The preferred geological orientation of geological formations is determined by geological measurements. These measurements are represented by original vectors which are converted into lineations which represent the extension of the vectors to their intersections with a unit sphere. One of the original vectors is designated as a reference and the half axes of all lineations within 90.degree. of the reference are selected and transformed into unit vectors. The selected unit vectors are vector averaged to produce a resultant vector and the magnitude is determined. The steps are repeated for each of the original vectors and the resultant vector having the maximum magnitude is selected as the preferred orientation of the formation.
Description
BACKGROUND OF THE INVENTION This invention relates to the determination of geoligical orientations, and more particularly, to a method of determining and displaying these preferred orientations. In geophysical exploration, for example, the mapping of subsurface formations is important. Plots depicting the depth, dip and azimuth (i.e., azimuth of the dip) of subsurface formations are important geophysical tools. Many different types of measurements are made to provide the raw data from which the depth, dip and azimuth of the subsurface formations are determined. Seismic exploration, well logging and gravimetric measurements, for example, have been used to provide data regarding the depth, dip and azimuth of subsurface formations. Usually, these measurements do not consistently represent the true dip and azimuth of the formations. For this reason, it is common to apply a smoothing or averaging procedure to the raw measurements in order to determine the preferred orientation of the subsurface formations. See Structural Geology, M. P. Billings, Prentice Hall, 3rd Ed. 1972, p. 377, for a discussion of the manner of determining and depicting the preferred orientation of subsurface formations. Structural geologists, petrologists, sedimentologists and others use three-dimensional orientation analysis in their studies of the depositional environments. Examples of the gathering of measurements which supply three-dimensional data regarding the earth's subsurface include U.S. Pat. No. 4,241,429--Bloomquist et al wherein seismic measurements are made in a manner which can be used to determine the three-dimensional orientation of the subsurface layering of the earth. Another extensively used measuring technique includes the use of a dipmeter logging tool. Dipmeter logging is described in "The High Resolution Dipmeter Tool", Log Analyst, Vol. 10, No. 3 (May-June, 1969), pp. 3-11, Allaud, L. A., and Ringot, J; "Automatic Computation of Dipmeter Logs Digitally Recorded on Magnetic Tapes", JPT (July, 1962), pp. 771-782, Moran J. H., Coufleau, M. A., Miller, G. K., and Timmons, J. P.; "The Continuous Dipmeter as a Tool for Studies of Directional Sedimentation and Directional Tectonics", SPWLA 9th Annual Logging Symposium (June 23-26, 1968), pp. G1-25, Rodriquez, A. R., and Pirson, S. J.; and "A Three Dimensional Vector Method as an Aid to Continuous Dipmeter Interpretation", Geologie En Mijnbouw, Vol. 50, No. 6 (1971), pp. 725-732. It is an object of the present invention to determine and depict the preferred orientations in depositional environments and in other orientation studies as represented by dipmeter, petrofabric and other geological and geophysical measurements. SUMMARY OF THE INVENTION In accordance with the present invention, the preferred geological orientation is determined by converting geological measurements, such as the dip and azimuth of the dip of the subsurface formations, into unit vectors. These unit vectors are converted into lineations which represent axes passing through the center of a unit reference sphere. Each of these axes is then converted into two oppositely directed unit vectors, one being the original vector and the other being the backward extension to the reference sphere. All of the original unit vectors are each in turn designated as a reference vector. All vectors within 90.degree. of the reference vector are selected and the selected vectors are averaged to produce a resultant vector. The resultant vector having the maximum magnitude is used to indicate the preferred orientation of the formation. In one embodiment, the invention is applied to dipmeter logging measurements to produce a useful output plot on which lines have an inclination representing the azimuth of the resultant vector, a horizontal position representing the dip of the selected resultant vector, and a vertical position representing the depth at which the measurement was made. This produces a plot which is similar to the known dipmeter "tadpole" plot, but one on which the resultant vector is represented. In accordance with another aspect, the invention is applied to measurements made in successive depth intervals so that the preferred orientation for each successive depth interval is determined. In accordance with another aspect of the present invention, a moving depth interval is applied to the measurements. The preferred orientation is determined with this moving depth interval at successive increments of depth. In accordance with another aspect of the invention, the special case where more than one resultant vector has the same maximum magnitude is resolved to determine the preferred orientation. The foregoing and other objects, features and advantages of the invention will be better understood from the following more detailed description and appended claims.
SHORT DESCRIPTION OF THE DRAWINGS FIG. 1 depicts a cross-section of the earth upon which a dipmeter logging operation is performed; FIG. 2 is a flow chart depicting the invention; FIG. 2A is a flow chart of subroutine VECMAX1 which determines the vector having the maximum magnitude; FIG. 2B is a flow chart of subroutine REFVEC which is called up if there is more than one resultant vector having the same maximum magnitude; FIG. 3 depicts an example of 15 measurements of azimuth and dip; FIGS. 4 and 5 show the coordinate system used in describing the example; FIG. 6 shows the extension of the vectors of FIG. 3 into lineations; FIG. 7 depicts the axes representation of FIG. 6; FIG. 8 shows the initial reference vector and related half axes associated with FIG. 3; FIG. 9 shows the vectors associated with reference vector no. 1; FIG. 10 shows the original unit vectors of another example; FIG. 11 shows the axes representation of FIG. 10; FIG. 12 shows the resultant vectors with identical magnitudes equal to the maximum value; FIG. 13 shows the axes representation of FIG. 12; FIG. 14 shows the original vectors, primed vectors, and final reference vector associated with FIG. 10; FIG. 15 shows the vectors associated with the final reference vector of the second example with conventional dipmeter measurements on the left and plots of the preferred orientation analysis of the present invention on the right; FIG. 17 is similar to FIG. 16 but additionally shows the results of a conventional vector averaging procedure; FIG. 18 is similar and additionally shows the results of a conventional pole averaging procedure; FIG. 19 shows an output plot produced with a 60-foot moving window to which the process of the present invention has been applied; FIG. 20 shows output plots produced by the present invention applied to 20-foot intervals and to a 60-foot moving window; FIG. 21 depicts conventional vector averaging on a simple example; FIG. 22 depicts conventional pole averaging; FIG. 23 depicts the preferred azimuth orientation on another example with conventional vector averaging; and FIG. 24 shows the preferred azimuth orientation on the same problem with the axes representation of FIG. 23.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, which represents an east-west vertical cross-section, a dipmeter logging tool is shown traversing a borehole through the formations. In this instance, the formations include a layer 12 having a dip of approximately 45.degree. and having an azimuth in the westerly direction. Formation 14 has essentially no apparent dip in the east-west vertical plane, but actually dips 45.degree. in approximately the northerly direction. Formation 16 has a dip of approximately 45.degree. with an azimuth in the easterly direction and formation 18 has a dip of about 45.degree. with an orientation, or azimuth, generally in the westerly direction. From the dipmeter measurements, the preferred orientation of each of the formations is to be determined. Commonly, dipmeters have a plurality of electrical resistance measuring elements spaced around the circumference of the logging tool. The measurements of the earth's resistivity at these measuring element locations are converted into values of the dip and azimuth of the formation surrounding the borehole. A plurality of these measurements are made over the depth interval that is logged in the borehole. The left-handside of FIG. 17 depicts the display resulting from a plurality of dipmeter measurements. Each of the solid circles on the left-hand side of FIG. 17 is placed at a horizontal position relative to the dip scale at the top which indicates the dip of the formation, in this case from 0.degree. to 70.degree.. Each of the lines directed outward from the solid circles has an inclination which indicates the azimuth of the formation; i.e., straight up is north, straight down is south, left is west and right is east. Each of the solid circles is positioned relative to a vertical depthscale to indicate the depth of the formation. From this confusing plethora of measurement results, the preferred orientation of the formations must be determined. This is a long-standing problem in geophysics, and it will subsequently be shown that prior art techniques of determining preferred orientation are ambiguous and misleading. The present invention produces, in the dipmeter case, a display shown at the right-hand side of FIG. 17 wherein the lines having arrowheads indicate the preferred orientation of the formations obtained from the measurement results depicted on the left-hand side. It will be shown that the present invention produces more reliable and accurate results than prior art techniques of determining preferred orientation. FIGS. 2, 2A and 2B depict the operation of the present invention as performed on a digital computer. Before describing this process in detail it is useful to consider FIGS. 3-15 which explain the invention with a series of graphical illustrations. Although the invention is most useful for three-dimensional orientation studies, it is advantageous for simplicity and ease of comprehension to restrict the following discussion to two dimensional azimuth orientation problems. The procedure followed isthe same in either case. First, consider the azimuth orientation example illustrated in FIG. 3. Eachof the vectors represents a measurement result. Since this is an azimuth problem (i.e., all dips are zero), imagine the unit vectors shown as lyingon a flat horizontal surface. Refer to these vectors as the "original vectors". The .theta..sub.i designate the azimuths and the .phi..sub.i represent the dips plus 90.degree.. FIGS. 4 and 5 depict the coordinate system and the .phi. and .phi. angles. The present invention takes the original vectors and projects them backwards through the unit sphere associated with these vectors to obtain "primed vectors". This step is illustrated in FIG. 6 where, for the two dimensional case under consideration, the unit sphere is represented as a unit circle. The solid lines designate the original vectors and the dashedlines the primed vectors. The primed vectors are defined by .theta..sub.i '. In three dimensions, these are designated by .theta..sub.i ' and .phi..sub.i '. In the next step, each original vector and its primed counterpart is transformed into an axis through the unit sphere (or circle). For this example, this amounts to removing the vector arrowheads and constructing unit circle diameters, which are referred to as lineations, or axes, as shown in FIG. 7. These lineations represent the conversion of each original vector to a diameter through a unit sphere. From inspection of FIG. 7, we can see that the solution to the problem should indicate a preferred north-south orientation. The present invention designates the original vector defined by .theta..sub.1 and .phi..sub.1, as "reference vector" number 1. The half-axes of all lineations within less than 90.degree. of this reference vector are selected as illustrated in FIG. 8. The half-axes associated with reference vector number 1 are then converted into vectors as shown in FIG. 9. Conventional vector averaging procedures are applied and the magnitude of the resultant vector associated with reference vector number 1 is determined. The process then chooses the original vector defined by .theta..sub.2 and .phi..sub.2 as reference vector number 2 and repeates the same operations as performed with reference vector number 1. The magnitude of the resultant vector associated with reference vector number 2 is then determined. This procedure is continued until all original vectors have been used as reference vectors. Table 1 below lists the components and magnitude of theresultant vector associated with each reference vector for the case under consideration. TABLE I__________________________________________________________________________REFERENCE RESULTANT VECTORVECTOR X-COMPONENT Y-COMPONENT Z-COMPONENT MAGNITUDE__________________________________________________________________________1 0.000 12.075 0.000 12.0752 0.000 12.075 0.000 12.0753 0.000 12.075 0.000 12.0754 0.939 11.733 0.000 11.7705 1.879 11.391 0.000 11.5456 2.645 10.748 0.000 11.0697 4.054 9.339 0.000 10.1818 6.039 5.901 0.000 8.4439 6.039 -5.901 0.000 8.44310 4.054 -9.339 0.000 10.18111 2.645 -10.748 0.000 11.06912 1.879 -11.391 0.000 11.54513 0.939 -11.733 0.000 11.77014 0.000 -12.075 0.000 12.07515 0.000 -12.075 0.000 12.075__________________________________________________________________________ The direction of the resultant vector exhibiting the greatest magnitude is then chosen as the preferred orientation solution to the problem. Note that Table I lists five resultant vectors with the same maximum magnitude of 12.075. Those associated with reference vectors 1, 2, and 3 describe a preferred orientation in the positive Y-direction or a dip of 0.degree. and an azimuth of 0.degree. (due north). But those corresponding to reference vectors 14 and 15 produce a preferred orientation result in the negative Y-direction or a dip of 0.degree. and an azimuth of 180.degree. (due south). However, both of these solutions are equivalent. The bi-modalnature of the azimuth is due to the two dimensional properties of the example problem. In the general three dimensional case, if the resultant dip (other than 0.degree.) is taken as positive downward from the horizontal and the direction of the azimuth is associated with positive dip, then the bi-modal influence disappears and the azimuth solution is unique. In accordance with an important aspect of the invention, special cases are resolved in a manner which determines preferred orientation. Under certaincircumstances it is possible to obtain more than one resultant vector with the same maximum magnitude, and with none of these resultants, a solution to the preferred orientation problem. This can be demonstrated by adding an original vector oriented due east (azimuth=90.degree.) to the previous example and obtaining FIG. 10. The axes representation for the problem as presented in FIG. 11 shows that the preferred orientation is again north-south. If the same procedure as above is followed, Table I is replaced by Table II below. TABLE II__________________________________________________________________________REFERENCE RESULTANT VECTORVECTOR X-COMPONENT Y-COMPONENT Z-COMPONENT MAGNITUDE__________________________________________________________________________1 0.000 12.075 0.000 12.0752 1.000 12.075 0.000 12.1163 1.000 12.075 0.000 12.1164 1.939 11.733 0.000 11.8925 2.879 11.391 0.000 11.7496 3.645 10.748 0.000 11.3497 5.054 9.339 0.000 10.6198 7.039 5.901 0.000 9.1859 7.902 0.000 0.000 7.90210 7.039 -5.901 0.000 9.18511 5.054 -9.339 0.000 10.61912 3.645 -10.748 0.000 11.34913 2.879 -11.391 0.000 11.74914 1.939 -11.733 0.000 11.89215 1.000 -12.075 0.000 12.11616 1.000 -12.075 0.000 12.116__________________________________________________________________________ In this Table, the maximum magnitude of the resultant vectors is 12.116 andis shared by the resultants associated with reference vectors 2, 3, 15, and16. Those corresponding to reference vectors 2 and 3 describe a preferred orientation with a dip of 0.degree. and an azimuth of 4.73.degree. (or 184.73.degree.). The resultants listed with reference vectors 15 and 16 produce a dip of 0.degree. and an azimuth of 175.27.degree. (or 355.27.degree.). We already have seen from inspection of FIG. 11 that the preferred orientation should be in a north-south direction. Therefore, none of the resultants obtained provide the preferred orientation solutionfor this example. In such a situation, the present invention performs extended steps to determine the correct preferred orientation. At the point where more than one maximum magnitude resultant vector is obtained, the program temporarily takes these resultants and treats them as original unit vectors. In the case under consideration, the problem then becomes that illustrated in FIG. 12. The axes representation is then obtained as shown in FIG. 13 and the resultant vector is determined to be defined by .phi.=90.degree. and .theta.=0.degree. (or 180.degree.). The invention then uses this resultant vector as a final single reference unit vector along with all original vectors and primed vectors as illustrated in FIG. 14. The vector representation of the half-axes associated with the final reference vector (FIG. 15) is obtained and conventional vector averaging techniques produce the correct preferred orientation solution to this problem with dip=0.degree. and azimuth=0.degree.. The invention can be carried out with a general purpose digital computer which performs the steps shown in the flow sheet of FIGS. 2, 2A and 2B. Anexemplary program listing is given in the Appendix. FIG. 2 depicts the mainprogram. The step 20 reads in a plurality of measurement results for a particular depth, such as the fifteen values of dip and azimuth depicted as vectors in FIG. 3. These original vectors are extended backwards, as indicated at 22, to produce the vector shown in FIG. 6 and the lineations shown in FIG. 7. As indicated at 24 in FIG. 2, the subroutine VECMAX1 is called. This subroutine returns the rectangular components and magnitude of the resultant vector which has the maximum magnitude along with a value of KEY2. If more than one resultant has the same identical maximum magnitude,subroutine REFVEC and subroutine VECMAX2 are used along with subroutine VECMAX1. The step 26 determines if there is a preferred dip orientation. If KEY2 is not equal to 0, there is no preferred dip and azimuth and the program terminates with an appropriate message. If there is a preferred dip and azimuth, the components of the preferred orientation are determined as indicated at 28. If the azimuth for the preferred orientation vector is indeterminate, no final solution is possible and the program terminates with an appropriate message as indicated at 30. Step 32 is a call for subroutine DISPER which will be subsequently discussed. FIG. 2A depicts subroutine VECMAX1 which selects each vector as a referenceand determines the magnitude of the resultant. Step 34 chooses the reference vector as previously depicted with regard to FIG. 8. The steps between 34 and 36 in FIG. 2A determine the magnitude of the resultant vector associated with the reference vector of FIGS. 8 and 9. As indicatedat 38 these steps are repeated using each original vector as a reference vector. The resultant vector which has the maximum magnitude is determinedas indicated at 40. The special case where more than one resultant vector has the same maximum magnitude is dealt with by the subroutines called in step 42. As indicatedat 44, the subroutine returns to the main program with the rectangular components and magnitude of the resultant vector which has the maximum magnitude along with a value of KEY2. FIG. 2B is a flow chart of subroutine REFVEC. Step 46 determines how many resultant vectors have the same maximum magnitude and it determines their components. Step 48 determines the orientations of the maximum magnitude resultant vectors in terms of angles. Step 50 obtains these angles for the associated primed vectors. As indicated at 52, subroutine VECMAX2 is called. This uses the maximum magnitude resultant vectors and their primed counterparts in the same manner as the original vectors and primed vectors in subroutine VECMAX1 todetermine a final single maximum magnitude resultant vector and a value KEY2. This is used as the final reference vector. The step 54 obtains the angles for the final reference vector. There is a return to subroutine VECMAX1 with the angles for the final reference vector along with the value of KEY2. Subroutine VECMAX2 is essentially thesame as subroutine VECMAX1 without the call for subroutine REFVEC. It uses the maximum magnitude resultant vectors and their primed counterparts in the same manner as original vectors and primed vectors in subroutine VECMAX1 to determine a final single reference vector and a value for KEY2.Return is made to subroutine REFVEC. Subroutine DISPER performs a dispersion analysis on the group of lineationsto determine how good an estimate has been obtained. The computer program listed in the Appendix contains a dispersion analysis based on the work ofFisher, R. A., "Dispersion on a Sphere", Proc. Roy. Soc., London, Ser. A, Vol. 217, (1953), pp. 295-306. The dispersion analysis results are included in the printout from the program and the nomenclature is providedin the Appendices. FIGS. 16-20 depict results obtained with the present invention practiced ondipmeter measurements of an actual well. FIGS. 16-19 depict the measurementresults performed only on an interval of the well between 5,900 feet and 6,040 feet. As previously indicated, the left hand side of these figures shows the display of these measurements by prior art technique without using any averaging or determination of preferred orientation. The measurements are plotted to represent dip magnitude as a function of depth. The dip magnitude scale at the top ranges from 0.degree. to 70.degree. dip. The straight line originating at the center of each solid circle represents the azimuth of the true dip and is analogous to the north-seeking end of a compass needle. In these plots, north is taken in the upward direction. FIG. 16 illustrates the results obtained when the three-dimensional axes analysis of the present invention is applied to each of the seven 20' intervals which are shown. These are plotted to the right of the conventional plots. This interval by interval analysis using the inventioneliminates much of the overall scatter of the original tadpole plot and suggests that certain combinations of intervals represent continuity whileothers indicate change. FIG. 17 includes the results of the conventional vector averaging procedure(CVAP) (without arrowheads) along with those from the invention (with arrowheads). Many of the azimuths determined by the CVAP tend to parallel those obtained from the invention, but the dips vary widely and are greater in magnitude in almost every case. Dips greater than 70.degree. are plotted as 70.degree.. FIG. 18 compares the conventional pole averaging procedure (CPAP) with the results of the present invention. Here again, the tadpoles with arrowheadsrepresent the dips and azimuths as determined by the invention. In these plots, it appears that the two techniques produce azimuths that are more or less comparable, but the dips tend to be lower for the CPAP than the results of the invention for most intervals. Another approach to analyzing dipmeter data is to use three-dimensional axes analysis along with a moving window. For this, let us use a 60' interval and a 20' step increment. This means that we apply the process ofthe invention over a 60' interval. If this is done, the plot of FIG. 19 is produced. FIG. 20 is a condensed version of the total length of the well which was logged. In this figure, the continuity of azimuth and dip is impressive, particularly where this continuity carries straight through sections that appear to be poorly oriented on the original plot. It illustrates the differences in results obtained when the invention is used for interval byinterval analysis and when the moving window technique is used. Both representations have their own advantages. The moving window results suggest two major events. One of these occurs in the vicinity of 6,000' and the other apparently at 6,240'. The latter event demonstrates an abrupt and permanent change in dip on the order of 10.degree.. The first event is comparable in magnitude but apparently not permanent since the appearance of the plot is quite similar above and below this event. In order to further demonstrate the usefulness of the invention, the procedure of the present invention is compared with commonly used vector averaging techniques. FIG. 21 illustrates the conventional vector averaging procedure, referred to as CVAP. Here, the vectors lie on the dipping planes, point in the direction of the dip, and are plotted on the projection of the lower hemisphere. If vector averaging is applied to these vectors, the resultant vector obtained is: Resultant: Azimuth=270.0.degree. Dip=45.1.degree. FIG. 22 illustrates the use of poles for the same problem. Here, the poles or normals to the dipping planes are plotted on the projection of the upper hemisphere. It should be pointed out that a pole is also the representation of a dip vector that has been rotated 90.degree. upwards in the vertical plane containing the dip vector. Except for a dip of exactly 90.degree., all such rotations will result in vectors confined to the upper hemisphere where the dip angle is then given by the angle between the pole vector andthe vertical axis of the coordinate system. If vector averaging is applied to the poles shown in FIG. 22, the resultantpole vector obtained is: Resultant: Azimuth=270.0.degree. Dip=0.4.degree. This procedure where the poles to the dipping planes are used is referred to herein as the conventional pole averaging procedure or CPAP. Upon inspection of the results of the two commonly used averaging procedures as applied above to a simple example, it is obvious that something is wrong. One resultant dip is 45.1.degree. while the other is only 0.4.degree., a difference of two orders of magnitude. The azimuths are identical in this example, but it can be shown that in many cases, they will not be so. Actually, neither of these results are valid. Application of the procedure of the present invention demonstrates that the correct resultant vector should be: Resultant: Azimuth=0.0.degree. (or 180.0.degree.) Dip=0.0.degree. Consider the azimuth orientation example illustrated in FIG. 23. Since thisis an azimuth problem (i.e., all dips are zero), imagine the vectors shown as lying on a flat horizontal surface. Visual inspection suggests that, due to symmetry and location of the vectors, the preferred resultant azimuth is due east. This is actually found to be the result if the conventional vector averaging procedure (CVAP) is applied to this example.The conventional pole averaging procedure (CPAP) is useless in this case since the resultant azimuth is indeterminate. FIG. 24 is the axes representation for this same problem. This illustrates a preferred north-south orientation of axes and an east-west symmetry plane. Axes analysis demonstrates that this is true. Therefore, for this example, the correct preferred azimuth as obtained by axes analysis is either 0.degree. or 180.degree. and not 90.degree. as calculated using the conventional vector averaging procedure. In other words, the CVAP resultant is in error by 90.degree.. While a particular embodiment of the invention has been shown and described, various modifications are within the true spirit and scope of the invention. The appended claims, therefore, are intended to cover such modifications. ##SPC1## __________________________________________________________________________COMPUTER STATEMENT NOMENCLATURE__________________________________________________________________________Main ProgramN = Number of azimuth and dip pairs to be enteredXX = Azimuth value enteredYY = Dip value enteredAZM (I) = XXDIP(I) = YYPI = .pi.CON = Constant used to convert degrees to radiansPHI(I) =angle for original vector i) + 90.degree. = .phi.THET(I) =angle for original vector ieta.PHIP(I) =angle for primed vector iphi.THETP(I) =angle for primed vector i .theta.KEY2 = If KEY2 = 1, there is no preferred azimuth and dipRX = X-component of preferred orientation vectorRY = Y-component of preferred orientation vectorRZ = Z-component of preferred orientation vectorRXYZ = Magnitude of preferred orientation vectorTXYZ = Azimuth of preferred orientation vectorRXY = XY-plane component of preferred orientation vectorPXYZ = .phi.-angle for preferred orientation vectorTHECO = Dispersion analysis spherical radius .theta..sub.c of circle of confidenceTHEAZ = Dispersion analysis azimuthal half-angle of confidence .theta..sub.aSubroutine VECMAX1THETR(J) = .theta.-angle for reference vector jPHIR(J) = .phi.-angle for reference vector jRRX = X-component of reference vector jRRY = Y-component of reference vector jRRZ = Z-component of reference vector jRX = X-component of original vector iRY = Y-component of original vector iRZ = Z-component of original vector iRXP = X-component of primed vector iRYP = Y-component of primed vector iRZP = Z-component of primed vector iE = Dot product between reference vector j and original vector iF = Dot product between reference vector j and primed vector iGAM = Angle between reference vector j and original vector iGAMP = Angle between reference vector j and primed vector iRSX = X-component of vector i (original or primed) closest to reference vector jRSY = Y-component of vector i (original or primed) closest to reference vector jSUMPX = Sum of X-components of vectors i closest to reference vector jSUMRY = Sum of Y-components of vectors i closest to reference vector jSUMRZ = Sum of Z-components of vectors i closest to reference vector jRFXYZ(J) = Magnitude of resultant vector j associated with component sums of vectors i closest to reference vector jRFX(J) = X-component of RFXYZ(J)RFY(J) = Y-component of RFXYZ(J)RFZ(J) = Z-component of RFXYZ(J)RXYZM = Magnitude of resultant vector j which has the maximum magnitudeRXM = X-component of RXYZMRYM = Y-component of RXYZMRZM = Z-component of RXYZMAN(KK) = Indicator to show which resultant vectors have identical maximum magnitudes.Subroutine REFVECAN(I) Indicator to show which resultant vectors have identical maximum magnitudesRX = X-component of resultant maximum magnitude vector jRY = Y-component of resultant maximum magnitude vector jRZ = Z-component of resultant maximum magnitude vector jTXYZ = .theta.-angle for maximum magnitude vector jPXYZ = .phi.-angle for maximum magnitude vector jTHETT(J) = .theta.-angle for maximum magnitude vector j to be used as "temporary original vector j" in Subroutine VECMAX2THEPT(J) = Primed counterpart of THETT(J)PHIT(J) = .phi.-angle for maximum magnitude vector j to be used as "temporary original vector j" in Subroutine VECMAX2PHIPT(J) = Primed counterpart of PHIT(J)AA = .theta.-angle for final reference vectorBB = .phi.-angle for final reference vectorSubroutine VECMAX2THETX(J) = .theta.-angle for reference vector jPHIX(J) = .phi.-angle for reference vector jRRX = X-component of reference vector jRRY = Y-component of reference vector jRRZ = Z-component of reference vector jRX = X-component of temporary original vector iRY = Y-component of temporary original vector iRZ = Z-component of temporary original vector iRXP = X-component of temporary primed vector iRYP = Y-component of temporary primed vector iRZP = Z-component of temporary primed vector iE = Dot product between reference vector j and temporary original vector iF = Dot product between reference vector j and temporary primed vector iGAM = Angle between reference vector j and temporary original vector iGAMP = Angle between reference vector j and temporary primed vector iRSX = X-component of vector i (temporary original or temporary primed) closest to reference vector jRSY = Y-component of vector i (temporary original or temporary primed) closest to reference vector jRSZ = Z-component of vector i (temporary original or temporary primed) closest to reference vector jSUMRX = Sum of X-components of vectors i closest to reference vector jSUMRY = Sum of Y-components of vectors i closest to reference vector jSUMRZ = Sum of Z-components of vectors i closest to reference vector jRFXYZ(J) = Magnitude of resultant vector j associated with component sums of vectors i closest to reference vector jRFX(J) = X-component of RFXYZ(J)RFY(J) = Y-component of RFXYZ(J)RFZ(J) = Z-component of RFXYZ(J)RXYZM = Magnitude of resultant vector j which has the maximum magnitude final reference vectorRXM = X-component of RXYZMRYM = Y-component of RXYZMRZM = Z-component of RXYZMSubroutine DISPERP = Probability and 0.05 value produces a 95% confidence cone about preferred orientation resultXN = Number of unit vectors = NA = N-R.sub.xyzB = 1/(N-1)C = TermD = N-1S = sX =A Lower limit for N-RX =B Upper limit for N-RXNFAC = N!CU = Upper limit for cos.sup.-1 (.theta..sub.c) = upper limit for cCL = Lower limit for cC = cFXN = 1st termXNMSF = N-sSFAC = s!FNUM = Numerator of s+1 termFXN = Sum of s+1 termsA1 = Minimum possible value for cA2 = Maximum possible value for cTHECO = Spherical radius .theta..sub.c of 95% confidence conePHI = .phi.-angle for preferred orientation vectorBB = TermTHEAZ = Azimuthal half-angle of confidence .theta..sub.aXK= Precision parameter k__________________________________________________________________________ ______________________________________PRINTOUT EXAMPLEPROGRAM TRUDIPANALYSIS AND PROGRAMMING -D.C. UHRI- DECEMBERMOBIL RESEARCH AND DEVELOPMENTCORPORATION - FIELD RESEARCH LABORATORYPRINTOUT EXAMPLE______________________________________INPUT DATA AZIMUTH DIP______________________________________ 0.0 0.0 5.0 0.0 10.0 0.0 20.0 0.0 30.0 0.0 40.0 0.0 50.0 0.0 70.0 0.0 110.0 0.0 130.0 0.0 140.0 0.0 150.0 0.0 160.0 0.0 170.0 0.0 175.0 0.0CALCULATED RESULTS RX = 0. RY = .1207515E+02 RZ = 0. RXY = .1207515E+02 RXYZ = .1207515E+02 THETA = 0. PHI = .9000000E+02 N = 15 K = .4786563E+01 THECO = .1957455E+02 THEAZ = .2740778E+02______________________________________SINCE PHI=90 DEGREES, THE AZIMUTH SHOWN ABOVE IS BIMODAL. 180 DEGREES MAY BE ADDED TO OR SUBTRACTED FROM THIS VALUE. ______________________________________COMPUTER PRINTOUT NOMENCLATURE______________________________________RX = X-component of vector R.sub.xyzRY = Y-component of vector R.sub.xyzRZ = Z-component of vector R.sub.xyzRXY = Projection of Vector R.sub.xyz on XY-planeRXYZ = Vector sum of N unit vectorsTHETA = Resultant azimuth of unit vectorsPHI = Resultant cone angle as measured downward from +Z axisN = Number of unit vectorsTHECO = Spherical radius of resultant vector cone of confidence for 95% confidence limitsTHEAZ = Azimuth half-angle of confidence related to the 3-dimensional cone of confidence for 95% confidence limits______________________________________
Claims
1. The method of producing a plot of preferred geological orientation of a subsurface formation comprising:
(a) repeatedly measuring said geological orientation;
(b) generating original vectors representing the azimuth and dip of the measurements;
(c) converting said original vectors into lineations representing the extension of each vector to its intersection with a unit sphere;
(d) designating one of said original vectors as a reference vector;
(e) selecting the half axes of all lineations within 90.degree. of the reference vector and transforming them into unit vectors;
(f) vector averaging the selected unit vectors to produce a resultant vector;
(g) determining the magnitude of said resultant vector;
(h) repeating steps (c)-(f) for each of said original vectors;
(i) selecting the resultant vector having the maximum magnitude as the preferred orientation of said formation;
(j) repeating steps (b)-(i) for a plurality of measurements; and
(k) plotting the resultant vectors having maximum magnitudes.
2. The method recited in claim 1 further comprising:
measuring the azimuth and dip of said subsurface formation at a plurality of depths; and
performing steps (b)-(i) on all measurements in successive depth intervals.
3. The method recited in claim 1 further comprising:
measuring the azimuth and dip of said subsurface formations at a plurality of depths;
performing steps (b)-(i) on all measurements in a depth interval;
moving said depth interval in increments of depth which are less than said depth interval; and
repeating the preceding steps with said depth interval at succeeding increments.
4. The method recited in claim 1 wherein a plurality of said resultant vectors, selected in step (i) when steps (b)-(i) are repeated, have the same maximum magnitude, further comprising:
converting said last named resultant vectors into lineations representing the extension of each vector to its intersection with a unit sphere; and
repeating steps (d)-(i) of claim 1.
5. The method recited in claim 1 wherein step (a) comprises:
traversing a borehole with a dipmeter logging tool; and
measuring the azimuth and dip of said subsurface formation with said logging tool at each of a plurality of depths in said borehole.
6. The method recited in claim 1 further comprising:
plotting a line having an inclination representing the azimuth of the selected resultant vector, a horizontal position relative to a dip scale representing the dip of the selected resultant vectors, and a vertical position relative to a depth scale representing the depth at which said measurements are made.
7. The method recited in claim 1 wherein the measurements of step (a) are the azimuth and dip of subsurface formations and wherein the step of plotting includes plotting said resultant vectors as a function of the depth of said formations.
8. The method of determining preferred geological orientation of a subsurface formation comprising:
(a) generating original vectors representing the azimuth and dip of measurements of geological orientation;
(b) converting said vectors into lineations representing the extension of each vector to its intersection with a unit sphere;
(c) designating one of said original vectors as a reference vector;
(d) selecting the half axes of all lineations within 90.degree. of the reference vector and transforming them into unit vectors;
(e) vector averaging the selected unit vectors to produce a resultant vector;
(f) determining the magnitude of said resultant vector;
(g) repeating steps (c)-(f) for each of said original vectors;
(h) selecting the resultant vector having the maximum magnitude as the preferred orientation; and
(i) plotting the resultant vectors having magnitude as determined by step (h).
9. The method recited in claim 8 wherein a plurality of the resultant vectors, selected in step (h) after each repetition of steps (c)-(f), have the same maximum magnitude, further comprising:
converting said last named resultant vectors into lineations representing the extension of each vector to its intersection with a unit sphere; and
repeating steps (a)-(h) of claim 8.
10. The method recited in claim 8 wherein the step (i) comprises:
plotting a tadpole representation having an inclination representing the azimuth of the selected resultant vector, a horizontal position relative to a dip scale representing the dip of the selected resultant vectors, and a vertical position relative to a depth scale representing the depth at which said measurements are made.
11. The method of determining preferred geological orientation of a subsurface formation comprising:
(a) measuring the azimuth and dip of subsurface formation at a plurality of depths in successive depth intervals;
(b) generating original vectors representing the azimuth and dip of said measurements of geological orientation;
(c) converting said vectors into lineations representing the extension of each vector to its intersection with a unit sphere;
(d) designating one of said original vectors as a reference vector;
(e) selecting the half axes of all lineations within 90.degree. of the reference vector and transforming them into unit vectors;
(f) vector averaging the selected unit vectors to produce a resultant vector;
(g) determining the magnitude of said resultant vector;
(h) repeating steps (d)-(g) for each of said original vectors; and
(i) selecting the resultant vector having the maximum magnitude as the preferred orientation.
12. The method of determining preferred geological orientation of a subsurface formation comprising:
(a) measuring the azimuth and dip of subsurface formations at a plurality of depths in a depth interval;
(b) generating original vectors representing the azimuth and dip of measurement of geological orientation;
(c) converting said vectors into lineations representing the extension of each vector to its intersection with a unit sphere;
(d) designating one of said original vectors as a reference vector;
(e) selecting the half axes of all lineations within 90.degree. of the reference vector and transforming them into unit vectors;
(f) vector averaging the selected unit vectors to produce a resultant vector;
(g) determining the megnitude of said resultant vector;
(h) repeating steps (d)-(g) for each of said original vectors;
(i) selecting the resultant vector having the maximum magnitude as the preferred orientation;
(j) moving said intervals in increments of depth which are less than said depth interval; and
(k) repeating steps (b)-(i) with said depth interval at succeeding increments.
13. The method of determining preferred geological orientation of a subsurface formation comprising:
(a) traversing a borehole with a dipmeter logging tool;
(b) measuring the azimuth and dip of said subsurface formations with said logging tool at each of a plurality of depths in said borehole;
(c) converting said vectors into lineations representing the extension of each vector to its intersection with a unit sphere;
(d) designating one of said original vectors as a reference vector;
(e) selecting the half axes of all lineations within 90.degree. of the reference vector and transforming them into unit vectors;
(f) vector averaging the selected unit vectors to produce a resultant vector;
(g) determining the magnitude of said resultant vector;
(h) repeating steps (d)-(g) for each of said original vectors; and
(i) selecting the resultant vector having the maximum magnitude as the preferred orientation.
Non-Patent Literature Citations (1)
Entry
Nederlof et al., "A Three Dimensional Vector Method as an Aid to Continuous Dipmeter Interpertation", 1971, Geologie Mijnbouw vol. 50 (6), pp. 725-732.