in the same manner. The purpose of the decorrelation is to prevent the filter estimating the bias at the same time as taking this potential error into account in each measurement used.
Decorrelating the bias between two successive measurements is normally representative of reality only if the bias is completely independent between two measurements. There are therefore two possibilities:
The measurement may be:
The covariance of the bias is initialized to the maximum uncertainty value (the value of the integrity radius) along one axis (maximum position error value before detection) multiplied by a factor CoefAdaptation to be defined (this factor may be >1 or <1). The value of this factor may be fixed at
to take into account the fact of working on each axis (longitude, latitude).
Until the position covariance reaches the bias covariance, new measurements are ignored in the filter that manages the integrity (optionally with a minimum time denoted TimeUpdateFC). This is the major aspect of this filter that renders it valid. If the bias does not budge between two measurements, it is the position state that should have budged and the hypothesis of independence on the bias between two successive measurements is still valid from the point of view of the filter. This also assumes that the position covariance does not converge artificially because it will always be greater than the covariance of the bias divided by two.
The greater the minimum time TimeUpdateFC, the less sensitive is the result to rapid position variations: in fact, adopting this approach, the speed measurement error is at most equal to the Position Error/TimeUpdateFC ratio. Nevertheless, the greater the minimum time TimeUpdateFC, the longer the inertial system remains without updating and inertia errors therefore arise during TimeUpdateFC.
The greater the factor CoefAdaptation, the less confidence may be placed in the position measurement, thus: the filter is more robust in the face of position errors, but the radius of protection associated with the speed is greater.
There now follows a discussion of the speed covariance.
Notation:
P is the covariance matrix of the filter VIKF
H is the observation matrix for the biased position measurement X
K is the gain of the Kalman filter
R is the position measurement noise
n is the number of states of the filter
VarXi is the variance associated with the state i
VarXiXj is the covariance between the states i and j
There follows the description of the updating phase, represented by the index rec.
H=[1 0 . . . 0 1]
At the time of updating:
The index T representing the transposed function (to be conformed) of a matrix, and
The index p representing the propagation phase
because Xn is decorrelated from all the other states.
Thus:
The updated covariance matrix of the filter VIKF can therefore be computed Prec=PP−KHPP:
HP=[VarX1 VarX1X2 VarX1X3 . . . VarX1Xn−1VarXn]
Thus
Therefore, considering the position covariance:
Updating occurs when VarX1=VarXn, therefore:
As R<<VarXn at the time of updating:
VarXn is known because the maximum uncertainty along the axis concerned is taken. To a first approximation for the simulations there has been taken the radius of protection protecting against PLFDSIS (Protection Level Fault Detection Signal In Space) satellite failures on each axis.
At the level of the speed:
At the level of the speed and position correlation:
The following three equations are therefore obtained:
There now follows the description of propagation.
A two-state (speed, position) model is assumed for the propagation with a model noise on the speed:
{dot over (P)}=FP+PF
T
+Q (Riccatti's equation)
F representing the error propagation matrix, and
Q representing the matrix of the noises associated with the model.
Where
q being known and representing the model noise on the speed.
Which yields:
Va{dot over (r)}X1=2VarX1X2
Va{dot over (r)}X2=q
Var{dot over (X)}1X2=VarX2
Thus:
VarX2=VarX2rec+q·T (4)
VarX1X2=VarX1X2rec+VarX2rec·T+q·T2/2 (5)
VarX1=VarX1rec+2VarX1X2rec·T+VarX2rec·T2+q·T3/3 (6)
T representing the propagation time between two updatings.
There now follows the description of resolution:
q, VarX1, VarX1 rec are known and it is necessary to find VarX2, VarX2rec, VarX1X2, VarX1X2rec and T.
Five equations in five unknowns are available, equation (6) having been used to find VarX1 rec.
Let S denote the variable: CoefAdaptation*VarXn. This variable is known. Assume that R<<S, so that:
VarX1=S.
VarX1rec=S/2.
Introducing equation (4) into equation (2):
Thus:
VarX1X2=√{square root over (2SqT)}
Using equation (3), there is obtained:
Using equation (5), there is obtained:
Using equation (4), there is then obtained:
The expressions for VarX2rec and VarX2 do not communicate a great deal because T is not known; T is computed next from equation (6):
We set
to obtain a second order equation the roots of which are:
The value of T is obtained for the lowest value, that is to say:
Denoting:
α=0.386
therefore:
VarX2rec is rewritten as a function of S and T:
Denoting
β being approximately equal to 0.1410 and the square root of β has the approximate value 0.3755.
Denoting:
γ is approximately equal to 0.1987 and the square root of γ has the approximate value 0.4458.
Finally, the coefficient of correlation Corr between X1 and X2 is computed:
There are therefore obtained:
Corr is approximately equal to 0.58
Corr_rec is approximately equal to 0.409
Finally, VarX2 and VarX2rec are determined from S and q, which are the main inputs:
is approximately equal to 0.94
is approximately equal to 1.33
Summarizing:
with γ approximately equal to 0.1987
with β approximately equal to 0.1410
is approximately equal to 1.33
is approximately equal to 0.94
Corr is approximately equal to 0.58
Corr_rec is approximately equal to 0.409
with α≈0.386
The formulas 3f and 4f show that the filter does not converge better than the uncertainty as to the safe position at the input divided by the product of the time between two updatings and a sigma coefficient equal to sqrt(0.1987)=0.4458.
Consider what happens at the level of updating the speed assuming that there is no error on the filter FC before updating and that the filter providing the measurement is corrupted by a position error equal to √{square root over (S)}:
The reasoning applies to a filter that is not a filter with deviations:
At the level of the equations:
Thus:
We set:
Which gives, on setting:
The maximum speed error on X2 is searched for:
The maximum is reached at the second iteration, i.e.:
The maximum error on X2 is:
with
The maximum speed error is equal to
for a standard deviation of
This demonstrates that it is legitimate to use such a filter given that the covariance always bounds the error for the application part of an error on the measurement; in this case it is a constant error. Where the statistical errors of the sensors are concerned, it is necessary to multiply the standard deviation by an appropriate coefficient to obtain the probability associated with the required radius of protection.
This demonstrates that when the fault applied is constant has the value √{square root over (S)} then the maximum error has the value
while the position uncertainty has the value
The form of error at the input that maximizes the error at the output may be questioned:
Returning to the equations:
With the error at the input, assuming that U0=0:
Assuming that the maximum amplitude of the input has the value √{square root over (S)}, Un is therefore a maximum when en-1-j=√{square root over (S)} if [AjU](2) is positive and en-1-j=−√{square root over (S)} if [AjU](2) is negative. The ith component of the vector V is denoted V(i).
It will also be shown that Un takes the form
where α is a constant independent of √{square root over (S)} and T:
The eigenvalues of A are independent of T because the polynomial giving the eigenvalues is
Remember that b is a constant.
It is also easily shown that the eigenvectors may be written in the form
where a is a constant.
If the eigenvalues of A are denoted λ1 and λ2:
Im(a) corresponds to the imaginary part of a.
It is therefore seen that [AjU](2) is in the form
which shows that Un takes the form
The value of α: 0.48 is computed empirically.
A maximum error of
is therefore obtained for a standard deviation of
As five times the standard deviation is taken to supply a safe radius (to cover rare and normal errors), the requirement is generously covered.
One application of the present invention is to inertial navigation in civil aviation. One example might be the computation of the speed radius.
To anticipate the value of the speed covariance, it must be possible to determine the value of S and the value of Q.
Considering that the PLFDSIS is distributed across the two axes, the value of S is: (PLFDSIS/sqrt(2))2. This value is varied between 502/2 m2 and 2772/2 m2.
Where the value of Q is concerned, the major part of the decorrelation applied to the speed is linked to the error Ψ the value of which is the sum of the angle position error and the attitude error.
This error Ψ is in large part linked to the attitude error and its value is between 50 μrad and 100 μrad (for sensors used in aeronautical navigation):
Vn+1=Vn+g·Ψ·T (ignoring the other error terms)
Whence:
Cov(Vn+1)=Cov(Vn)+Cov(g·Ψ·T)+2·corr·sqrt(Cov(Vn)·Cov(g·Ψ·T))
Cov(X) representing the covariance associated with the state X.
We have: Pvit=Pvit+g2*Cov(Ψ)*T2 ignoring the last term.
Pvit representing Cov(Vn)
The orders of magnitude are as follows:
T=100s, Cov(Ψ)=10−8 rad2, g=10 m/s2, sqrt(Cov(Vn))=0.02 m/s,
Corr=1=>
g
2×Cov(Ψ)×T2=0.01 (m/s)2
2·corr·sqrt(Cov(Vn)·Cov(g·Ψ·T))=0.004 (m/s)2
In contrast to the model used previously, it is seen that it is not a question of simple addition of model noise. To revert to the situation studied previously, an equivalent Q is constructed, equal to:
Q=g
2*Cov(Ψ)*T.
It is therefore possible to compute T from equation 9f:
The standard deviation is then computed as follows (multiplying by √{square root over (2)} to have a horizontal radius and multiplying by 5 to have an integrity at 10−7/h):
A numerical application yields:
S=2772/2 m2
Cov(Ψ)=100.10−6 rad2
=>
T=216 s
HIVL=2.8463 m/s
S=502/2 m2
Cov(Ψ)=50.10−6 rad2
=>
T=130 s
HIVL=0.8551 m/s
There follow examples of civil aviation navigation simulation on a full simulator.
At t=4500 s, a GPS error on all the satellite axes is applied. What happens in a conventional filter and in the integrity filter of the present invention is considered.
It is seen that the speed or attitude error exceeds the radii of protection with an integrity of 10−7/h on the attitude and on the speed.
In
Likewise in
In
It is seen that the speed or attitude error does not exceed the radii of protection of 10−7 on the attitude and on the speed. Moreover, the errors of the integrity filter are smoothed.
Of the possible applications, there may be cited by way of example the supply to the automatic pilot of an aircraft of a safe ground speed of an aircraft that is more accurate than the purely inertial speeds generally used, or the supply to a braking computer of a safe ground speed of an aircraft more accurate than the purely inertial speeds generally used.
Number | Date | Country | Kind |
---|---|---|---|
1402530 | Nov 2014 | FR | national |