This U.S. National Stage Patent Application under 35 U.S.C. §371 claims the benefit of International Application No. PCT/EP2010/056679 filed May 14, 2010, which claims the benefit of British Patent Application No. GB 0908283.5 filed May 14, 2009, the entire contents of all of which is hereby incorporated by reference as if fully set forth herein, under 35 U.S.C. §119(e).
The present application relates to switching power supplies and in particular to methods of measuring losses and currents in a DC-DC converter and employing such measurements in the control of DC-DC converters.
Switching power supplies are preferred to linear power supplies as they provide a number of advantages including the ability to increase the voltage or provide a negative voltage and more importantly because of their greater efficiencies.
The efficiency of a power converter is an extremely important characteristic as any inefficiency translates directly into power loss which, for example, generates heat and in the case of battery powered equipment shortens battery life.
Power reduction methods have been developed to improve the efficiency of converters at different modes of operation. Examples of these power reduction methods would include phase shedding, pulse frequency modulation and pulse skipping. In phase shedding, for example, if two phases are available a first mode of operation may be employed using only one phase at light loads where switching losses dominate and a second mode of operation may be employed with two phases at higher loads where resistance losses dominate, as shown in the exemplary graph showing the efficiency versus load current for two modes. The ideal situation is to switch between the two modes at the point where the power loss for either mode would be the same, which in the exemplary representation of
Traditionally, power converters do not have a signal\measurement to represent the loss of the converter. Therefore, power reduction methods cannot generally be implemented in power converters to maximize efficiency since the loss is unknown. Instead, power reduction methods typically are configured to switch between modes of operation at particular predefined set points. These predefined set points are estimates of the optimal position for switching between modes of operation.
In the field of digital power control, attempts have been made to measure converter efficiency. For example, Abu-Qahouq, J. A. and L. Huang (2007). Adaptive Controller with Mode Tracking and Parametric Estimation. Applied Power Electronics Conference, implements efficiency improvements based upon the power converter's mode of operation. However the method employs input current sensing, which introduces the requirement and cost for an additional sensor. Moreover, current sensing techniques actually incur a further power loss and/or suffer from noise and other problems. A further problem is that there may be different supplies\voltages for the supply current and the switching currents, with the result that there is no one measure of input current which may be employed for loss calculations.
Another technique that is employed is a non-parametric method which seeks to maximize efficiency and operates on the principle that the duty cycle corresponds to the power transfer and that accordingly by minimizing the duty cycle, the power loss is minimized. For example, Yousefzadeh, V. and D. Maksimovic (2005). Sensorless optimization of dead times in DC-DC converters with synchronous rectifiers. Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE employs this technique to optimize the dead time of the power stage. Whilst this is a sensorless technique, the duty cycle signal is affected by many varying parameters such as input voltage and power stage gain, and is not applicable in applications which require an estimation of absolute power. Because of this, the application of this method to optimize power converter losses more generally, is limited. Thus, the method whilst applicable to dead time applications are not generally suitable for use with the power reduction methods described. In addition, the duty cycle values tend to be extremely noisy and subject to measurement errors.
Accordingly, there is a general need to develop a method to estimate power converter losses. Optimisation of the power converter may be performed based upon this estimate. The estimate may also be used for other purposes including, for example, providing information to a user and\or for the purposes of controlling a fan or other cooling device.
The present application offers a method which provides a measurement of the loss of a converter using measurements taken from within the control circuitry, without the need for a direct measurement and comparison of the input current. The method uses measurements which may be generally employed in power converters for other purposes and thus do not add to the complexity or circuitry requirements. The method may be employed to provide feedback for control and monitoring purposes. In a first arrangement, the method estimates the ideal gain of the converter to minimize controller errors and employs this ideal gain to provide a measurement of power loss. The present method is a perfect unbiased estimate in that if the controller is working then the estimate is a perfect reflection of the losses since it compensates for them.
a, 7b and 7c represent a state diagram for a circuit implementing the calculation of the optimum drop point between phases corresponding to the graphical representation of
The method will now be described with reference to an exemplary buck converter which would be familiar to those in the art, as shown in
The present application relies upon an auto-zero circuit provided within the feedback loop of the control system to provide an estimate of loss in the power train. This loss estimate is obtained from the auto-zero gain value of the auto-zero circuit. This value may be interpreted in a number of ways including for example:
Similarly, the auto-zero gain may be manipulated to calculate the optimum point to add or drop a phase in a multiphase power converter thereby improving efficiency over a wide range of conditions.
The estimation is based upon the auto-zero gain of the control loop. A description of the auto-zero loop now follows with reference to the controller of
Zero steady state-error to a step-input is a desirable property of a closed-loop buck regulator because of accuracy of the regulated level and limit cycling. Whilst it is possible to accommodate zero steady-state error to a step input by including an integrator before the plant, the additional phase lag introduced may be problematic in control loops, especially if this control loop forms the foundation for an adaptive control scheme, which is the intention here.
The auto-zero control loop which drives the steady state control-error to zero, whilst ensuring the correct output voltage under component tolerances and during deviations in the dc-dc converter input voltage. An interesting property of the auto-zero scheme as outlined is that the loop-gain remains constant under input voltage variations, providing more robust compensation.
In the interest of clarity for explanation purposes, the zero-control error method is considered first, then the mechanism of ensuring correct output voltage under input voltage deviations is considered, and finally a calibration scheme for dealing with component tolerances is introduced.
Auto-Zero Scheme
Consider the representation of the digital control loop shown in
The adjustment gain (Kz) has two main functions:
The feedback divider f, translates the output voltage such that a fullscale output voltage (Vo=Vin) corresponds to a full-scale digital code from the ADC 401.e. f=Vref/
The output voltage may be calculated as follows:
With f=Vref/
In order to achieve zero control error:
Therefore:—
1=KLOSS·Vin·f·1/Vref·Kz (3)
and
In operation Kz is automatically adjusted in order to produce zero control-error, and therefore equation (4) holds, giving the output voltage as:
Introducing an error f′ into the feedback factor f:
The output voltage is:
Therefore Vo equals its nominal value when:
KCAL=f′ (8)
and the output voltage is not a function of Vin, achieving line voltage rejection. In normal operation, where f′ is equal to one, Kcal is equal to one and therefore may be ignored.
Estimation Using the Auto-Zero Gain:
Parametric estimation involves modelling the system in question with an appropriate model and then determining the appropriate parameters for the model. Considering the determination of power loss in a DC-DC converter, an appropriate model is shown in
From the model of
Vo=Vo′−RLOSS·Io (9)
alternatively:
Vo=Vo′·KLOSS (10)
And from which therefore:
We also have:
therefore:
From the description of the auto-zero scheme it will be appreciated that:
which shows the relationship between the auto-zero gain Kz, and the DC-DC converter's modelled loss factor KLOSS.
It may also be shown that:
therefore:
which illustrates the relationship between the auto-zero gain Kz, and the DC-DC converter's modelled loss resistance RLOSS, and inductor current (or steady state output current) Io.
Multiplying both sides of the previous equation by Io it may be shown that the relationship between the auto-zero gain Kz, and the dc-dc converter's power loss (in Watts) PLOSS is:
(neglecting zero current losses which are small) this may be simplified to:
Because PLOSS=PIN−POUT the relationship between the auto-zero gain Kz, and the dc-dc converter's input power Pin may be shown as:
From this equation, efficiency may be obtained as the ratio of output power to input power, i.e.
It will be appreciated by those skilled in the art that Vin and Vout are conventionally measured for control and regulation purposes. Accordingly, the values for Vin and Vout are typically readily available. It will be appreciated therefore that in this way, the auto-zero gain Kz may be used to estimate various DC parameters of the dc-dc converter including for example efficiency and power loss.
Although, the above equations have been developed with respect to the auto-zero gain Kz, the techniques may also be applied in other types of controllers, for example, a PI or PID controller. In particular, the value of Kloss may be derived from a value within such a PI or PID controller. For example for a buck converter operating in continuous mode, the value of Kloss may be stated as
where
It will be appreciated that under steady state conditions, the steady state error in a PID controller controlling the operation of such a buck converter would ideally be zero and so the only element of the PID controller affecting the duty cycle would be the integrator (I) term and thus the average duty cycle value (i.e. output from the PID controller) may be taken as the output from the integrator part of the PID controller. The use of the integrator term effectively eliminates noise and transients that may be present in a direct measurement of the duty cycle value.
As Kloss is related to Kz from equation (4) above
it will be appreciated that the value of the integrator output from a PI or PID controller may be employed to provide a value of Kz from which the following techniques may be applied in the same manner as the directly obtainable Kz value described above.
Optimum Phase Add/Drop Point
In a multiphase power converter it is known that phases may be added and dropped in response to the load current. As would be familiar to those skilled in the art, there is an optimum load current point at which to add or drop a phase in order to maximize efficiency. This optimum point varies with several circuit parameters, including for example, temperature, input voltage and component values. It is desirable to automatically determine the optimum load current. This may be achieved by modeling the optimum load current at which to add/drop a phase Idrop as a function of the losses in the circuit and ultimately, as a function of the auto-zero gain factor Kz.
A model of the Power loss versus load current of a 2 phase converter is shown in
It is clear from
which allows the phase drop current to be determined from knowledge of the DC power loss of the converter in two and one phase mode (P2 and P1 respectively), and RLOSS in two and one phase mode (R2 and R1 respectively). These may be known by measurement or may be estimated using techniques such as parametric estimation.
For example, from our model we can write in general:
PLOSS=Io2RLOSS+P0, where P0 represents the DC power loss of the converter.
therefore:
and an estimate of RLOSS may therefore be determined from our previous estimate of PLOSS.
Let P(0) represent the difference between the zero current power loss of the converter in 2 phase and 1 phase mode:
P(0)=P2−P1
we have:
With R1 and R2 representing RLOSS in 1 and 2 phase mode respectively, substituting in the estimate of RLOSS:
where R1 is estimated to be (with R2 estimated similarly):
The calculation of IDROP may be considerably simplified if the current in one phase operation (I1) is equal to the current in two phase operation (I2) at which the auto-zero gains Kz1 and Kz2 are determined:
Therefore the current at which to drop or add a phase (IDROP) may be determined by calculations involving the auto-zero gains determined during one and two phase operation respectively (Kz1 and Kz2) at a known arbitrary current. It will be appreciated that switchover between modes may be effected at the optimum point. Moreover, the optimum point may be recalculated on an-going basis to account for variations.
As an example of an implementation, a state diagram\circuit for computing IDROP in an ASIC or DSP by this method is illustrated in
It will be appreciated that once IDROP is determined, a controller may switch between one and two phase operation at this current to ensure maximum efficiency. Moreover, whilst it will be appreciate that the above explanation and implementation has been made with reference to two phases it will be appreciated that it may be extended to more than two phases with a plurality of switchover points.
The measured efficiency value may also be employed to adjust an operating parameter of the controller. For example, it will be appreciated by those skilled in the art that efficiency may vary with the switching frequency of a DC-DC circuit. Accordingly, the measured efficiency value may be employed to adjust the switching frequency of the controller, with the switching frequency being, for example, adjusted upwards or downwards dependent on whether a previous change in switching frequency (upwards\downwards) resulted in a higher or lower efficiency. In this way, an optimum frequency of operation to maximize efficiency may be determined.
Similarly, the degree of overlap between switching devices in a switching circuit would be known to have an influence on the efficiency of the switching circuit. In a digital controller, this degree of overlap may be a pre-programmed or preset value. This preset\preprogrammed value may not be the preferred value as the components (e.g. switching transistors) selected for the converter may not be known at the time of determining the preset value. Moreover, manufacturer tolerances and drift may also have an effect on the preferred degree of overlap. It will be appreciated that by allowing the controller to adjust the preset\preprogrammed value an improvement in efficiency may be obtained. For example, the controller may adjust this pre-programmed value upwards\downwards and by comparing the efficiency of the converter before and after such changes, the controller may tune the pre-programmed value to an optimum overlap value to maximize efficiency. It will be appreciated that such a tuning process may be performed initially on start-up, during a calibration stage or periodically.
In a further arrangement, the controller may be configured to provide a measure of the efficiency and\or losses to an external device. The external device in turn may use the efficiency and\or measurement value for monitoring and\or control purposes. For example, in a computer server, an individual controller may be configured to provide a measure of its losses and\or efficiency to the central power management function of the server over a local communications bus.
A measure of efficiency\losses may be employed in a variety of ways. For example, the server may analyze overall efficiency\losses and adjust the input voltage provided to the switching circuits to improve the overall efficiency.
A difficulty with providing a measure of a parameter such as efficiency from the controller to an external device is that providing an instantaneous measure of efficiency in itself may be meaningless as a result of the presence of noise. Similarly, the dynamic nature of a particular measure may mean that an instantaneous measurement of efficiency or indeed another parameter (e.g. losses) is in itself of limited benefit. To address this the present application provides for a time averaged value rather than an instantaneous value. Specifically, the exemplary further arrangement, as shown in
The filter module arrangement employed in
The output from the first downsampling filter 140 is then applied as an input to a low pass filter 160, which is selected to suitably have a pole around 1 Hz. It will be appreciated that this low pass filter 160 is relatively simple to implement in contrast to the LPF that would be required in the absence of sync filter downsampler arrangement. The output from the low pass filter 160 is then down sampled in a second downsampler 170 by a further factor of 4. The output is then transferred via a communications circuit 180 to an external device 190. The use of two decimators makes the data rate easier to handle. The actual arrangement may be implemented in firmware. The implementation in firmware allows for adjustments to be made to the circuit as required. The performance of the circuit is illustrated in the simulation results of
As described above, one advantage of having the individual controllers feedback their individual losses and\or efficiency measurements to a main controller is that the main controller may adjust a parameter on which the individual controllers are reliant. For example, the main controller may adjust the BUS voltage, i.e. the voltage powering the individual power converters around the circuit to optimize the overall performance.
Another advantage of having the individual controllers feedback their individual losses and\or efficiency measurements to a main controller is that this information may be stored and\or presented to a user, for example using a software interface with a suitable graphical user interface. This allows a circuit designer to examine the operation of their circuit without having to insert measurement sensors into the circuit which is disruptive. The technique also allows circuit designers\manufacturers to examine different settings on the circuit. For example, the circuit designer can examine the effects of running different processors at different speeds and ensure that doing so does not unnecessarily increase losses. Similarly, the effect of replacing a component (e.g. a processor) within a circuit can more accurately be examined. In a design stage, the measurements from the individual converters on a proto-type or pre-production circuit may be employed to assist in the circuit layout to even out the heat production on the circuit. Similarly, the information may be employed to ensure that heat dissipation techniques e.g. heat sinks and fans are optimally placed or that the individual converters are operating at parameters that ensure the performance of such heat dissipation elements is maximized.
Whilst the arrangement would generally be familiar to those skilled in the art, each DC-DC converter 101_1 to 101_n provides a value of their individual power loss back to the bus controller 120 of the primary power converter 100 via the communications circuit 180, for example using the techniques described above. It will be appreciated that other methods may also be employed for measuring power loss including for example direct measurement of currents.
The bus controller 120 of the primary power converter 100 in turn receives each of these measurements and may sum them to provide an overall loss measurement for the secondary DC-DC converters 101_1 to 101_n. This value may be summed with the power loss of the primary power converter 100 as measured by the primary bus controller 120, using for example the techniques described above, to provide a power loss figure for the overall power system comprising the primary and secondary converters.
Typically, the loads driven by the outputs of the secondary DC-DC converters require tight controlled voltages. However, the secondary DC-DC converters can accommodate an input voltage over a relatively wide range. The optimum input voltage for maximum efficiency will depend on a variety of factors including the load and temperature. Accordingly, the optimum input voltage for one DC-DC converter in a circuit is unlikely to be the optimum voltage for another. By feeding back, the measure of individual power loss from each converter to the controller of the primary DC-DC converter, this controller may adjust the bus voltage being provided to each DC-DC converter to minimize the power loss throughout the circuit.
It will be appreciated that whilst the present application has been described generally with respect to measurement of power loss, that the measurements may be also be represented as a voltage or current loss. Thus for example in the case of voltage, the power loss may be represented as a measure of the voltage drop on the output. Similarly, the power loss may be represented as an equivalent current loss equating to a measure of the current effectively diverted from the load equating to the power loss. Similarly, whilst the present application has been described primarily with respect to the use of a measure from an auto-zero circuit to estimate losses, it will be understood that equally a value from an integrator may be employed where the control loop is, for example, a PI or PID type controller. Accordingly, the present application is not limited to the use of an auto-zero loop but also includes the use of a measure from an integrator in a control loop to measure losses.
The words comprises/comprising when used in this specification are to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Number | Date | Country | Kind |
---|---|---|---|
0908283.5 | May 2009 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/056679 | 5/14/2010 | WO | 00 | 8/13/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/130836 | 11/18/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6031362 | Bradley | Feb 2000 | A |
6351396 | Jacobs | Feb 2002 | B1 |
6400581 | Lee | Jun 2002 | B1 |
20030030404 | Iwaji et al. | Feb 2003 | A1 |
20050199813 | Van Bogget | Sep 2005 | A1 |
20060007713 | Brown | Jan 2006 | A1 |
20060197574 | Naviasky et al. | Sep 2006 | A1 |
20070222463 | Qahouq | Sep 2007 | A1 |
20080072080 | Chapuis et al. | Mar 2008 | A1 |
20080278123 | Mehas et al. | Nov 2008 | A1 |
20110210707 | Marsili et al. | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2004006037 | Jan 2004 | WO |
WO 2007053599 | May 2007 | WO |
WO 2010130836 | Nov 2010 | WO |
Entry |
---|
European Patent Office, International Searching Authority, Search Report and Written Opinion mailed Nov. 15, 2010 for International Application No. PCT/EP2010/056679, International Filing Date: Jun. 14, 2010, 16 pages. |
Search Report Under Section 17 for GB Patent Application No. GB 0908283.5, Date of Search: Oct. 2, 2009, 4 pages, Intellectual Property Office, South Wales, United Kingdom. |
European Patent Office, “Search Report” in application No. 10 720 593.2-1809, dated Jun. 13, 2014, 6 pages. |
Claims in European Application No. 10 720 593.2-1809, dated Jun. 2014, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20130038306 A1 | Feb 2013 | US |