The invention relates to a method of determining a corresponding image for a reference image from an image sequence of a moving object, the image sequence representing the object motion as a sequence of states of motion. The invention also relates to a system and to an examination apparatus whereby the method can be carried out as well as to a computer program and a computer program product enabling a data processing unit to carry out the method.
The method is used, for example, wherever an image of a state of motion is to be determined in an image sequence, said state of motion also being represented in a reference image acquired during a second, similar motion of the object. While the object performs the motions, each time a signal is determined which represents the sequence in time of the states of motion for each motion. Apparatus of this kind are known, for example, from the medical field. The patent document U.S. Pat. No. 4,729,379 discloses an X-ray examination apparatus for cardiological examinations in which two X-ray image sequences of the beating heart are acquired. A contrast medium is injected into the blood vessels of the heart during the acquisition of one of the two sequences.
During a subsequent step, the two sequences are subtracted from one another, that is, one image after the other, so that only the vessels filled with the contrast medium are reproduced with a minimum amount of background in the resultant differential sequence. To this end, the two image sequences must be aligned relative to one another in such a manner that from each image sequence always those images are subtracted which represent the same state of motion. This is achieved by the acquisition of a respective electrocardiographic (ECG) signal by means of an electrocardiograph, that is, in parallel with the acquisition of the two image sequences. In both ECGs each time two successive R deflections are determined whereby the two ECGs are aligned relative to one another. If the time elapsing between the two R deflections in the two ECGs differs, this time difference is compensated by linear interpolation, so that the images acquired between the R deflections of the two associated image sequences can be associated with one another.
Because only one reference instant is used for cardiac cycle, the image sequences are aligned with one another at one instant only, so that differences between the two ECG signals in respect of the duration of the overall cardiac cycle on the one hand and in respect of the expansion or compression of individual segments of the motion of the heart on the other hand are not taken into account. This gives rise to undesirable and disturbing artefacts in the differential sequence.
Therefore, it is an object of the present invention to improve systems of the kind set forth.
The object is achieved in accordance with the invention by means of a method of determining a corresponding image for a reference image from an image sequence of a moving object by means of a first and a second motion signal, in which
The above method serves to determine a corresponding image for a reference image, the corresponding image representing at least approximately that state of motion of a moving object which is represented in a reference image. From a first motion of an object there is now acquired an image sequence in which each image represents a state of motion of the object motion. The succession of images then represents a motion image sequence of the object motion. While the object performs a second motion, a reference image is acquired of a state of motion which occurs during the second motion of the object. A motion signal which characterizes or represents the variation in time of the states of motion of the motion is available from the first as well as from the second motion. A signal of this kind is, for example, an ECG which can be acquired while the relevant motion takes place. Another motion signal is a signal produced by a breathing sensor during the respiratory motion of a patient.
During a first step of the method the two motion signals are examined for similarities. This yields a similarity function which can be used to associate with any instant of one motion signal a corresponding instant of the other motion signal in such a manner that the object has assumed at least approximately the same state of motion at the two instants. Using the similarity function, in two motions there can be determined two instants at which the object has assumed approximately the same state of motion during the respective motions. Even when the motions differ to such an extent that the motion signals of the motions are non-linearly distorted relative to one another, as opposed to known methods, the method in accordance with the invention still produces results that are suitable for evaluation.
During a second step of the method the instant in the first motion signal which corresponds to the reference instant of the second motion signal is determined. In a third step of the method, that image of the image sequence whose acquisition instant corresponds approximately to the corresponding instant is determined as the corresponding image. The corresponding image thus selected represents at least approximately that state of motion of the moving object which is represented in the reference image. When the reference image and the corresponding image from the image sequence are subtracted from one another, the subtraction image will exhibit only a very small number of artifacts which may be due to the fact that two images of different states of motion are subtracted from one another.
In conformity with claim 2, the similarity comparison can be performed by means of the known “dynamic time warping” method. This method enables a very fast and efficient execution of the similarity comparison.
If the object motion is known in principle, so that additionally information can be provided on the states of motion assumed by the object between the acquisitions of the images of the image sequence, artificial intermediate images can be formed for these states of motion by interpolation. For example, the motions performed by some organs during respiration can be sufficiently accurately described by means of a motion model. In conformity with claim 3 it is then possible to form an image which represents as well as possible the state of motion assumed by the object during the acquisition of the reference image. This is advantageous notably when the difference between the actual instants of acquisition of the images of the image sequence and the correspondence instant is so large that too many artefacts are produced, for example, in a subtraction image. The interpolation of intermediate images can also be advantageously used when only few images can be acquired for the image sequence during the object motion.
In conformity with claim 4 the method can be used particularly advantageously in systems in which images and image sequences of a human or animal heart are formed and, moreover, an ECG of the cardiac motion is available. The method in accordance with the invention provides reliable determination of images representing the same state of motion of the heart notably in the case of patients who, because of disease or given physical conditions, have cardiac cycles whose ECGs exhibit non-linear distortions relative to one another.
In conformity with claim 5, the method is used in systems in which subtraction angiography is carried out. Imaging methods which are suitable for the acquisition of images of states of motion of the heart may be X-ray systems in conformity with claim 6 and ultrasound systems in conformity with claim 7. However, imaging systems which produce slice images or volume images, such as magnetic resonance tomography apparatus or X-ray computed tomography apparatus, will in the very near future also be capable of recording states of motion of the heart. The method can then be used accordingly.
Therefore, in conformity with claim 8 it is particularly advantageous to use the method in a system which comprises a data processing unit of the kind used in contemporary imaging systems in the medical field. An X-ray examination system may be provided with such a system in accordance with claim 9. If the data processing unit is constructed so as to be programmable, a computer program or computer program product as claimed in claim 10 can enable the data processing unit to carry out the method in accordance with the invention.
Embodiments of the invention will be described in detail hereinafter with reference to the Figures.
During the cardiac cycle respective images I1 to I14 of the heart are acquired at a plurality of instants t1 to t14. Each of the images I1 to I14 represents a state of motion of the heart as an instantaneous image of the very complex cardiac motion. Images of this kind can be acquired by means of known imaging methods, for example, by means of X-ray imaging or ultrasound imaging. Contemporary X-ray systems enable the acquisition of a maximum of from 30 to 60 images per second, so that the images of the image sequence of a cardiac cycle represent 30 and 60 different states of motion of the heart, respectively. Such a number of images, however, is difficult to represent in the Figures, so that a smaller number is used herein.
For some examinations of the heart it is useful to image only the vascular tree of the blood vessels of the heart. To this end, a first and a second image are acquired of a state of motion of the heart. During the acquisition of the second image, for example, a contrast medium which absorbs X-rays is introduced into the blood vessels of the heart, for example, by means of a catheter, so that the blood vessels are highlighted very well in the X-ray system. The acquisition of the first image takes place without contrast medium. During a next step, both images are subtracted from one another, for example, one pixel after the other, so that in the ideal case only the vascular tree filled with contrast medium is still visible. This method is also referred to as subtraction angiography; in the case of digital images it is also called digital subtraction angiography (DSA).
An image produced by DSA contains particularly few artefacts when the image elements or pixels to be removed by the subtraction are substantially the same in the two images. Furthermore, the shape of the object to be highlighted in the two images should also be substantially the same. Therefore, notably in the case of a complex motion such as the motion of the heart it is important to subtract two images from one another which represent the same state of motion of the heart as well as possible. For example, if the state of motion represented in the image I8 is to be represented as a DSA image, it is necessary to find from the second image sequence the image I′8 which represents substantially the same state of motion of the heart as the image I8. This is denoted by the dotted line. If, like in systems used thus far, exclusively the so-called R deflection (pronounced deflection briefly before the instant of acquisition of I8) is taken as a reference instant and if this deflection is substantially wider in the ECG E′1 than in the ECG E1 (dashed part of the ECG E1′), a known method would produce an image I′8 which is still situated in the descending part of the R deflection, so that it represents a state of motion completely other than the actually searched I′8. Notably in the case of patients suffering from cardiac disease it cannot be assumed simply that the curve of the ECG of two different cardiac cycles is exactly the same. Generally speaking, one ECG exhibits non-linear distortions relative to the other ECG, so that at a given instant during the acquisition of one ECG the heart is in a state of motion which differs from that during the acquisition of the other ECG. This makes the comparison of two ECGs for the determination of the image I′8 corresponding to the image I8 more difficult.
The use of such pattern comparison algorithms is known from word recognition systems utilized in the field of speech recognition (for example, from the book by E. G. Schukat-Talamazzini “Automatische Spracherkennung”, ISBN 3-528-05492-1, Vieweg Verlag, 1995, Chapter 5.1). In conformity with
The distance D(X, Y) between the input sequence X=x1 . . . xT and a reference sequence Y=y1 . . . yS of different duration S≠T is determined as the sum of local distances dij=d(xi, yj) along a suitable time warping path between the vector sequences. The local distance function d(•,•) is realized, for example, by the Euclidean metric. The appropriate distortion function for this purpose should map X on Y over its entire length, satisfy given properties of monotony and constancy in the t scale and the s scale and yield the smallest overall distance. This very complex discrete optimization task (the number of combinatorily feasible paths increases exponentially as a function of the length of the prototype even when said limitations are imposed) satisfies the principle of optimization and hence can be solved by means of the generally known “dynamic programming” method. The cumulative distances Dij=D(x1 . . . xi, y1 . . . yj) between initial segments of the vector sequences X, Y are subject to the recursion formulas:
Therefore, the overall distance D(X, Y)=DTS can be determined by carrying out merely O(T·S) arithmetic operations.
This method enables two ECG curves to be compared for similarities. To this end, the ECG curves are presented in digital form, that is, represented by a large number of characteristic points (for example, 300) in each curve; this can be realized in known manner by sampling the ECG signal. The ECG curves thus form a sequence of scalars. The local distance function can then be expressed by the following alternative standards:
The expression ∥x, y∥ is generally known from mathematics and satisfies the conditions ∥x, y∥+∥y, z∥≧∥x, z∥ (triangular inequality), ∥x, x∥=0, ∥x, y∥≧0 and ∥x, y∥=∥y, x∥ (symmetry).
As before, the cumulative distances are formed as the sum of the preceding local distances and the most favorable distortion path is determined recursively with the minimum condition. Once the distortion path has been defined, a corresponding characteristic point of the other ECG curve can be indicated for each characteristic point of one ECG curve.
During the determination of the optimum path the recursion formula defines which boxes can be reached in a recursion step. In accordance with the above formula, the minimum is determined from three different cumulative distances, the three distances being measured from one box to directly neighboring boxes. Alternatively, the following recursion matrix, resulting from the associated recursion formula, can be used:
In this case three cumulative distances are compared again, be it that the corresponding boxes are not direct neighbors in one of the three comparisons. The distances that are actually compared with one another in the recursion formula are dependent on the exact system conditions and can be varied, if desired, in conformity with the predetermined task by the back-pointers or local transitions given by the recursion formula.
The
The two ECG curves E2 and E3 are substantially the same in
When the corresponding instants have been defined,
A first possibility of obtaining an image which is suitable for subtraction angiography is to select that image whose acquisition instant lies as closely as possible to the corresponding instant t75. In other words, that image is selected for which the time difference between the acquisition instant of the image and the corresponding instant t75 is smallest. This would be the image I73. This possibility is used notably when there are further image sequences with ECGs (not shown) which have been acquired without using a contrast medium. For each of these further ECGs this method enables the determination of a time difference between the relevant corresponding instant and the nearest image. The image for which the time difference is smallest is chosen for subtraction angiography.
Another possibility for obtaining an image which is suitable for subtraction angiography is to interpolate an image from those images which have been acquired each time before and after the corresponding instant. For example, the motion of the heart between the states of motion shown in the images I72 and I73 can be interpolated so as to form an artificial image which represents the state of motion of the heart at the corresponding instant t75. In a simple case a linear motion of the heart is assumed between the states of motion of the images I72 and I73. In another case the overall motion of the heart is described in a motion model whereby the almost exact motion of the heart between the acquisition instants of the images I72 and I73 can be interpolated and an image of the state of motion at the corresponding instant t75 can be determined.
The use of the method in accordance with the invention is not limited to one reference image. In the case of an image sequence comprising a plurality of reference images, a corresponding image can be determined or formed for each individual reference image by means of the method.
Electrodes which are connected to an ECG apparatus 51 are attached to the patient. The Figure shows, merely by example, only one connection lead 50 with an electrode attached to the body. In reality a plurality of electrodes will be used in known manner as well as an electrode (not shown) for a reference potential (often ground). The ECG apparatus connected to the data processing unit 46 forms the ECG of the patient 41 during the X-ray image acquisition under the control of the data processing unit 46, and presents it to the data processing unit 46 in order to carry out the method in accordance with the invention.
Also shown is a catheter 49 which is typically introduced into a blood vessel in the region of the groin of the patient during cardiological examinations. The physician then advances the tip of the catheter as far as the heart while acquiring X-ray image sequences with a low dose which serve as an aid for the navigation within the body. Once the heart is reached, via the catheter contrast medium is injected into the blood vessels of the heart. Briefly before the emergence of the contrast medium from the tip of the catheter the X-ray image detector 44 and the X-ray source 40 are switched to a high-dose mode of operation for the subsequent acquisitions, so that detailed high-dose images are formed of the vascular tree of the heart which is filled with the contrast medium.
Subsequently, the X-ray source is deactivated or low-dose images are formed again should the physician require navigation aids for further actions. The high-dose images of the vascular tree filled with the contrast medium are stored in the data processing unit 46. Using the ECG formed by the ECG apparatus 41 and the method in accordance with the invention, these high-dose images can be superposed in the described manner on the low-dose images or on further high-dose images, representing the vascular tree without contrast medium, so as to be presented to the physician by way of the visualization unit 48.
The method in accordance with the invention can be used for various cardiological examinations.
It is to be noted that the method is not restricted to X-ray examination systems. The method in accordance with the invention can be carried out in an ultrasound examination system in the same way as in the X-ray examination apparatus shown in
Number | Date | Country | Kind |
---|---|---|---|
102 14 763.9 | Apr 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/01183 | 4/1/2003 | WO | 5/2/2005 |