Method of determining an acquisition indicator bit in a communication system

Information

  • Patent Grant
  • 6944205
  • Patent Number
    6,944,205
  • Date Filed
    Tuesday, July 9, 2002
    22 years ago
  • Date Issued
    Tuesday, September 13, 2005
    19 years ago
Abstract
A method of determining an acquisition indicator bit AIs at a receiver in a communication system which includes receiving multiplexed acquisition indicator bits y=B×AI+n, where B is the signature matrix known at both base station and the receiver, AI is all the acquisition indicator bits and n represents noise. Next, an estimated value of the acquisition indicator bit AÎML(s) as a function of ∑j ⁢ ⁢BT⁡(s,j)×y⁡(j) is calculated, where BT(s,.) is the s-th row vector of the transposed matrix BT for acquisition indicator bit AIs. Finally, the acquisition indicator bit AIs is set as follows: AIs=−1, if AÎML(s)
Description
BACKGROUND AND SUMMARY OF THE INVENTION

The present invention relates generally to communication systems of coded data and, more specifically, to an improvement in determining an acquisition indicator bit at a receiver in a communication system.


Although the present invention will be described with respect to 3rd generation wideband code division multiple access (3G WCDMA) system, the same method can be used for determining an acquisition bit AIs at a receiver in other communication systems. General and specific references will also be made to the 3G WCDMA standard 3GPP TS 25.211, Physical channels and mapping of transport channels onto physical channels (FDD) (Release 4) and 3GPP TS 25.213, “Spreading and modulation (FDD)” (Release 4).


In 3rd generation CDMA systems, physical connections between UE (User Equipment) and base stations are established through the Physical Random Access Channel (PRACH) and Acquisition Indicator Channel (AICH). The UE transmits PRACH signal that carries the RACH preamble and message to a base station, to request a connection. When the base station recognizes a PRACH preamble, it responds with AICH to UE to indicate if the connection request is granted. An example of the AICH from 3GPP TS 25.211 is shown in FIG. 1.


Upon the AICH reception, the problem is to estimate the AIs based on the received real valued symbols a0, a1, . . . , a31 which are transmitted through AICH, where AIs, ∈{−1,0,1} and s=0,1, . . . , 15. An AIs of 0 indicates that the signature s is not a member of the set of available signatures. An AIs of 1 indicates a positive acknowledgement, and an AIs of −1 indicates a negative acknowledgement. At the base station, AIs is code multiplexed with others, {AIn:n≠s}, by the following formula:
aj=s=015AIsbs,j,j=0,1,,31,(1)

where {bs,j:j=0,1, . . . 31} are given in Table 21 in 3GPP TS 25.211 and shown below in the example as BT.


The present invention is a method of determining an acquisition indicator bit AIs at a receiver in a communication system. The method includes receiving multiplexed acquisition indicator bits y=B×AI+n, where B is the signature matrix known at both base station and the receiver, AI is the set of all the acquisition indicator bits and n represents noise, for example, AWGN (additive white Gaussian noise). Next, an estimated value of the acquisition indicator bit AÎML(s) as a function of
jBT(s,j)×y(j)

is calculated, where BT(s,.) is the s-th row vector of the transposed matrix BT for acquisition indicator bit AIs. Finally, the acquisition indicator bit AIs is set as follows:

AIs=−1, if ML(s)<R
AIs=0, if R≦AÎML(s)<U
AIs=1, if ML(s)≧U,

where R and U are decision thresholds.


The constants R and U may be equal absolute values, for example, −0.5 and 0.5, respectively. The estimated value AÎML(s) is calculated by
AI^ML(s)=132j=031BT(s,j)×y(j).

The method is performed without forming a matrix B or BT and is performed in software.


These and other aspects of the present invention will become apparent from the following detailed description of the invention, when considered in conjunction with accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of the structure of the acquisition indicator channel AICH of the 3G WCDMA system defined in 3GPP TS 25.211.



FIG. 2 is a flow chart of a method of determining an acquisition indicator bit AIs incorporating the principles of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The method of the present invention, which is performed at the receiver of a communication system, is illustrated in FIG. 2. The input signal y is received at 10. An estimated acquisition indicator (AÎML(s)) is calculated from the input signal y. The resulting estimated acquisition indicator corresponding to a signature index s, AÎML(s) is then used for determining an acquisition indicator bit AIs having one of the values −1,0,1. The decided acquisition indicator bit is outputted at 16. The details of the method are described as follows:


In matrix form, equation (1) can be expressed as

a=B×AI,  (2)

where
a=[a0,a1,,a31]T,B=[b0,0b1,0b2,0b15,0b0,1b1,1b2,1b15,1b0,31b1,31b2,31b15,31],


and

AI=[AI0, AI1, . . . , AI15]T.


The received soft bits from a rake receiver can be modeled as

y=a+n
or
y=B×AI+n,  (3)

where n denotes noise, for example, the AWGN.


The maximum likelihood estimator for the unknown acquisition indicator, AÎML, in equation (3) is well known (see S. M. Kay, Fundamentals of Statistical Signal Processing (Estimation Theory), Prentice Hall) and is given by

ML=(BT×B)−1×BT×y.  (4)

Due to orthogonality (see Table 21 in 3GPP TS 25.211),

BT×B=32×I16×16,  (5)

where I16×16 is the identity matrix with dimension 16.


Thus, equation (4) can be reduced to
AI^ML=132×BT×y.(6)


It is assumed that the table index, s, for AICH signature patterns is equivalent to the one for the RACH preamble signatures from Table 3 in 3GPP TS 25.213. In other words, the index s is known at the user equipment UE so that only the portion corresponding to s of equation (6) is of interest.


Let Ts(y) be a statistic corresponding to an index s, given y
Ts(y)=AI^ML(s)=132j=031BT(s,j)×y(j),(7)

where BT(s,.) denotes the s-th row vector of the matrix BT.


Assuming uniform prior for the following hypotheses,

H−1: AIs=−1,
H0: AIs=0
H1: AIs=1, s=0,1, . . . , 15,

the 3-ary MAP decision rule (see S. M. Kay, Fundamentals of Statistical Signal Processing (Detection Theory), Prentice Hall) is to decide

AIs=−1, if Ts(y)<R
AIs=0, if R≦Ts(y)<U
AIs=1, if Ts(y)≧U,

where U and R are constants. The {Hi, i=−1,0,1} denote the hypotheses that the acquisition indicator bit is i. Assuming perfect channel, the constants R and U may be equal absolute values, for example, −0.5 and 0.5, respectively.


As an illustrative example, let AI0=−1, AI1=−1, AI2=1, AI3=−1, AI4=−1, AI5=−1, AI6=−1, AI7=−1, AI8=−1, AI9=−1, AI10=−0, AI11=−1, AI12=−1, AI13=−1, AI14=−1, and AI15=0.


Since AI is defined by

AI=[AI0AI1AI2AI3AI4AI5AI6AI7AI8AI9AI10AI11AI12AI13AI14AI15]^T,

where T denote the transpose, that is
AI=[-1-11-11-1-1-1-1-10-1-1-1-10].

The matrix B (of size 32×16) in (2) is given by
B=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,11,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-11,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-11,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-11,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-11,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,11,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,11,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-11,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-11,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,11,-1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,11,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,11,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,11,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-11,-1,-1,1,-1,1,1,-1,1,-1,-1,1,-1,1,1,-11,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-11,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-11,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,11,-1,1,-1,1,-1,1,-1,-1,1,-1,1,-1,1,-1,11,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,11,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,11,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-11,-1,-1,1,1,-1,-1,1,-1,1,1,-1,-1,1,1,-11,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,11,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,11,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-11,-1,1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,1,-11,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-11,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-11,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,11,-1,-1,1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,1].

For instance, b0,0=1 and b2,1=−1.


The transposed B is then
BT=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,-1,1,1]

From equation (3), a=B×AI.


Note that the size of y, a, B, and AI are 32×1, 32×1, 32×16, and 16×1, respectively.


The calculated a is then
a=[-12-1222-4-4-2-22244-2-2-4-4002200-2-22200-2-200].


From equation (3), the noise is assumed as the additive white Gaussian. Suppose the noise values are given by
n=[0.17030.35610.29070.22980.01600.26920.2262-0.1017-0.1501-0.1177-0.5866-0.09300.04710.12520.5740-0.13960.24780.31770.3741-0.39450.08430.0946-0.4007-0.29510.4304-0.05230.15500.0350-0.2527-0.22250.1764-0.3777].


Then from equation (3), the observed samples, y, is
y=[-11.8297-11.64392.29072.2298-3.9840-3.7308-1.7738-2.10171.84991.88233.41343.9070-1.9529-1.8748-3.4260-4.13960.24780.31772.37411.60550.08430.0946-2.4007-2.29512.43041.94770.15500.0350-2.2527-2.22250.1764-0.3777].


The y is the noisy version of the received acquisition indicator bits carried over AICH.


Assume that the signature index s is 2, then by equation (3), the AI2 can be estimated as
AI^ML(2)=132j=031BT(2,j)×y(j)=1/32*(1*-11.8297+1*-11.6439+1*2.2907+-1*0.1764+-1*-0.3777)=1.0434.

This is the multiplication of two vectors, the 3rd row of BT and y. Since AÎML(2) is greater than 0.5 using U=0.5, the decision can be made as AÎ(2)=1, which is matched with the initial setting, AI2=1.


Although the present invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only, and is not to be taken by way of limitation. The scope of the present invention are to be limited only by the terms of the appended claims.

Claims
  • 1. A method of determining an acquisition indicator bit AIs at a receiver in a communication system, the method comprising: receiving multiplexed acquisition bits y=B×AI+n, where B is the signature matrix known at both base station and the receiver, AI is all the acquisition indicator bits and n represents noise; calculating an estimated value of the AI bit of interest
  • 2. The method according to claim 1, wherein R and U are equal absolute values.
  • 3. The method according to claim 1, wherein R and U are −0.5 and 0.5, respectively.
  • 4. The method according to claim 1, wherein the estimated value AÎMMSE(s) is calculated by A⁢ ⁢I^MMSE=1(32+σ^2)⁢∑j=031⁢ ⁢BT⁡(s,j)×y⁡(j).
  • 5. The method of claim 1, wherein the method pre-stores matrix B or BT.
  • 6. The method of claim 1, wherein the method is performed in software.
US Referenced Citations (3)
Number Name Date Kind
6690712 Kim et al. Feb 2004 B2
6704581 Park et al. Mar 2004 B1
20040001445 Lim et al. Jan 2004 A1
Related Publications (1)
Number Date Country
20040008799 A1 Jan 2004 US