The disclosed invention relates to methodology for monitoring the etching of sample surfaces which demonstrate lateral interference effects when electromagnetic radiation is caused to reflect therefrom, and more particularly to a method of monitoring, in real time, the depth to which a sample substrate is etched by an etching procedure.
It is known to etch patterns in process substrates using, for instance, plasmas. Typically a pattern is delineated on a process substrate surface by a photoresist procedure. It can be difficult, however, to monitor the depth to which a process substrate is etched in real time.
For instance, as described in a Patent to Branagh et al., U.S. Pat. No. 6,381,008, the etching of silicon dioxide can be accomplished in an etching chamber which contains fluorine or chlorine in the presence of a plasma. A reduced pressure, (eg. 10−5 Torr), ambient into which is introduced CF4, or more commonly, C2F6 or C4F8, gas is often utilized in industrial settings. While silicon dioxide is being etched in such a setting, certain etch products are formed, and if a beam of electromagnetic radiation is caused to pass through them, said products relatively strongly absorb energy at specific wavelengths, while energy present at other wavelengths is less strongly affected. Alternatively, energy provided by a present plasma serves to excite etch products and emissive electromagnetic radiation therefrom can be monitored. Careful monitoring of such intensity vs. wavelength spectra as a function of time can provide insight as to when silicon dioxide available for etching has been etched away, and when underlying silicon is reached. For instance, upon reaching silicon, the products of etching silicon dioxide are greatly reduced, (some small amount of said silicon dioxide etch products can still be produced as a result of typically undesirable over-etching laterally under photoresist defined boundaries, however). And it is possible that new products due to interaction of plasma and etching gas with silicon will appear and affect monitored intensity vs. wavelength spectra. This is particularly true where some oxygen is present and the underlying silicon is etched. However, the products of said interaction of plasma and etching gas with silicon, it is to be understood, typically demonstrate very different electromagnetic spectrum absorbence and/or emission characteristics. It is to be understood that the procedure comprising detection of products of an etch procedure as an indication of etch end point, can be practiced where other than silicon dioxide is etched, (eg. Al, SiN and W).
Said Patent to Branagh et al., U.S. Pat. No. 6,381,008 describes a method of identifying semiconductor etch end points comprising:
A. providing a semiconductor etch end-point detecting system comprising a spectrometer system which sequentially comprises, as encountered by entered electromagnetic radiation:
B. during a semiconductor etch procedure in said vacuum chamber, obtaining a chronological sequence of electromagnetic radiation intensity vs. wavelength spectra from said spectrometer system detector means, said spectrometer system detector means being caused to access electromagnetic radiation present in said vacuum chamber during a semiconductor etching process;
C. selecting some number of electromagnetic radiation intensity vs. wavelength spectra from said chronological sequence of electromagnetic radiation intensity vs. wavelength spectra and forming them into a data matrix;
D. optionally selecting and deleting some set-off number of rows (columns) in said data matrix;
E. by applying mathematical matrix decomposition techniques to said data matrix determining value(s) of at least one representative parameter(s), each said representative parameter(s) being selected from the group consisting of: (members of a diagonal matrix and eigenvalues);
F. detecting semiconductor etch end point based upon change in said repeatedly calculated at least one representative parameter value(s) resulting from said chronologically repeated performance of steps B. through F.
A recent paper which describes the use of low pressure high density plasma etching of silicon dioxide is titled “Chemical Challenge of Submicron Oxide Etching”, by McNevin et al., J. Vac. Technol. B 15(2) (March/April 1997).
References cited in the Branagh et al. Patent are:
Known papers which utilize Reflected Electromagnetic Radiation Intensity and Ellipsometry to investigate Etching of semiconductor systems are:
Known Patents are:
Patents identified in said 993 Patent are:
Patents identified in the 735 Patent are:
Another Patent, by Blayo et al. is U.S. Pat. No. 5,494,697.
A Search of Patents using key words “Substrate Etch” and “Fourier Transform provided:
Also disclosed is a book titled “Numerical Recipes in C”, Cambridge Press, Press et al. Said book provides insight to application of Fourier and Lomb Transforms.
Need exists for improved, simple to practice methodology for accurately tracking the results of a process substrate etching procedure in real time.
The present invention can be applied to any sample that has a patterned surface which, when electromagnetic radiation in an appropriate wavelength range is caused to reflect from, demonstrates lateral interference effects such that when a frequency transform is applied to spectroscopic reflection data three distinguishable peaks occur, at least for some range of pattern depth in the sample surface. It is noted that for some pattern depths in a sample surface, peaks in the frequency transform data can occur at the same frequency, but as the depth changes said peaks become distinguishable. The present invention is therefore particularly applicable to dynamic monitoring of samples in which the surface pattern is being etched deeper into the surface over time.
The present invention then is primarily a method of determining etch depth of a pattern in the surface of a sample. The procedure begins with placing a process sample, and optionally a witness sample, into a chamber for performing etching. The process sample, and/or witness sample, comprises a surface with a patterned layer present thereupon comprised of a material other than the substrate material which is common to both said process sample and and witness sample. The substrate material is directly accessible where the material of the patterned layer is removed to form said pattern. The procedure continues by causing a beam of electromagnetic radiation to reflect from said process sample or witness sample while etching of said substrate material is being performed, such that a plot of reflectance vs. photon energy, (or the equivalent in wave number of energy etc.,) is effectively produced. Said plot demonstrates the effects of lateral interference between electromagnetic radiation rays which reflect from the surface of the patterned layer and from the substrate material.
The next step involves performing a frequency domain transform of said reflection data with the result being that at least two identifiable peaks result, one thereof being proportional to the optical depth of the material of the patterned layer and the other being proportional to the optical depth of the air in the region of the patterned layer which is removed to provide access to said substrate material. The frequency domain transform data is utilized in mathematical calculations which quantify the depth of the substrate material etching.
The step of performing a frequency domain transform is typically preceded by determining an average value of said data and subtracting said average value such that the data oscillates substantially about “0.0”.
Said method can involve a process sample and a witness sample both made of any etchable material, and the patterned layer can be photoresist, or any other material. The pattern on the surface of the witness sample can be a plurality of 10 micron lines separated by 10 micron spaces. It is noted that this need not be the pattern on the process sample, and in fact, normally is not. However, if the pattern on the process sample approximates this pattern or another functional pattern, the process sample pe se. can be monitored directly and a witness sample is not required.
The frequency domain transform can be a Fourier transform, although a LOMB transform has been found to provide better results in some cases. For insight, a Fourier transform approach can be used where evenly spaced, in time, data points are available, but where evenly spaced data points are not available the Lomb approach, which utilizes unevenly spaced data points can be applied with benefit. While the Fourier transform approach can be applied to unevenly spaced, in time, data points by applying an interpolation to provide evenly spaced data points, said approach has not proven to be as good as applying the Lomb approach. This is because the Fourier approach weighs data on a per time interval basis, while the Lomb approach weighs data on a per data point basis. It is noted that sampling at uneven intervals can enter serious error into per time interval weighted data. It is emphasised, however, that the present invention is not limitied to practice using Fourier and Lomb transforms.
The disclosed invention will be better understood by reference to the Detailed Description Section of this Specification, in combination with the Drawings.
It is therefore a primary purpose and/or objective of the present invention to teach use of frequency transformed spectroscopic reflection data which is caused to reflect from a patterned sample while its substrate material is being etched, followed by mathematical analysis thereof to .quantify the depth of the etching of the sample substrate material.
It is another purpose and/or objective of the present invention to identify use of Fourier and Lomb transforms in practice of the method of the present invention.
Other purposes and/or objectives will be apparent from a reading of the Specification and Claims.
a
1
b and 1c, there are shown a Top and a Side view of a Sample (WS).
a shows Reflectance data obtained by causing electromagnetic radiation to impinge on and reflect from said Sample at a Normal Angle-of-Incidence (AOI).
b shows first (P1) and second (P2) and third (P3) peaks of a frequency transform plot of the data in
c is included as an additional example of the same effect as described for
a and 3b are provided which are analogically similar to
b shows there is only one frequency domain peak present in the frequency transform of the data in
Turning now to
a shows Reflectance data obtained by causing electromagnetic radiation to impinge on and reflect from said sample (WS) at a normal angle-of-incidence (AOI). (Note, ellipsometric data and/or an oblique (AOI) can also be used). Note the solid lines show the presence of interference oscillations around an “average value”. The dashed lines show said date with the “average value” subtracted away so that the interference oscillations are about “0.0”.
It is also noted that the third peak (P3) is found to be present at 1/energy, (alternatively stated as the wavelength or wave number etc.), which is the difference between the locations of the first (P1) and second (P2) peaks. For example, in
c is included as an additional example of the same effect as described for
For comparison,
It is also noted that while visible wavelengths and 10 micron spacing on the witness sample pattern were used in the work reported herein, any functional combination of wavelength and pattern spacing is within the scope of the present invention.
While a fourier transform, which is applied to data points equally spaced in time, can be applied to arrive at the frequency domain plots, (
It is to be understood that a sample (WS) comprises a patterned layer of a material such as photoresist on surface of sample substrate material. A witness sample is made of the same substrate material as a process sample (PS), but has a different patterned layer design on a surface thereof which is more suitable to providing data affected by the ocurance of lateral interference, so that the frequency transform data demonstrates a plurality of frequency domain peaks.
It is noted that the sample (WS) is typicaly a witness sample which is desiged to with a pattern on its surface of appropriate dimensions to provide good data, however, where a process sample (PS) has a suitable pattern on its surface, it can be directly monitored.
Finally,
Having hereby disclosed the subject matter of the present invention, it should be obvious that many modifications, substitutions, and variations of the present invention are possible in view of the teachings. It is therefore to be understood that the invention may be practiced other than as specifically described, and should be limited in its breadth and scope only by the Claims.
This Application Claims Benefit of Provisional Application Ser. No. 60/637,388, Filed Dec. 20, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3274882 | Krieger et al. | Sep 1966 | A |
3807868 | Simila | Apr 1974 | A |
4523848 | Gorman et al. | Jun 1985 | A |
4584476 | Colombotto et al. | Apr 1986 | A |
4909630 | Gawrisch et al. | Mar 1990 | A |
5026160 | Dorain et al. | Jun 1991 | A |
5191392 | Johnson | Mar 1993 | A |
5450205 | Sawin et al. | Sep 1995 | A |
5544268 | Bischel et al. | Aug 1996 | A |
5647036 | Deacon et al. | Jul 1997 | A |
5664032 | Bischel et al. | Sep 1997 | A |
5835458 | Bischel et al. | Nov 1998 | A |
5871805 | Lemelson | Feb 1999 | A |
5911018 | Bischel et al. | Jun 1999 | A |
5912997 | Bischel et al. | Jun 1999 | A |
5929993 | Johs | Jul 1999 | A |
5936734 | Johs et al. | Aug 1999 | A |
5978524 | Bischel et al. | Nov 1999 | A |
6078704 | Bischel et al. | Jun 2000 | A |
6088096 | Aoki et al. | Jul 2000 | A |
6118908 | Bischel et al. | Sep 2000 | A |
6141465 | Bischel et al. | Oct 2000 | A |
6167169 | Brinkman et al. | Dec 2000 | A |
6181418 | Palumbo et al. | Jan 2001 | B1 |
6278809 | Johnson et al. | Aug 2001 | B1 |
6303518 | Tian et al. | Oct 2001 | B1 |
6381008 | Branagh et al. | Apr 2002 | B1 |
6522794 | Bischel et al. | Feb 2003 | B1 |
6541400 | Tian et al. | Apr 2003 | B1 |
6611636 | Deliwala | Aug 2003 | B2 |
6633076 | Krishnaraj et al. | Oct 2003 | B2 |
6636309 | Johs et al. | Oct 2003 | B1 |
6671443 | Deliwala | Dec 2003 | B2 |
6823112 | Deliwala | Nov 2004 | B2 |
6826320 | Deliwala | Nov 2004 | B2 |
6869881 | Deliwala | Mar 2005 | B2 |
6891685 | Deliwala et al. | May 2005 | B2 |
6895136 | Deliwala | May 2005 | B2 |
6940595 | Johs et al. | Sep 2005 | B1 |
7193709 | Johs et al. | Mar 2007 | B1 |
7268876 | Johs | Sep 2007 | B1 |
7283234 | Woollam et al. | Oct 2007 | B1 |
7385697 | Woollam et al. | Jun 2008 | B2 |
20030133126 | Sarfaty et al. | Jul 2003 | A1 |
20040246493 | Kim et al. | Dec 2004 | A1 |
20060082786 | Kim et al. | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
60637388 | Dec 2004 | US |