METHOD OF DIAGNOSING NEOPLASMS

Abstract
The present invention relates generally to nucleic acid molecules, the RNA and protein expression profiles of which are indicative of the onset, predisposition to the onset and/or progression of a neoplasm. More particularly, the present invention is directed to nucleic acid molecules, the expression profiles of which are indicative of the onset and/or progression of a large intestine neoplasm, such as an adenoma or an adenocarcinoma. The expression profiles of the present invention are useful in a range of applications including, but not limited to, those relating to the diagnosis and/or monitoring of colorectal neoplasms, such as colorectal adenocarcinomas. Accordingly, in a related aspect the present invention is directed to a method of screening a subject for the onset, predisposition to the onset and/or progression of a neoplasm by screening for modulation in the expression profile of one or more nucleic acid molecule markers.
Description
FIELD OF THE INVENTION

The present invention relates generally to nucleic acid molecules, the RNA and protein expression profiles of which are indicative of the onset, predisposition to the onset and/or progression of a neoplasm. More particularly, the present invention is directed to nucleic acid molecules, the expression profiles of which are indicative of the onset and/or progression of a large intestine neoplasm, such as an adenoma or an adenocarcinoma. The expression profiles of the present invention are useful in a range of applications including, but not limited to, those relating to the diagnosis and/or monitoring of colorectal neoplasms, such as colorectal adenocarcinomas. Accordingly, in a related aspect the present invention is directed to a method of screening a subject for the onset, predisposition to the onset and/or progression of a neoplasm by screening for modulation in the expression profile of one or more nucleic acid molecule markers.


INCORPORATION BY REFERENCE OF SEQUENCE LISTING

The Sequence Listing in the ASCII text file, named as 26139ABC_SeqListing.txt of 146 KB, created on November 9, 2017 and submitted to the United States Patent and Trademark Office via EFS-Web, is incorporated herein by reference.


BACKGROUND OF THE INVENTION

Bibliographic details of the publications referred to by author in this specification are collected alphabetically at the end of the description.


The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.


Adenomas are benign tumours, or neoplasms, of epithelial origin which are derived from glandular tissue or exhibit clearly defined glandular structures. Some adenomas show recognisable tissue elements, such as fibrous tissue (fibroadenomas) and epithelial structure, while others, such as bronchial adenomas, produce active compounds that might give rise to clinical syndromes.


Adenomas may progress to become an invasive neoplasm and are then termed adenocarcinomas. Accordingly, adenocarcinomas are defined as malignant epithelial tumours arising from glandular structures, which are constituent parts of many organs of the body. The term adenocarcinoma is also applied to tumours showing a glandular growth pattern. These tumours may be sub-classified according to the substances that they produce, for example mucus secreting and serous adenocarcinomas, or to the microscopic arrangement of their cells into patterns, for example papillary and follicular adenocarcinomas. These carcinomas may be solid or cystic (cystadenocarcinomas). Each organ may produce tumours showing a variety of histological types, for example the ovary may produce both mucinous and cystadenocarcinoma.


Adenomas in different organs behave differently. In general, the overall chance of carcinoma being present within an adenoma (i.e. a focus of cancer having developed within a benign lesion) is approximately 5%. However, this is related to size of an adenoma. For instance, in the large bowel (colon and rectum specifically) occurrence of a cancer within an adenoma is rare in adenomas of less than 1 centimetre. Such a development is estimated at 40 to 50% in adenomas which are greater than 4 centimetres and show certain histopathological change such as villous change, or high grade dysplasia. Adenomas with higher degrees of dysplasia have a higher incidence of carcinoma. In any given colorectal adenoma, the predictors of the presence of cancer now or the future occurrence of cancer in the organ include size (especially greater than 9 mm) degree of change from tubular to villous morphology, presence of high grade dysplasia and the morphological change described as “serrated adenoma”. In any given individual, the additional features of increasing age, familial occurrence of colorectal adenoma or cancer, male gender or multiplicity of adenomas, predict a future increased risk for cancer in the organ—so-called risk factors for cancer. Except for the presence of adenomas and its size, none of these is objectively defined and all those other than number and size are subject to observer error and to confusion as to precise definition of the feature in question. Because such factors can be difficult to assess and define, their value as predictors of current or future risk for cancer is imprecise.


Once a sporadic adenoma has developed, the chance of a new adenoma occurring is approximately 30% within 26 months.


Colorectal adenomas represent a class of adenomas which are exhibiting an increasing incidence, particularly in more affluent countries. The causes of adenoma, and of progression to adenocarcinoma, are still the subject of intensive research. To date it has been speculated that in addition to genetic predisposition, environmental factors (such as diet) play a role in the development of this condition. Most studies indicate that the relevant environmental factors relate to high dietary fat, low fibre, low vegetable intake, smoking, obesity, physical inactivity and high refined carbohydrates.


Colonic adenomas are localised areas of dysplastic epithelium which initially involve just one or several crypts and may not protrude from the surface, but with increased growth in size, usually resulting from an imbalance in proliferation and/or apoptosis, they may protrude. Adenomas can be classified in several ways. One is by their gross appearance and the major descriptors include degrees of protrusion: flat sessile (i.e. protruding but without a distinct stalk) or pedunculated (i.e. having a stalk). Other gross descriptors include actual size in the largest dimension and actual number in the colon/rectum. While small adenomas (less than say 5 or 10 millimetres) exhibit a smooth tan surface, pedunculated and especially larger adenomas tend to have a cobblestone or lobulated red-brown surface. Larger sessile adenomas may exhibit a more delicate villous surface. Another set of descriptors include the histopathological classification; the prime descriptors of clinical value include degree of dysplasia (low or high), whether or not a focus of invasive cancer is present, degree of change from tubular gland formation to villous gland formation (hence classification is tubular, villous or tubulovillous), presence of admixed hyperplastic change and of so-called “serrated” adenomas and its subgroups. Adenomas can be situated at any site in the colon and/or rectum although they tend to be more common in the rectum and distal colon. All of these descriptors, with the exception of number and size, are relatively subjective and subject to interobserver disagreement.


The various descriptive features of adenomas are of value not just to ascertain the neoplastic status of any given adenomas when detected, but also to predict a person's future risk of developing colorectal adenomas or cancer. Those features of an adenoma or number of adenomas in an individual that point to an increased future risk for cancer or recurrence of new adenomas include: size of the largest adenoma (especially 10 mm or larger), degree of villous change (especially at least 25% such change and particularly 100% such change), high grade dysplasia, number (3 or more of any size or histological status) or presence of serrated adenoma features. None except size or number is objective and all are relatively subjective and subject to interobserver disagreement. These predictors of risk for future neoplasia (hence “risk”) are vital in practice because they are used to determine the rate and need for and frequency of future colonoscopic surveillance. More accurate risk classification might thus reduce workload of colonoscopy, make it more cost-effective and reduce the risk of complications from unnecessary procedures.


Adenomas are generally asymptomatic, therefore rendering difficult their diagnosis and treatment at a stage prior to when they might develop invasive characteristics and so became cancer. It is technically impossible to predict the presence or absence of carcinoma based on the gross appearance of adenomas, although larger adenomas are more likely to show a region of malignant change than are smaller adenomas. Sessile adenomas exhibit a higher incidence of malignancy than pedunculated adenomas of the same size. Some adenomas result in blood loss which might be observed or detectable in the stools; while sometimes visible by eye, it is often, when it occurs, microscopic or “occult”. Larger adenomas tend to bleed more than smaller adenomas. However, since blood in the stool, whether overt or occult, can also be indicative of non-adenomatous conditions, the accurate diagnosis of adenoma is rendered difficult without the application of highly invasive procedures such as colonoscopy combined with tissue acquisition by either removal (i.e. polypectomy) or biopsy and subsequent histopathological analysis.


Accordingly, there is an on-going need to elucidate the causes of adenoma and to develop more informative diagnostic protocols or aids to diagnosis that enable one to direct colonoscopy at people more likely to have adenomas. These adenomas may be high risk, advanced or neither of these. Furthermore, it can be difficult after colonoscopy to be certain that all adenomas have been removed, especially in a person who has had multiple adenomas. An accurate screening test may minimise the need to undertake an early second colonoscopy to ensure that the colon has been cleared of neoplasms. Accordingly, the identification of molecular markers for adenomas would provide means for understanding the cause of adenomas and cancer, improving diagnosis of adenomas including development of useful screening tests, elucidating the histological stage of an adenoma, characterising a patient's future risk for colorectal neoplasia on the basis of the molecular state of an adenoma and facilitating treatment of adenomas.


To date, research has focused on the identification of gene mutations which lead to the development of colorectal neoplasms. In work leading up to the present invention, however, it has been determined that changes in expression profiles of genes which are also expressed in healthy individuals are indicative of the development of neoplasms of the large intestine, such as adenomas and adenocarcinomas. It has been further determined that in relation to neoplasms of the large intestine, diagnosis can be made based on screening for one or more of a panel of these differentially expressed genes. In a related aspect, it has still further been determined that to the extent that neoplastic tissue has been identified either by the method of the invention or by some other method, the present invention provides still further means of characterising that tissue as an adenoma or a cancer. In yet another aspect, it has been determined that a proportion of these genes are characterised by gene expression which occurs in the context of a neoplastic state but not in the context of a non-neoplastic state, thereby facilitating the development of qualitative analyses which do not require a relative analysis to be performed against a non-neoplastic or normal control reference level. Accordingly, the inventors have identified a panel of genes which facilitate the diagnosis of adenocarcinoma and adenoma development and/or the monitoring of conditions characterised by the development of these types of neoplasms.


SUMMARY OF THE INVENTION

Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.


As used herein, the term “derived from” shall be taken to indicate that a particular integer or group of integers has originated from the species specified, but has not necessarily been obtained directly from the specified source. Further, as used herein the singular forms of “a”, “and” and “the” include plural referents unless the context clearly dictates otherwise.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


The subject specification contains amino acid and nucleotide sequence information prepared using the programme PatentIn Version 3.4, presented herein after the bibliography. Each amino acid and nucleotide sequence is identified in the sequence listing by the numeric indicator <210 > followed by the sequence identifier (eg. <210>1, <210>2, etc). The length, type of sequence (amino acid, DNA, etc.) and source organism for each sequence is indicated by information provided in the numeric indicator fields <211>m <212> and <213>, respectively. Amino acid and nucleotide sequences referred to in the specification are identified by the indicator SEQ ID NO: followed by the sequence identifier (eg. SEQ ID NO:1, SEQ ID NO: 2, etc). The sequence identifier referred to in the specification correlates to the information provided in numeric indicator field <400> in the sequence listing, which is followed by the sequence identifier (eg. <400>1, <400>2, etc). That is SEQ ID NO: 1 as detailed in the specification correlates to the sequence indicated as <400>1 in the sequence listing.


One aspect of the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:












the gene, genes or transcripts detected by Affymetrix probeset IDs:




















(i)
201328_at
221577_x_at
205828_at




201341_at
221922_at
205886_at




201416_at
60474_at
205890_s_at




201417_at
222696_at
205910_s_at




201468_s_at
223447_at
205941_s_at




201506_at
223970_at
206224_at




201563_at
225541_at
206976_s_at




201656_at
225835_at
207173_x_at




201925_s_at
226360_at
207457_s_at




201926_s_at
227174_at
208079_s_at




202286_s_at
227475_at
208712_at




202718_at
228303_at
209218_at




202831_at
228653_at
209309_at




202833_s_at
228754_at
209752_at




202935_s_at
228915_at
209773_s_at




202936_s_at
229215_at
209774_x_at




203124_s_at
231832_at
209792_s_at




203256_at
231941_s_at
209875_s_at




203313_s_at
232176_at
209955_s_at




203510_at
232252_at
210052_s_at




203860_at
232481_s_at
210511_s_at




203895_at
234331_s_at
210559_s_at




203896_s_at
235210_s_at
210766_s_at




203961_at
235976_at
211506_s_at




203962_s_at
236894_at
212281_s_at




204259_at
238017_at
212344_at




204351_at
238021_s_at
212353_at




204401_at
238984_at
212354_at




204404_at
241031_at
213905_x_at




204855_at
200660_at
214022_s_at




204885_s_at
200832_s_at
214974_x_at




205174_s_at
200903_s_at
215091_s_at




205366_s_at
201014_s_at
217430_x_at




205470_s_at
201112_s_at
217996_at




205513_at
201195_s_at
218507_at




205765_at
201261_x_at
218963_s_at




205825_at
201292_at
218984_at




205927_s_at
201338_x_at
219787_s_at




205983_at
201479_at
219911_s_at




206239_s_at
201577_at
221729_at




206286_s_at
201601_x_at
221730_at




207158_at
201666_at
221731_x_at




207850_at
202310_s_at
221923_s_at




209369_at
202311_s_at
37892_at




210445_at
202404_s_at
222449_at




210519_s_at
202431_s_at
222450_at




211429_s_at
202504_at
222549_at




212063_at
202779_s_at
222608_s_at




212070_at
202859_x_at
223062_s_at




212190_at
202954_at
224428_s_at




212531_at
202998_s_at
224646_x_at




212942_s_at
203083_at
224915_x_at




213880_at
203213_at
225295_at




213975_s_at
203878_s_at
225520_at




214235_at
204051_s_at
225664_at




214651_s_at
204127_at
225681_at




217523_at
204170_s_at
225767_at




217867_x_at
204320_at
225799_at




218086_at
204470_at
225806_at




218211_s_at
204475_at
226227_x_at




218704_at
204580_at
226237_at




218796_at
204620_s_at
226311_at




218872_at
204702_s_at
226777_at




219630_at
205361_s_at
226835_s_at




219682_s_at
205476_at
227140_at




219727_at
205479_s_at
229802_at




219955_at
205713_s_at
231766_s_at




219956_at
205815_at
232151_at; and/or




200665_s_at















(ii)
FOXQ1
RNF43
CDCA7
LOXL2



MMP1
CCL20
TDGF1
AZGP1



TCN1
CTSE
MTHFD1L
MYC



MMP7
MSLN
ANLN
COMP



WDR72
TIMP1
H19
AURKA



INHBA
PCSK1
FAP
PAICS



COL11A1
CST1
DACH1
PUS7



GDF15
BGN
VCAN
ZNRF3



CTHRC1
AXIN2
SQLE
CCND1



COL1A1
MET
REG3A
CSE1L



LGR5
SOX9
TESC
PFDN4



DUSP27
TMEPAI
UBE2C
C20orf42



SERPINB5
CDH11
TMEM97
SLC11A2



ASCL2
MMP11
TRIM29
NFE2L3



SULF1
CXCL1
KLK11
CEL



SLC6A6
QPCT
LY6G6D
NLF1



TACSTD2
PDZK1IP1
SLC7A5
NPDC1



NEBL
CD55
FABP6
ENC1



PCCA
ECT2
SLITRK6
SERPINE2



FLJ37644
COL12A1
MLPH
UBE2S



KRT23
L1TD1
HOXA9
TOP2A



CXCL3
WDR51B
TBX3
CDC2



MMP3
HOXB6
BACE2
RFC3



SFRP4
FAM84A
GPX2
LILRB1



UBD
COL5A2
TPX2
NPM1



SCD
MMP12
KCNN4
RDHE2



DPEP1
SORD
LOC541471
PLAU



LCN2
PSAT1
CYP3A5
HSPH1



PLCB4
CXCL5
ANXA3
GTF3A



SPINK1
IGFBP2
CYP3A5P2
KLK10



DUOX2
TGIF1
C14orf94
GPSM2



SOX4
CXCL2
RP5-875H10.1
NME1



THBS2
SLCO4A1
RPL22L1
MUC20



CLDN1
CKS2
APOBEC1
RPESP



REG1B
PHLDA1
HIG2
RRM2



CDH3
SERPINA1
COL10A1
DKC1



SPARC
COL1A2
AHCY
CD44





IL8










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 225681_at; 227140_at; and/or
    • (ii) CTHRC1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In yet another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 227475_at
      • 204475_at
      • 202859_x_at
      • 202404_s_at; and/or
    • (ii) FOXQ1, MMP1, IL8, COL1A2


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In still another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 205513_at, 204259_at, 227174_at, 210511_s_at, 37892_at; and/or
    • (ii) TCN1, MMP7, WDR72, INHBA, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In still yet another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:












the gene, genes or transcripts detected by Affymetrix probeset IDs:




















(i)
221577_x_at
212942_s_at
202310_s_at




213880_at
232252_at
204855_at




229215_at
212354_at
228754_at




202286_s_at
203962_s_at
203860_at




202935_s_at
218963_s_at
207850_at




205828_at
204051_s_at
205890_s_at




200832_s_at
205983_at
212531_at; and/or



(ii)
LGR5
GDF15
COL1A1




ASCL2
DUSP27
SERPINB5




TACSTD2
SULF1
SLC6A6




FLJ37644
NEBL
PCCA




MMP3
KRT23
CXCL3




SCD
SFRP4
UBD





DPEP1
LCN2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In a further aspect the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:












the gene, genes or transcripts detected by Affymetrix probeset IDs:




















(i)
201328_at
205825_at
219956_at




201468_s_at
205927_s_at
221922_at




201656_at
206239_s_at
223447_at




201925_s_at
207158_at
223970_at




201926_s_at
210445_at
225835_at




202718_at
210519_s_at
226360_at




202831_at
211429_s_at
228303_at




202833_s_at
212063_at
228653_at




203124_s_at
213975_s_at
228915_at




203313_s_at
214235_at
231832_at




203860_at
214651_s_at
231941_s_at




203895_at
217523_at
232176_at




203896_s_at
217867_x_at
232481_s_at




204401_at
218086_at
234331_s_at




204885_s_at
218211_s_at
235210_s_at




205174_s_at
218796_at
235976_at




205366_s_at
219630_at
236894_at




205470_s_at
219682_s_at
238017_at




205513_at
219727_at
238984_at




205765_at
219955_at;
241031_at; and/or



(ii)
APOBEC1
HOXB6
QPCT




BACE2
IGFBP2
RDHE2




C20orf42
ITGA6
REG4




CD44
KCNN4
RETNLB




CD55
KLK11
RP5-875H10.1




CTSE
L1TD1
RPESP




CYP3A5
LILRB1
SERPINA1




CYP3A5P2
MLPH
SLC11A2




DACH1
MSLN
SLC12A2




DUOX2
MUC20
SLITRK6




ETS2
NLF1
SPINK1




FABP6
NPDC1
TBX3




FAM84A
NQO1
TCN1




GALNT6
PCCA
TGIF1




GPSM2
PCSK1
WDR51B




GPX2
PDZK1IP1
ZNRF3




HOXA9
PLCB4











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another further aspect of the present invention there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:












the gene, genes or transcripts detected by Affymetrix probeset IDs:




















(i)
200660_at
205476_at
217430_x_at




200665_s_at
205479_s_at
217996_at




200832_s_at
205713_s_at
218507_at




200903_s_at
205815_at
218963_s_at




201014_s_at
205828_at
218984_at




201112_s_at
205886_at
219787_s_at




201195_s_at
205890_s_at
219911_s_at




201261_x_at
205910_s_at
221729_at




201292_at
205941_s_at
221730_at




201338_x_at
206224_at
221731_x_at




201479_at
206976_s_at
221923_s_at




201577_at
207173_x_at
37892_at




201601_x_at
207457_s_at
222449_at




201666_at
208079_s_at
222450_at




202310_s_at
208712_at
222549_at




202311_s_at
209218_at
222608_s_at




202403_s_at
209309_at
223062_s_at




202404_s_at
209752_at
224428_s_at




202431_s_at
209773_s_at
224646_x_at




202504_at
209774_x_at
224915_x_at




202779_s_at
209792_s_at
225295_at




202859_x_at
209875_s_at
225520_at




202954_at
209955_s_at
225664_at




202998_s_at
210052_s_at
225681_at




203083_at
210511_s_at
225767_at




203213_at
210559_s_at
225799_at




203878_s_at
210766_s_at
225806_at




204051_s_at
211506_s_at
226227_x_at




204127_at
212281_s_at
226237_at




204170_s_at
212344_at
226311_at




204320_at
212353_at
226777_at




204470_at
212354_at
226835_s_at




204475_at
213905_x_at
227140_at




204580_at
214022_s_at
229802_at




204620_s_at
214974_x_at
231766_s_at




204702_s_at
215091_s_at;
232151_at; and/or




205361_s_at



(ii)
AHCY
DKC1
PSAT1




ANLN
ECT2
PUS7




AURKA
FAP
REG1A




AZGP1
GTF3A
REG1B




BGN
H19
REG3A




C14orf94
HIG2
RFC3




C20orf199
HSPH1
RRM2




CCL20
IFITM1
S100A11




CCND1
IL8
SCD




CDC2
INHBA
SFRP4




CDCA7
KLK10
SLC39A10




CDH11
KRT23
SLC7A5




CEL
LOC541471
SLCO4A1




CKS2
LOXL2
SPARC




CLDN1
LY6G6D
SPP1




COL10A1
MMP1
SQLE




COL11A1
MMP11
SULF1




COL12A1
MMP12
THBS2




COL1A1
MMP3
TIMP1




COL1A2
MTHFD1L
TMEM97




COL5A2
MYC
TMEPAI




COL8A1
NFE2L3
TOP2A




COMP
NME1
TPX2




CSE1L
NPM1
TRIM29




CST1
PAICS
UBD




CTHRC1
PFDN4
UBE2C




CXCL1
PHLDA1
UBE2S




CXCL2
PLAU
VCAN




CXCL5











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


In yet another further aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:












the gene, genes or transcripts detected by Affymetrix probeset IDs:




















(i)
202286_s_at
235976_at
209309_at




204259_at
236894_at
211506_s_at




204885_s_at

214974_x_at




205174_s_at
238984_at
219787_s_at




205825_at
241031_at
37892_at




207850_at
202311_s_at
222608_s_at




213880_at
204320_at
223062_s_at




217523_at
204475_at
225806_at




227174_at
204702_s_at
226237_at




228915_at
205910_s_at
227140_at




232252_at
206224_at
229802_at; and/or



(ii)
MMP1
PCSK1
ANLN




MMP7
CST1
DACH1




LGR5
QPCT
COL11A1




WDR72
ECT2
C14orf94




COL11A1
SLITRK6
AZGP1




COL1A1
L1TD1
REG4




DUSP27
KIAA1199
NFE2L3




NLF1
PSAT1
CEL




IL8
CXCL5
CD44




TACSTD2
CXCL3
COL8A1




MSLN











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a neoplastic cell or a cell predisposed to the onset of a neoplastic state.


Yet another aspect of the present invention provides a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











204885_s_at
217523_at
236894_at



205174_s_at
228915_at
238984_at



205825_at
235976_at
241031_at; and/or


(ii)
CD44
MSLN
QPCT



DACH1
NLF1
REG4



L1TD1
PCSK1
SLITRK6










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In yet still another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, or genes detected by Affymetrix probeset IDs:











202311_s_at
209309_at
223062_s_at



204320_at
211506_s_at
225806_at



204475_at
214974_x_at
226237_at



204702_s_at
219787_s_at
227140_at



205910_s_at
37892_at
229802_at; and/or



206224_at
222608_s_at


(ii)
ANLN
COL1A1
IL8



AZGP1
COL8A1
MMP1



C14orf94
CST1
NFE2L3



CEL
CXCL5
PSAT1



COL11A1
ECT2










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


In still yet another aspect of the present invention, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











200884_at
214234_s_at
226248_s_at



203240_at
214235_at
226302_at



203963_at
214433_s_at
227676_at



204508_s_at
215125_s_at
227719_at



204607_at
215867_x_at
227725_at



204811_s_at
217109_at
228232_s_at



204895_x_at
217110_s_at
229070_at



204897_at
218211_s_at
231832_at



205259_at
219543_at
232176_at



205765_at
219955_at
232481_s_at



205927_s_at
221841_s_at
235976_at



208063_s_at
221874_at
236894_at



208937_s_at
223969_s_at
237521_x_at



210107_at
223970_at
242601_at



213106_at; and/or


(ii)
CLCA1
CTSE
ATP8B1



FCGBP
C6orf105
CACNA2D2



HMGCS2
CKB
KLF4



RETNLB
ATP8A1
CYP3A5P2



L1TD1
MUC4
CAPN9



SLITRK6
UGT1A1
NR3C2



VSIG2
SELENBP1
PBLD



LOC253012
PTGER4
CA12



ST6GALNAC1
MLPH
WDR51B



ID1
KIAA1324
FAM3D



CYP3A5










in said cell or cellular population wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer cell level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











200600_at
204006_s_at
213428_s_at



200665_s_at
204051_s_at
213524_s_at



200832_s_at
204122_at
213869_x_at



200974_at
204320_at
213905_x_at



200986_at
204475_at
214247_s_at



201058_s_at
204620_s_at
215049_x_at



201069_at
205479_s_at
215076_s_at



201105_at
205547_s_at
215646_s_at



201141_at
205828_at
216442_x_at



201147_s_at
207173_x_at
217430_x_at



201150_s_at
207191_s_at
217762_s_at



201162_at
208747_s_at
217763_s_at



201163_s_at
208782_at
217764_s_at



201185_at
208788_at
218468_s_at



201261_x_at
208850_s_at
218469_at



201289_at
208851_s_at
218559_s_at



201426_s_at
209101_at
218638_s_at



201438_at
209156_s_at
219087_at



201616_s_at
209218_at
221011_s_at



201645_at
209395_at
221729_at



201667_at
209396_s_at
221730_at



201744_s_at
209596_at
221731_x_at



201792_at
209875_s_at
37892_at



201842_s_at
209955_s_at
223122_s_at



201852_x_at
210095_s_at
223235_s_at



201859_at
210495_x_at
224560_at



201893_x_at
210511_s_at
224694_at



202237_at
210764_s_at
224724_at



202238_s_at
210809_s_at
225664_at



202283_at
211161_s_at
225681_at



202291_s_at
211571_s_at
225710_at



202310_s_at
211719_x_at
225799_at



202311_s_at
211813_x_at
226237_at



202403_s_at
211896_s_at
226311_at



202404_s_at
211959_at
226694_at



202450_s_at
211964_at
226777_at



202620_s_at
211966_at
226930_at



202766_s_at
211980_at
227099_s_at



202859_x_at
211981_at
227140_at



202878_s_at
212077_at
227566_at



202917_s_at
212344_at
229218_at



202998_s_at
212353_at
229802_at



203083_at
212354_at
231579_s_at



203325_s_at
212464_s_at
231766_s_at



203382_s_at
212488_at
231879_at



203477_at
212489_at
232458_at



203570_at
212667_at
233555_s_at



203645_s_at
213125_at
234994_at



203878_s_at; and/or


(ii)
COL1A2
LGALS1
SRGN



CTHRC1
ELOVL5
LBH



FN1
MGP
CTGF



POSTN
MMP2
TNC



SPP1
LOXL2
G0S2



MMP1
MYL9
SQLE



SPARC
DCN
EFEMP1



LUM
CALD1
APOE



GREM1
FBN1
MSN



IL8
MMP3
IGFBP3



IGFBP5
IGFBP7
SERPINF1



SFRP2
FSTL1
ISLR



SULF1
COL4A2
HNT



ASPN
VCAN
COL5A1



COL6A3
SMOC2
OLFML2B



COL8A1
HTRA1
KIAA1913



COL12A1
CYR61
PALM2-AKAP2



COL5A2
FAP
SERPING1



CDH11
VIM
TYROBP



THBS2
TIMP2
ACTA2



COL15A1
SCD
COL3A1



COL11A1
TIMP3
PLOD2



S100A8
AEBP1
MMP11



FNDC1
GJA1
CD163



SFRP4
NNMT
FCGR3B



INHBA
COL1A1
PLAU



COL6A2
SULF2
MAFB



ANTXR1
COL6A1
LOC541471



GPNMB
SPON2
LOC387763



BGN
CTSK
CHI3L1



TAGLN
MXRA5
THY1



COL4A1
C1S
LOXL1



RAB31
DKK3
CD93










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal adenoma cell level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In a further aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:
      • 210107_at; and/or
    • (ii) CLCA1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











203240_at
219955_at
242601_at



204607_at
232481_s_at
227725_at



223969_s_at
228232_s_at; and/or


(ii)
FCGBP
L1TD1
LOC253012



HMGCS2
SLITRK6
ST6GALNAC1



RETNLB
VSIG2










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


A further aspect of the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 202404_s_at, 210809_s_at, 227140_at, 225681_at, 209875_s_at, 204475_at, 212464_s_at; and/or,
    • (ii) COL1A2, FN1, SPP1, CTHRC1, POSTN, MMP1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In yet another further aspect the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 200665_s_at, 218468_s_at, 211959_at, 201744_s_at, 202859_x_at; and/or,
    • (ii) SPARC, GREM1, IGFBP5, LUM, IL8,


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In still yet another further aspect the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











223122_s_at
207173_x_at
210511_s_at



212353_at
203083_at
209156_s_at



219087_at
203477_at
224694_at



201438_at
37892_at
201141_at



226237_at
202917_s_at
213905_x_at



225664_at
226930_at
205547_s_at



221730_at
204051_s_at;
and/or


(ii)
SFRP2
CDH11
INHBA



SULF1
THBS2
COL6A2



ASPN
COL15A1
ANTXR1



COL6A3
COL11A1
GPNMB



COL8A1
S100A8
BGN



COL12A1
FNDC1
TAGLN



COL5A2
SFRP4










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Yet another aspect of the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:

















(i)
235976_at
236894_at; and/or


(ii)
SLITRK6
L1TD1










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In still another aspect the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 202311_s_at, 209396_s_at, 226237_at, 204320_at, 215646_s_at, 227140_at, 204475_at, 37892_at, 229802_at, 209395_at; and/or
    • (ii) COL1A1, VCAN, CHI3L1, MMP1, COL8A1, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background neoplastic cell levels is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


A related aspect of the present invention provides a molecular array, which array comprises a plurality of:

    • (i) nucleic acid molecules comprising a nucleotide sequence corresponding to any one or more of the neoplastic marker genes hereinbefore described or a sequence exhibiting at least 80% identity thereto or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (ii) nucleic acid molecules comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iii) nucleic acid probes or oligonucleotides comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iv) probes capable of binding to any one or more of the proteins encoded by the nucleic acid molecules of (i) or a derivative, fragment or, homologue thereof


wherein the level of expression of said marker genes of (i) or proteins of (iv) is indicative of the neoplastic state of a cell or cellular subpopulation derived from the large intestine.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of nuclear factor (erythroid-derived-2)-like 2. Blk=normal, grn=inflamed, red=adenoma,blue=cancer



FIG. 2 is a graphical representation of SLIT and NTRK-like family, member 6 (left) and LINE1 type transposase domain containing 1 (right).



FIG. 3 is a graphical representation of collagen type XI, alpha 1.



FIG. 4 is an image of the immunohistochemical staining for MSLN in a normal tissue shows mild staining in the cytoplasm of the colonocytes.



FIG. 5 is an image of the immunohistochemical staining for MSLN in a representative cancer tissue shows moderate staining in the cytoplasm of the colonic epithelia.



FIG. 6 is an image of the immunohistochemical staining of MSLN in a moderately differentiated adenoma shows strong staining in the multilayered colonic epithelium.



FIG. 7 is a graphical representation depicting Probeset 205828_at Expression profile across 68 clinical specimens comprising 30 non-disease controls (black), 19 adenomas (red) and 19 adenocarcinoma (green).



FIG. 8 is a graphical representation of the measurement of MMP3 expression in protein extract from 27 clinical stool specimens. Protein extraction was performed on 27 clinical stool specimens comprising 6 non-disease controls (circle), 10 adenoma (triangle) and 11 adenocarcinoma (cross) emulsified using a PBS pH 7.4 solution containing 0.05% Tween-20 and 1× Protease Inhibitor Cocktail (Roche). Proteins were further solubilised by 30 minutes incubation in an ultrasonic water bath. Solubilised proteins were isolated by centrifugation and endogenous levels of MMP3 in the resulting protein extracts were using measured using a commercially available Luminex bead-based suspension immunoassay as recommended by manufacturer (R&D Systems).



FIG. 9 is a graphical representation of Affymetrix probeset ID 205828 at which is known to hybrising to transcripts of the MMP3 gene depicting a gene expression profile in 68 clinical specimens comprising 30 non-disease controls (black), 19 adenomas (red) and 19 cancers (green).



FIG. 10 is a schematic representation of predicted RNA variants derived from hCG_1815491. cDNA clones derived from map region 8579310 to 8562303 on human chromosome 16 were used to locate exon sequences. Arrows: Oligo nucleotide primer sets were designed to allow measurement of individual RNA variants by PCR. Primers covering splice junctions are shown as spanning intron sequences which is not included in the actual oligonucleotide primer sequence.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is predicated, in part, on the elucidation of gene expression profiles which characterise large intestine cellular populations in terms of their neoplastic state and, more particularly, whether they are malignant or pre-malignant. This finding has now facilitated the development of routine means of screening for the onset or predisposition to the onset of a large intestine neoplasm or characterising cellular populations derived from the large intestine based on screening for upregulation of the expression of these molecules, relative to control expression patterns and levels. To this end, in addition to assessing expression levels of the subject genes relative to normal or non-neoplastic levels, it has been determined that a proportion of these genes are expressed only in the diseased state, thereby facilitating the development of a simple qualitative test based on requiring assessment only relative to test background levels.


In accordance with the present invention, it has been determined that the genes detailed above are modulated, in terms of differential changes to their levels of expression, depending on whether the cell expressing that gene is neoplastic or not. It should be understood that reference to a gene “expression product” or “expression of a gene” is a reference to either a transcription product (such as primary RNA or mRNA) or a translation product such as protein. These genes and their expression products, whether they be RNA transcripts or encoded proteins, are collectively referred to as “neoplastic markers”.


Accordingly, one aspect of the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:












201328_at
221577_x_at
205828_at




201341_at
221922_at
205886_at



201416_at
60474_at
205890_s_at



201417_at
222696_at
205910_s_at



201468_s_at
223447_at
205941_s_at



201506_at
223970_at
206224_at



201563_at
225541_at
206976_s_at



201656_at
225835_at
207173_x_at



201925_s_at
226360_at
207457_s_at



201926_s_at
227174_at
208079_s_at



202286_s_at
227475_at
208712_at



202718_at
228303_at
209218_at



202831_at
228653_at
209309_at



202833_s_at
228754_at
209752_at



202935_s_at
228915_at
209773_s_at



202936_s_at
229215_at
209774_x_at



203124_s_at
231832_at
209792_s_at



203256_at
231941_s_at
209875_s_at



203313_s_at
232176_at
209955_s_at



203510_at
232252_at
210052_s_at



203860_at
232481_s_at
210511_s_at



203895_at
234331_s_at
210559_s_at



203896_s_at
235210_s_at
210766_s_at



203961_at
235976_at
211506_s_at



203962_s_at
236894_at
212281_s_at



204259_at
238017_at
212344_at



204351_at
238021_s_at
212353_at



204401_at
238984_at
212354_at



204404_at
241031_at
213905_x_at



204855_at
200660_at
214022_s_at



204885_s_at
200832_s_at
214974_x_at



205174_s_at
200903_s_at
215091_s_at



205366_s_at
201014_s_at
217430_x_at



205470_s_at
201112_s_at
217996_at



205513_at
201195_s_at
218507_at



205765_at
201261_x_at
218963_s_at



205825_at
201292_at
218984_at



205927_s_at
201338_x_at
219787_s_at



205983_at
201479_at
219911_s_at



206239_s_at
201577_at
221729_at



206286_s_at
201601_x_at
221730_at



207158_at
201666_at
221731_x_at



207850_at
202310_s_at
221923_s_at



209369_at
202311_s_at
37892_at



210445_at
202404_s_at
222449_at



210519_s_at
202431_s_at
222450_at



211429_s_at
202504_at
222549_at



212063_at
202779_s_at
222608_s_at



212070_at
202859_x_at
223062_s_at



212190_at
202954_at
224428_s_at



212531_at
202998_s_at
224646_x_at



212942_s_at
203083_at
224915_x_at



213880_at
203213_at
225295_at



213975_s_at
203878_s_at
225520_at



214235_at
204051_s_at
225664_at



214651_s_at
204127_at
225681_at



217523_at
204170_s_at
225767_at



217867_x_at
204320_at
225799_at



218086_at
204470_at
225806_at



218211_s_at
204475_at
226227_x_at



218704_at
204580_at
226237_at



218796_at
204620_s_at
226311_at



218872_at
204702_s_at
226777_at



219630_at
205361_s_at
226835_s_at



219682_s_at
205476_at
227140_at



219727_at
205479_s_at
229802_at



219955_at
205713_s_at
231766_s_at



219956_at
205815_at
232151_at; and/or



200665_s_at


(ii)
CTHRC1

CDCA7
LOXL2



FOXQ1
RNF43
TDGF1
AZGP1



MMP1
CCL20
MTHFD1L
MYC



TCN1
CTSE
ANLN
COMP



MMP7
MSLN
H19
AURKA



WDR72
TIMP1
FAP
PAICS



INHBA
PCSK1
DACH1
PUS7



COL11A1
CST1
VCAN
ZNRF3



GDF15
BGN
SQLE
CCND1



COL1A1
AXIN2
REG3A
CSE1L



LGR5
MET
TESC
PFDN4



DUSP27
SOX9
UBE2C
C20orf42



SERPINB5
TMEPAI
TMEM97
SLC11A2



ASCL2
CDH11
TRIM29
NFE2L3



SULF1
MMP11
KLK11
CEL



SLC6A6
CXCL1
LY6G6D
NLF1



TACSTD2
QPCT
SLC7A5
NPDC1



NEBL
PDZK1IP1
FABP6
ENC1



PCCA
CD55
SLITRK6
SERPINE2



FLJ37644
ECT2
MLPH
UBE2S



KRT23
COL12A1
HOXA9
TOP2A



CXCL3
L1TD1
TBX3
CDC2



MMP3
WDR51B
BACE2
RFC3



SFRP4
HOXB6
GPX2
LILRB1



UBD
FAM84A
TPX2
NPM1



SCD
COL5A2
KCNN4
RDHE2



DPEP1
MMP12
LOC541471
PLAU



LCN2
SORD
CYP3A5
HSPH1



PLCB4
PSAT1
ANXA3
GTF3A



SPINK1
CXCL5
CYP3A5P2
KLK10



DUOX2
IGFBP2
C14orf94
GPSM2



SOX4
TGIF1
RP5-875H10.1
NME1



THBS2
CXCL2
RPL22L1
MUC20



CLDN1
SLCO4A1
APOBEC1
RPESP



REG1B
CKS2
HIG2
RRM2



CDH3
PHLDA1
COL10A1
DKC1



SPARC
SERPINA1
AHCY
CD44




COL1A2
IL8










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Reference to “large intestine” should be understood as a reference to a cell derived from one of the six anatomical regions of the large intestine, which regions commence after the terminal region of the ileum, these being:

    • (i) the cecum;
    • (ii) the ascending colon;
    • (iii) the transverse colon;
    • (iv) the descending colon;
    • (v) the sigmoid colon; and
    • (vi) the rectum.


Reference to “neoplasm” should be understood as a reference to a lesion, tumour or other encapsulated or unencapsulated mass or other form of growth which comprises neoplastic cells. A “neoplastic cell” should be understood as a reference to a cell exhibiting abnormal growth. The term “growth” should be understood in its broadest sense and includes reference to proliferation. In this regard, an example of abnormal cell growth is the uncontrolled proliferation of a cell. Another example is failed apoptosis in a cell, thus prolonging its usual life span. The neoplastic cell may be a benign cell or a malignant cell. In a preferred embodiment, the subject neoplasm is an adenoma or an adenocarcinoma. Without limiting the present invention to any one theory or mode of action, an adenoma is generally a benign tumour of epithelial origin which is either derived from epithelial tissue or exhibits clearly defined epithelial structures. These structures may take on a glandular appearance. It can comprise a malignant cell population within the adenoma, such as occurs with the progression of a benign adenoma to a malignant adenocarcinoma.


Preferably, said neoplastic cell is an adenoma or adenocarcinoma and even more preferably a colorectal adenoma or adenocarcinoma.


Each of the genes and transcripts detailed in sub-paragraphs (i) and (ii), above, would be well known to the person of skill in the art, as would their encoded proteins. The identification of the expression products of these genes and transcripts as markers of neoplasia occurred by virtue of differential expression analysis using Affymetrix HGU133A or HGU133B gene chips. To this end, each gene chip is characterised by approximately 45,000 probe sets which detect the RNA transcribed from the genome. On average, approximately 11 probe pairs detect overlapping or consecutive regions of the RNA transcript. In general, the genes from which the RNA transcripts described herein are identified by the Affymetrix probesets are well known and characterised genes. However, to the extent that some of the probesets detect RNA transcripts which are not yet defined, these transcripts are indicated as “the gene, genes or transcripts detected by Affymetrix probe x”. In some cases a number of genes and/or transcripts may be detectable by a single probeset. It should be understood, however, that this is not intended as a limitation as to how the expression level of the subject gene or transcript can be detected. In the first instance, it would be understood that the subject gene transcript is also detectable by other probesets which would be present on the Affymetrix gene chip. The reference to a single probesets is merely included as an identifier of the gene transcript of interest. In terms of actually screening for the transcript, however, one may utilise a probe or probeset directed to any region of the transcript and not just to the 3′ terminal 600 bp transcript region to which the Affymetrix probesets are often directed.


Reference to each of the genes and transcripts detailed above and their transcribed and translated expression products should therefore be understood as a reference to all forms of these molecules and to fragments or variants thereof. As would be appreciated by the person of skill in the art, some genes are known to exhibit allelic variation between individuals. Accordingly, the present invention should be understood to extend to such variants which, in terms of the present diagnostic applications, achieve the same outcome despite the fact that minor genetic variants between the actual nucleic acid sequences may exist between individuals or that within one individual there may exist two or more splice variants of one subject gene. The present invention should therefore be understood to extend to all forms of RNA (eg mRNA, primary RNA transcript, miRNA, etc), cDNA and peptide isoforms which arise from alternative splicing or any other mutation, polymorphic or allelic variation. It should also be understood to include reference to any subunit polypeptides such as precursor forms which may be generated, whether existing as a monomer, multimer, fusion protein or other complex.


For example, in one embodiment of the invention, the subject gene is CDH3. Analysis of the AceView Database reveals that there exist 12 CDH3 alternative mRNA transcripts. Nine are generated by alternative splicing while three are unspliced forms. In terms of the genes encompassed by the present invention, means for determining the existence of such variants and characterising same, are described in Example 6. To the extent that the genes of the present invention are described by reference to an Affymetrix probeset, Table 9 provides details of the nucleic acid sequence to which each probeset is directed. Based on this information, the skilled person could, as a matter of routine procedure, identify the gene in respect of which that sequence forms part. A typical protocol for doing this is also outlined in Example 6.


It should be understood that the “individual” who is the subject of testing may be any human or non-human mammal. Examples of non-human mammals includes primates, livestock animals (e.g. horses, cattle, sheep, pigs, donkeys), laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), companion animals (e.g. dogs, cats) and captive wild animals (e.g. deer, foxes). Preferably the mammal is a human.


The method of the present invention is predicated on the comparison of the level of the neoplastic markers of a biological sample with the control levels of these markers. The “control level” may be either a “normal level”, which is the level of marker expressed by a corresponding large intestine cell or cellular population which is not neoplastic, or the background level which is detectable in a negative control sample.


The normal (or “non-neoplastic”) level may be determined using tissues derived from the same individual who is the subject of testing. However, it would be appreciated that this may be quite invasive for the individual concerned and it is therefore likely to be more convenient to analyse the test results relative to a standard result which reflects individual or collective results obtained from individuals other than the patient in issue. This latter form of analysis is in fact the preferred method of analysis since it enables the design of kits which require the collection and analysis of a single biological sample, being a test sample of interest. The standard results which provide the normal level may be calculated by any suitable means which would be well known to the person of skill in the art. For example, a population of normal tissues can be assessed in terms of the level of the neoplastic markers of the present invention, thereby providing a standard value or range of values against which all future test samples are analysed. It should also be understood that the normal level may be determined from the subjects of a specific cohort and for use with respect to test samples derived from that cohort. Accordingly, there may be determined a number of standard values or ranges which correspond to cohorts which differ in respect of characteristics such as age, gender, ethnicity or health status. Said “normal level” may be a discrete level or a range of levels. An increase in the expression level of the subject genes relative to normal levels is indicative of the tissue being neoplastic.


Without limiting the present invention to any one theory or mode of action, although each of the genes hereinbefore described is differentially expressed, either singly or in combination, as between neoplastic versus non-neoplastic cells of the large intestine, and is therefore diagnostic of the existence of a large intestine neoplasm, the expression of some of these genes was found to exhibit particularly significant levels of sensitivity, specificity and positive and negative predictive value. Accordingly, in a preferred embodiment one would screen for and assess the expression level of one or more of these genes. To this end, and without limiting the present invention to any one theory or mode of action, the following markers were determined to be expressed in neoplastic tissue at a level of 3, 4, 5 or 7 fold greater than non-neoplastic tissue when assessed by virtue of the method exemplified herein.















Gene, genes or transcripts detected



Fold Increase
by Affymetrix Probe No:
Gene







7
225681_at
CTHRC1



227140_at


5
227475_at
FOXQ1



204475_at
MMP1



202859_x_at
IL8



202404_s_at
COL1A2


4
205513_at
TCN1



204259_at
MMP7



227174_at
WDR72



210511_s_at
INHBA



37892_at
COL11A1


3
221577_x_at
GDF15



202310_s_at
COL1A1



213880_at
LGR5



232252_at
DUSP27



204855_at
SERPINB5



229215_at
ASCL2



212354_at
SULF1



228754_at
SLC6A6



202286_s_at
TACSTD2



203962_s_at
NEBL



203860_at
PCCA



202935_s_at
FLJ37644



218963_s_at
KRT23



207850_at
CXCL3



205828_at
MMP3



204051_s_at
SFRP4



205890_s_at
UBD



200832_s_at
SCD



205983_at
DPEP1



212531_at
LCN2









There is therefore more particularly provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 225681_at; 227140_at; and/or
    • (ii) CTHRC1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In another embodiment, there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 227475_at, 204475_at, 202859_x_at, 202404_s_at; and/or
    • (ii) FOXQ1, MMP1, IL8, COL1A2


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In yet another embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 205513_at, 204259_at, 227174_at, 210511_s_at, 37892_at; and/or
    • (ii) TCN1, MMP1, WDR72, INHBA, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In still yet another preferred embodiment, there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











221577_x_at
232252_at
202310_s_at



213880_at
212354_at
204855_at



229215_at
203962_s_at
228754_at



202286_s_at
218963_s_at
203860_at



202935_s_at
204051_s_at
207850_at



205828_at
205983_at
205890_s_at



200832_s_at

212531_at; and/or


(ii)
LGR5
GDF15
COL1A1



ASCL2
DUSP27
SERPINB5



TACSTD2
SULF1
SLC6A6



FLJ37644
NEBL
PCCA



MMP3
KRT23
CXCL3



SCD
SFRP4
UBD




DPEP1
LCN2










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


According to these aspects of the present invention, said large intestine tissue is preferably colorectal tissue.


The detection method of the present invention can be performed on any suitable biological sample. To this end, reference to a “biological sample” should be understood as a reference to any sample of biological material derived from an animal such as, but not limited to, cellular material, biofluids (eg. blood), faeces, tissue biopsy specimens, surgical specimens or fluid which has been introduced into the body of an animal and subsequently removed (such as, for example, the solution retrieved from an enema wash). The biological sample which is tested according to the method of the present invention may be tested directly or may require some form of treatment prior to testing. For example, a biopsy or surgical sample may require homogenisation prior to testing or it may require sectioning for in situ testing of the qualitative expression levels of individual genes. Alternatively, a cell sample may require permeabilisation prior to testing. Further, to the extent that the biological sample is not in liquid form, (if such form is required for testing) it may require the addition of a reagent, such as a buffer, to mobilise the sample.


To the extent that the neoplastic marker gene expression product is present in a biological sample, the biological sample may be directly tested or else all or some of the nucleic acid or protein material present in the biological sample may be isolated prior to testing. In yet another example, the sample may be partially purified or otherwise enriched prior to analysis. For example, to the extent that a biological sample comprises a very diverse cell population, it may be desirable to enrich for a sub-population of particular interest. It is within the scope of the present invention for the target cell population or molecules derived therefrom to be treated prior to testing, for example, inactivation of live virus or being run on a gel. It should also be understood that the biological sample may be freshly harvested or it may have been stored (for example by freezing) prior to testing or otherwise treated prior to testing (such as by undergoing culturing).


The choice of what type of sample is most suitable for testing in accordance with the method disclosed herein will be dependent on the nature of the situation. Preferably, said sample is a faecal (stool) sample, enema wash, surgical resection, tissue biopsy or blood sample.


In a related aspect, it has been determined that certain of the markers hereinbefore defined are more indicative of adenoma development versus cancer development or vice versa. This is an extremely valuable finding since it enables one to more specifically characterise the likely nature of a neoplasm which is detected by virtue of the method of the present invention.


Accordingly, in a related aspect the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











201328_at
205825_at
219956_at



201468_s_at
205927_s_at
221922_at



201656_at
206239_s_at
223447_at



201925_s_at
207158_at
223970_at



201926_s_at
210445_at
225835_at



202718_at
210519_s_at
226360_at



202831_at
211429_s_at
228303_at



202833_s_at
212063_at
228653_at



203124_s_at
213975_s_at
228915_at



203313_s_at
214235_at
231832_at



203860_at
214651_s_at
231941_s_at



203895_at
217523_at
232176_at



203896_s_at
217867_x_at
232481_s_at



204401_at
218086_at
234331_s_at



204885_s_at
218211_s_at
235210_s_at



205174_s_at
218796_at
235976_at



205366_s_at
219630_at
236894_at



205470_s_at
219682_s_at
238017_at



205513_at
219727_at
238984_at



205765_at
219955_at;
241031_at; and/or


(ii)
APOBEC1
HOXB6
QPCT



BACE2
IGFBP2
RDHE2



C20orf42
ITGA6
REG4



CD44
KCNN4
RETNLB



CD55
KLK11
RP5-875H10.1



CTSE
L1TD1
RPESP



CYP3A5
LILRB1
SERPINA1



CYP3A5P2
MLPH
SLC11A2



DACH1
MSLN
SLC12A2



DUOX2
MUC20
SLITRK6



ETS2
NLF1
SPINK1



FABP6
NPDC1
TBX3



FAM84A
NQO1
TCN1



GALNT6
PCCA
TGIF1



GPSM2
PCSK1
WDR51B



GPX2
PDZK1IP1
ZNRF3



HOXA9
PLCB4










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another preferred embodiment of this aspect of the present invention there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











200660_at
205476_at
217430_x_at



200665_s_at
205479_s_at
217996_at



200832_s_at
205713_s_at
218507_at



200903_s_at
205815_at
218963_s_at



201014_s_at
205828_at
218984_at



201112_s_at
205886_at
219787_s_at



201195_s_at
205890_s_at
219911_s_at



201261_x_at
205910_s_at
221729_at



201292_at
205941_s_at
221730_at



201338_x_at
206224_at
221731_x_at



201479_at
206976_s_at
221923_s_at



201577_at
207173_x_at
37892_at



201601_x_at
207457_s_at
222449_at



201666_at
208079_s_at
222450_at



202310_s_at
208712_at
222549_at



202311_s_at
209218_at
222608_s_at



202403_s_at
209309_at
223062_s_at



202404_s_at
209752_at
224428_s_at



202431_s_at
209773_s_at
224646_x_at



202504_at
209774_x_at
224915_x_at



202779_s_at
209792_s_at
225295_at



202859_x_at
209875_s_at
225520_at



202954_at
209955_s_at
225664_at



202998_s_at
210052_s_at
225681_at



203083_at
210511_s_at
225767_at



203213_at
210559_s_at
225799_at



203878_s_at
210766_s_at
225806_at



204051_s_at
211506_s_at
226227_x_at



204127_at
212281_s_at
226237_at



204170_s_at
212344_at
226311_at



204320_at
212353_at
226777_at



204470_at
212354_at
226835_s_at



204475_at
213905_x_at
227140_at



204580_at
214022_s_at
229802_at



204620_s_at
214974_x_at
231766_s_at



204702_s_at
215091_s_at;
232151_at; and/or



205361_s_at


(ii)
AHCY
DKC1
PSAT1



ANLN
ECT2
PUS7



AURKA
FAP
REG1A



AZGP1
GTF3A
REG1B



BGN
H19
REG3A



C14orf94
HIG2
RFC3



C20orf199
HSPH1
RRM2



CCL20
IFITM1
S100A11



CCND1
IL8
SCD



CDC2
INHBA
SFRP4



CDCA7
KLK10
SLC39A10



CDH11
KRT23
SLC7A5



CEL
LOC541471
SLCO4A1



CKS2
LOXL2
SPARC



CLDN1
LY6G6D
SPP1



COL10A1
MMP1
SQLE



COL11A1
MMP11
SULF1



COL12A1
MMP12
THBS2



COL1A1
MMP3
TIMP1



COL1A2
MTHFD1L
TMEM97



COL5A2
MYC
TMEPAI



COL8A1
NFE2L3
TOP2A



COMP
NME1
TPX2



CSE1L
NPM1
TRIM29



CST1
PAICS
UBD



CTHRC1
PFDN4
UBE2C



CXCL1
PHLDA1
UBE2S



CXCL2
PLAU
VCAN



CXCL5










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


According to these aspects, said control levels are preferably non-neoplastic levels and said large intestine tissue is colorectal tissue. Even more preferably, said biological sample is a stool sample or blood sample.


In a related aspect, it has been determined that a subpopulation of the markers of the present invention are not only expressed at levels higher than normal levels, their expression pattern is uniquely characterised by the fact that expression levels above that of background control levels are not detectable in non-neoplastic tissue. This determination has therefore enabled the development of qualitative screening systems which are simply designed to detect marker expression relative to a control background level. In accordance with this aspect of the present invention, said “control level” is therefore the “background level”. Preferably, said background level is of the chosen testing methodology.


According to this aspect, there is therefore provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











202286_s_at
235976_at
209309_at



204259_at
236894_at
211506_s_at



204885_s_at

214974_x_at



205174_s_at
238984_at
219787_s_at



205825_at
241031_at
37892_at



207850_at
202311_s_at
222608_s_at



213880_at
204320_at
223062_s_at



217523_at
204475_at
225806_at



227174_at
204702_s_at
226237_at



228915_at
205910_s_at
227140_at



232252_at
206224_at
229802_at; and/or


(ii)
MMP1
PCSK1
ANLN



MMP7
CST1
DACH1



LGR5
QPCT
COL11A1



WDR72
ECT2
C14orf94



COL11A1
SLITRK6
AZGP1



COL1A1
L1TD1
REG4



DUSP27
KIAA1199
NFE2L3



NLF1
PSAT1
CEL



IL8
CXCL5
CD44



TACSTD2
CXCL3
COL8A1



MSLN










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a neoplastic cell or a cell predisposed to the onset of a neoplastic state.


In a most preferred embodiment, said genes or transcripts are selected from:















(i)
the gene, genes or transcripts detected by Affymetrix probeset IDs:











227140_at
227174_at
241031_at



204475_at
37892_at
211506_s_at



204259_at
202311_s_at
202286_s_at



213880_at
232252_at
226237_at; and/or


(ii)
MMP1
COL11A1
IL8



MMP7
COL1A1
TACSTD2



LGR5
DUSP27
COL8A1



WDR72
NLF1









Preferably, said neoplasm is an adenoma or an adenocarcinoma and said gastrointestinal tissue is colorectal tissue.


In yet another embodiment, it has been determined that a further subpopulation of these markers are more characteristic of adenoma development, while others are more characteristic of cancer development. Accordingly, there is provided a convenient means of qualitatively obtaining indicative information in relation to the characteristics of the subject neoplasm.


According to this embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
204885_s_at
217523_at
236894_at



205174_s_at
228915_at
238984_at



205825_at
235976_at
241031_at; and/or


(ii)
CD44
MSLN
QPCT



DACH1
NLF1
REG4



L1TD1
PCSK1
SLITRK6










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In yet still another preferred embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

















the gene or genes detected by Affymetrix probeset IDs:





















(i)
202311_s_at
209309_at
223062_s_at




204320_at
211506_s_at
225806_at




204475_at
214974_x_at
226237_at




204702_s_at
219787_s_at
227140_at




205910_s_at
37892_at
229802_at; and/or




206224_at
222608_s_at




(ii)
ANLN
COL1A1
IL8




AZGP1
COL8A1
MMP1




C14orf94
CST1
NFE2L3




CEL
CXCL5
PSAT1




COL11A1
ECT2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


Preferably, said large intestine tissue is colorectal tissue.


More preferably, said biological sample is a blood sample or stool sample.


As detailed hereinbefore, the present invention is designed to screen for a neoplastic cell or cellular population, which is located in the large intestine. Accordingly, reference to “cell or cellular population” should be understood as a reference to an individual cell or a group of cells. Said group of cells may be a diffuse population of cells, a cell suspension, an encapsulated population of cells or a population of cells which take the form of tissue.


Reference to “expression” should be understood as a reference to the transcription and/or translation of a nucleic acid molecule. In this regard, the present invention is exemplified with respect to screening for neoplastic marker expression products taking the form of RNA transcripts (eg primary RNA or mRNA). Reference to “RNA” should be understood to encompass reference to any form of RNA, such as primary RNA or mRNA. Without limiting the present invention in any way, the modulation of gene transcription leading to increased or decreased RNA synthesis will also correlate with the translation of some of these RNA transcripts (such as mRNA) to produce a protein product. Accordingly, the present invention also extends to detection methodology which is directed to screening for modulated levels or patterns of the neoplastic marker protein products as an indicator of the neoplastic state of a cell or cellular population. Although one method is to screen for mRNA transcripts and/or the corresponding protein product, it should be understood that the present invention is not limited in this regard and extends to screening for any other form of neoplastic marker expression product such as, for example, a primary RNA transcript. It is well within the skill of the person of skill in the art to determine the most appropriate screening target for any given situation. To this end, the genes which are known to encode an expression product which is either secreted by the cell or membrane bound is detailed in the table, below. It would be appreciated that screening for neoplastic markers which are secreted or membrane bound may provide particular advantages in terms of the design of a diagnostic screening product.












The gene or genes detected by Affymetrix probe Nos:




















200600_at
203961_at
212077_at
224724_at



200832_s_at
203962_s_at
212281_s_at
224915_x_at



200903_s_at
204006_s_at
212344_at
225295_at



200974_at
204122_at
212353_at
225520_at



201058_s_at
204127_at
212354_at
225541_at



201069_at
204170_s_at
212942_s_at
225664_at



201105_at
204320_at
213125_at
225710_at



201112_s_at
204351_at
213524_s_at
225767_at



201195_s_at
204401_at
213869_x_at
225799_at



201328_at
204404_at
213880_at
225806_at



201341_at
204702_s_at
214022_s_at
225835_at



201416_at
204885_s_at
214235_at
226227_x_at



201417_at
205361_s_at
214651_s_at
226311_at



201426_s_at
205366_s_at
215049_x_at
226360_at



201468_s_at
205547_s_at
217523_at
226694_at



201479_at
205765_at
217762_s_at
226777_at



201563_at
205825_at
217763_s_at
226835_s_at



201601_x_at
205890_s_at
217764_s_at
227099_s_at



201616_s_at
205927_s_at
217867_x_at
227140_at



201656_at
205941_s_at
217996_at
227174_at



201667_at
205983_at
218086_at
227475_at



201925_s_at
206286_s_at
218211_s_at
227566_at



201926_s_at
206976_s_at
218559_s_at
228303_at



202237_at
207158_at
218704_at
228653_at



202238_s_at
207173_x_at
218796_at
228754_at



202286_s_at
207191_s_at
218872_at
228915_at



202431_s_at
208079_s_at
218963_s_at
229215_at



202450_s_at
208712_at
218984_at
229802_at



202504_at
208782_at
219630_at
231766_s_at



202620_s_at
208788_at
219682_s_at
231832_at



202779_s_at
208850_s_at
219727_at
231879_at



202831_at
208851_s_at
219787_s_at
232151_at



202878_s_at
209156_s_at
219911_s_at
232176_at



202917_s_at
209218_at
219955_at
232252_at



202935_s_at
209369_at
219956_at
232481_s_at



202936_s_at
209596_at
221011_s_at
233555_s_at



202954_at
209773_s_at
221922_at
234331_s_at



203124_s_at
209955_s_at
221923_s_at
234994_at



203213_at
210052_s_at
222449_at
235210_s_at



203256_at
210445_at
222450_at
235976_at



203313_s_at
210519_s_at
222549_at
236894_at



203382_s_at
210559_s_at
222608_s_at
238017_at



203645_s_at
210766_s_at
223062_s_at
241031_at



203860_at
211964_at
223235_s_at
37892_at



203878_s_at
211966_at
224428_s_at
60474_at



203895_at
212063_at
224646_x_at
S100A11



203896_s_at
212070_at
224694_at
S100A8



ACTA2
DUOX2
LOC541471
S100P



AHCY
DUSP27
MAFB
SCD



ANLN
ECT2
MLPH
SLC11A2



ANTXR1
ELOVL5
MMP11
SLC12A2



ANXA3
ENC1
MMP2
SLC39A10



APOBEC1
ETS2
MSLN
SLC6A6



APOE
FABP6
MSN
SLC7A5



ASCL2
FAM84A
MTHFD1L
SLCO4A1



AURKA
FAP
MXRA5
SLITRK6



BACE2
FCGR3B
MYC
SMOC2



C14orf94
FLJ37644
MYL9
SORD



C20orf199
FOXQ1
NEBL
SOX4



C20orf42
FSTL1
NFE2L3
SOX9



CALD1
G0S2
NLF1
SQLE



CCND1
GALNT6
NNMT
SULF1



CD163
GJA1
NPDC1
SULF2



CD44
GPR56
NPM1
TACSTD2



CD55
GPSM2
NQO1
TAGLN



CD93
GPX2
OLFML2B
TBX3



CDC2
H19
PALM2-
TDGF1



CDCA7
HNT
AKAP2
TESC



CDH11
HOXA9
PCCA
TGIF1



CDH3
HOXB6
PCSK1
THY1



CKS2
HSPH1
PDZK1IP1
TMEM97



CLDN1
IFITM1
PFDN4
TMEPAI



COL10A1
ISLR
PHLDA1
TPX2



COL11A1
ITGA6
PLCB4
TRIM29



COL12A1
KCNN4
PLOD2
TYROBP



COL4A2
KIAA1199
PSAT1
UBD



COL6A2
KIAA1913
PUS7
UBE2C



CSE1L
KRT23
RAB31
UBE2S



CTSE
L1TD1
RDHE2
VIM



CTSK
LBH
RFC3
WDR51B



CYP3A5
LGALS1
RNF43
WDR72



CYP3A5P2
LGR5
RP5-875H10.1
ZNRF3



DACH1
LOC387763
RPESP




DKC1

RPL22L1




DPEP1

RRM2










Reference to “nucleic acid molecule” should be understood as a reference to both deoxyribonucleic acid molecules and ribonucleic acid molecules and fragments thereof. The present invention therefore extends to both directly screening for mRNA levels in a biological sample or screening for the complementary cDNA which has been reverse-transcribed from an mRNA population of interest. It is well within the skill of the person of skill in the art to design methodology directed to screening for either DNA or RNA. As detailed above, the method of the present invention also extends to screening for the protein product translated from the subject mRNA.


Preferably, the level of gene expression is measured by reference to genes which encode a protein product and, more particularly, said level of expression is measured at the protein level. Accordingly, to the extent that the present invention is directed to screening for markers which are detailed in the preceding table, said screening is preferably directed to the encoded protein.


As detailed hereinbefore, it should be understood that although the present invention is exemplified with respect to the detection of expressed nucleic acid molecules (e.g. mRNA), it also encompasses methods of detection based on screening for the protein product of the subject genes. The present invention should also be understood to encompass methods of detection based on identifying both proteins and/or nucleic acid molecules in one or more biological samples. This may be of particular significance to the extent that some of the neoplastic markers of interest may correspond to genes or gene fragments which do not encode a protein product. Accordingly, to the extent that this occurs it would not be possible to test for a protein and the subject marker would have to be assessed on the basis of transcription expression profiles.


In terms of screening for the upregulation of expression of a marker it would also be well known to the person of skill in the art that changes which are detectable at the DNA level are indicative of changes to gene expression activity and therefore changes to expression product levels. Such changes include but are not limited to, changes to DNA methylation. Accordingly, reference herein to “screening the level of expression” and comparison of these “levels of expression” to control “levels of expression” should be understood as a reference to assessing DNA factors which are related to transcription, such as gene/DNA methylation patterns.


The term “protein” should be understood to encompass peptides, polypeptides and proteins (including protein fragments). The protein may be glycosylated or unglycosylated and/or may contain a range of other molecules fused, linked, bound or otherwise associated to the protein such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins. Reference herein to a “protein” includes a protein comprising a sequence of amino acids as well as a protein associated with other molecules such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins.


The proteins encoded by the neoplastic markers of the present invention may be in multimeric form meaning that two or more molecules are associated together. Where the same protein molecules are associated together, the complex is a homomultimer. An example of a homomultimer is a homodimer. Where at least one marker protein is associated with at least one non-marker protein, then the complex is a heteromultimer such as a heterodimer.


Reference to a “fragment” should be understood as a reference to a portion of the subject nucleic acid molecule or protein. This is particularly relevant with respect to screening for modulated RNA levels in stool samples since the subject RNA is likely to have been degraded or otherwise fragmented due to the environment of the gut. One may therefore actually be detecting fragments of the subject RNA molecule, which fragments are identified by virtue of the use of a suitably specific probe.


Reference to the “onset” of a neoplasm, such as adenoma or adenocarcinoma, should be understood as a reference to one or more cells of that individual exhibiting dysplasia. In this regard, the adenoma or adenocarcinoma may be well developed in that a mass of dysplastic cells has developed. Alternatively, the adenoma or adenocarcinoma may be at a very early stage in that only relatively few abnormal cell divisions have occurred at the time of diagnosis. The present invention also extends to the assessment of an individual's predisposition to the development of a neoplasm, such as an adenoma or adenocarcinoma. Without limiting the present invention in any way, changed levels of the neoplastic markers may be indicative of that individual's predisposition to developing a neoplasia, such as the future development of an adenoma or adenocarcinoma or another adenoma or adenocarcinoma.


In yet another related aspect of the present invention, markers have been identified which enable the characterisation of neoplastic tissue of the large intestine in terms of whether it is an adenoma or a cancer. This development now provides a simple yet accurate means of characterising tissue using means other than the traditional methods which are currently utilised.


According to this aspect of the present invention, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
200884_at
214234_s_at
226248_s_at



203240_at
214235_at
226302_at



203963_at
214433_s_at
227676_at



204508_s_at
215125_s_at
227719_at



204607_at
215867_x_at
227725_at



204811_s_at
217109_at
228232_s_at



204895_x_at
217110_s_at
229070_at



204897_at
218211_s_at
231832_at



205259_at
219543_at
232176_at



205765_at
219955_at
232481_s_at



205927_s_at
221841_s_at
235976_at



208063_s_at
221874_at
236894_at



208937_s_at
223969_s_at
237521_x_at



210107_at
223970_at
242601_at



213106_at; and/or




(ii)
CLCA1
CTSE
ATP8B1



FCGBP
C6orf105
CACNA2D2



HMGCS2
CKB
KLF4



RETNLB
ATP8A1
CYP3A5P2



L1TD1
MUC4
CAPN9



SLITRK6
UGT1A1
NR3C2



VSIG2
SELENBP1
PBLD



LOC253012
PTGER4
CA12



ST6GALNAC1
MLPH
WDR51B



ID1
KIAA1324
FAM3D



CYP3A5










in said cell or cellular population wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer cell level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
200600_at
204006_s_at
213428_s_at



200665_s_at
204051_s_at
213524_s_at



200832_s_at
204122_at
213869_x_at



200974_at
204320_at
213905_x_at



200986_at
204475_at
214247_s_at



201058_s_at
204620_s_at
215049_x_at



201069_at
205479_s_at
215076_s_at



201105_at
205547_s_at
215646_s_at



201141_at
205828_at
216442_x_at



201147_s_at
207173_x_at
217430_x_at



201150_s_at
207191_s_at
217762_s_at



201162_at
208747_s_at
217763_s_at



201163_s_at
208782_at
217764_s_at



201185_at
208788_at
218468_s_at



201261_x_at
208850_s_at
218469_at



201289_at
208851_s_at
218559_s_at



201426_s_at
209101_at
218638_s_at



201438_at
209156_s_at
219087_at



201616_s_at
209218_at
221011_s_at



201645_at
209395_at
221729_at



201667_at
209396_s_at
221730_at



201744_s_at
209596_at
221731_x_at



201792_at
209875_s_at
37892_at



201842_s_at
209955_s_at
223122_s_at



201852_x_at
210095_s_at
223235_s_at



201859_at
210495_x_at
224560_at



201893_x_at
210511_s_at
224694_at



202237_at
210764_s_at
224724_at



202238_s_at
210809_s_at
225664_at



202283_at
211161_s_at
225681_at



202291_s_at
211571_s_at
225710_at



202310_s_at
211719_x_at
225799_at



202311_s_at
211813_x_at
226237_at



202403_s_at
211896_s_at
226311_at



202404_s_at
211959_at
226694_at



202450_s_at
211964_at
226777_at



202620_s_at
211966_at
226930_at



202766_s_at
211980_at
227099_s_at



202859_x_at
211981_at
227140_at



202878_s_at
212077_at
227566_at



202917_s_at
212344_at
229218_at



202998_s_at
212353_at
229802_at



203083_at
212354_at
231579_s_at



203325_s_at
212464_s_at
231766_s_at



203382_s_at
212488_at
231879_at



203477_at
212489_at
232458_at



203570_at
212667_at
233555_s_at



203645_s_at
213125_at
234994_at



203878_s_at; and/or




(ii)
COL1A2
LGALS1
SRGN



CTHRC1
ELOVL5
LBH



FN1
MGP
CTGF



POSTN
MMP2
TNC



SPP1
LOXL2
G0S2



MMP1
MYL9
SQLE



SPARC
DCN
EFEMP1



LUM
CALD1
APOE



GREM1
FBN1
MSN



IL8
MMP3
IGFBP3



IGFBP5
IGFBP7
SERPINF1



SFRP2
FSTL1
ISLR



SULF1
COL4A2
HNT



ASPN
VCAN
COL5A1



COL6A3
SMOC2
OLFML2B



COL8A1
HTRA1
KIAA1913



COL12A1
CYR61
PALM2-AKAP2



COL5A2
FAP
SERPING1



CDH11
VIM
TYROBP



THBS2
TIMP2
ACTA2



COL15A1
SCD
COL3A1



COL11A1
TIMP3
PLOD2



S100A8
AEBP1
MMP11



FNDC1
GJA1
CD163



SFRP4
NNMT
FCGR3B



INHBA
COL1A1
PLAU



COL6A2
SULF2
MAFB



ANTXR1
COL6A1
LOC541471



GPNMB
SPON2
LOC387763



BGN
CTSK
CHI3L1



TAGLN
MXRA5
THY1



COL4A1
C1S
LOXL1



RAB31
DKK3
CD93










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal adenoma cell level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Reference to an “adenoma control level” or “cancer control level” should be understood as a reference to the level of said gene expression in a population of adenoma or cancer gastrointestinal cells, respectively. As discussed hereinbefore in relation to “normal levels”, the subject level may be a discrete level or a range of levels. Accordingly, the definition of “adenoma control level” or “cancer control level” should be understood to have a corresponding definition to “normal level”, albeit in the context of the expression of genes by a neoplastic population of large intestine cells.


In terms of this aspect of the present invention, the subject analysis is performed on a population of neoplastic cells. These cells may be derived in any manner, such as sloughed of neoplastic cells which have been collected via an enema wash or from a gastrointestinal sample, such as a stool sample. Alternatively, the subject cells may have been obtained via a biopsy or other surgical technique.


Without limiting this aspect of the invention in any way, several of the markers of this aspect of the present invention have been determined to be expressed at particularly significant levels above those of neoplastic cells. For example, increased expression levels of 3- and 5-fold have been observed in respect of the following markers, when assessed by the method exemplified herein, which are indicative of gastrointestinal adenomas.















Gene or genes detected by



Fold Increase
Affymetrix Probe No:
Gene







5
210107_at
CLCA1


3
203240_at
FCGBP



204607_at
HMGCS2



223969_s_at
RETNLB



219955_at
L1TD1



232481_s_at
SLITRK6



228232_s_at
VSIG2



242601_at
LOC253012



227725_at
ST6GALNAC1









In another example, increased expression levels of between 3- and 9-fold have been observed in respect of the following markers which are indicative of gastrointestinal cancers, when assessed by the method herein exemplified:


















Gene or genes detected by




Fold Increase
Affymetrix Probe No:
Gene









9
202404_s_at
COL1A2



8
225681_at
CTHRC1



7
212464_s_at
FN1




210809_s_at
POSTN



6
209875_s_at
SPP1



5
227140_st
MMP1




204475_at




4
200665_s_at
SPARC




201744_s_at
LUM




218468_s_at
GREM1




202859_x_at
IL8




211959_at
IGFBP5



3
223122_s_at
SFRP2




212353_at
SULF1




219087_at
ASPN




201438_at
COL6A3




226237_at
COL8A1




225664_at
COL12A1




221730_at
COL5A2




207173_x_at
CDH11




203083_at
THBS2




203477_at
COL15A1




37892_at
COL11A1




202917_s_at
S100A8




226930_at
FNDC1




204051_s_at
SFRP4




210511_s_at
INHBA




209156_s_at
COL6A2




224694_at
ANTXR1




201141_at
GPNMB




213905_x_at
BGN




205547_s_at
TAGLN










According to this embodiment, there is therefore provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:
      • 210107_at; and/or
    • (ii) CLCA1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another embodiment, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
203240_at
219955_at
242601_at



204607_at
232481_s_at
227725_at



223969_s_at
228232_s_at; and/or



(ii)
FCGBP
L1TD1
LOC253012



HMGCS2
SLITRK6
ST6GALNAC1



RETNLB
VSIG2










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Still more preferably, said biological sample is a tissue sample.


In another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
202404_s_at
210809_s_at
227140_at



225681_at
209875_s_at
204475_at



212464_s_at;
and/or



(ii)
COL1A2
FN1
SPP1



CTHRC1
POSTN
MMP1










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In yet another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
200665_s_at
218468_s_at
211959_at



201744_s_at
202859_x_at; and/or



(ii)
SPARC
GREM1
IGFBP5



LUM
IL8










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In still yet another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
223122_s_at
207173_x_at
210511_s_at



212353_at
203083_at
209156_s_at



219087_at
203477_at
224694_at



201438_at
37892_at
201141_at



226237_at
202917_s_at
213905_x_at



225664_at
226930_at
205547_s_at



221730_at
204051_s_at;_
and/or


(ii)
SFRP2
CDH11
INHBA



SULF1
THBS2
COL6A2



ASPN
COL15A1
ANTXR1



COL6A3
COL11A1
GPNMB



COL8A1
S100A8
BGN



COL12A1
FNDC1
TAGLN



COL5A2
SFRP4










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Even more preferably, said biological sample is a tissue sample.


In still another related aspect it has been determined that a subset of the markers of this aspect of the present invention are useful as qualitative markers of neoplastic tissue characterisation in that these markers, if detectable above background levels in neoplastic tissue are indicative of either adenoma or cancerous tissue.


According to this aspect, the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:

















(i)
235976_at
236894_at; and/or


(ii)
SLITRK6
L1TD1










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:














the gene, genes or transcripts detected by Affymetrix probeset IDs:


















(i)
202311_s_at
209396_s_at
226237_at



204320_at
215646_s_at
227140_at



204475_at
37892_at
229802_at



209395_at; and/or




(ii)
COL1A1
VCAN
CHI3L1



MMP1
COL8A1
COL11A1










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background neoplastic cell levels is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Still more preferably, said biological sample is a tissue sample.


In a most preferred embodiment, the methods of the present invention are preferably directed to screening for proteins encoded by the markers of the present invention.


Although the preferred method is to detect the expression products of the neoplastic markers for the purpose of diagnosing neoplasia development or predisposition thereto, the detection of converse changes in the levels of said markers may be desired under certain circumstances, for example, to monitor the effectiveness of therapeutic or prophylactic treatment directed to modulating a neoplastic condition, such as adenoma or adenocarcinoma development. For example, where elevated levels of the subject markers indicate that an individual has developed a condition characterised by adenoma or adenocarcinoma development, for example, screening for a decrease in the levels of these markers subsequently to the onset of a therapeutic regime may be utilised to indicate reversal or other form of improvement of the subject individual's condition.


The method of the present invention is therefore useful as a one-time test or as an on-going monitor of those individuals thought to be at risk of neoplasia development or as a monitor of the effectiveness of therapeutic or prophylactic treatment regimes directed to inhibiting or otherwise slowing neoplasia development. In these situations, mapping the modulation of neoplastic marker expression levels in any one or more classes of biological samples is a valuable indicator of the status of an individual or the effectiveness of a therapeutic or prophylactic regime which is currently in use. Accordingly, the method of the present invention should be understood to extend to monitoring for increases or decreases in marker expression levels in an individual relative to their normal level (as hereinbefore defined), background control levels, cancer levels, adenoma levels or relative to one or more earlier marker expression levels determined from a biological sample of said individual.


Means of testing for the subject expressed neoplasm markers in a biological sample can be achieved by any suitable method, which would be well known to the person of skill in the art, such as but not limited to:


(i) In vivo detection.

    • Molecular Imaging may be used following administration of imaging probes or reagents capable of disclosing altered expression of the markers in the intestinal tissues.
    • Molecular imaging (Moore et al., BBA, 1402:239-249, 1988; Weissleder et al., Nature Medicine 6:351-355, 2000) is the in vivo imaging of molecular expression that correlates with the macro-features currently visualized using “classical” diagnostic imaging techniques such as X-Ray, computed tomography (CT), MRI, Positron Emission Tomography (PET) or endoscopy.


(ii) Detection of up-regulation of RNA expression in the cells by Fluorescent In Situ Hybridization (FISH), or in extracts from the cells by technologies such as Quantitative Reverse Transcriptase Polymerase Chain Reaction (QRTPCR) or Flow cytometric qualification of competitive RT-PCR products (Wedemeyer et al., Clinical Chemistry 48:9 1398-1405, 2002).


(iii) Assessment of expression profiles of RNA, for example by array technologies (Alon et al., Proc. Natl. Acad. Sci. USA: 96, 6745-6750, June 1999).

    • A “microarray” is a linear or multi-dimensional array of preferably discrete regions, each having a defined area, formed on the surface of a solid support. The density of the discrete regions on a microarray is determined by the total numbers of target polynucleotides to be detected on the surface of a single solid phase support. As used herein, a DNA microarray is an array of oligonucleotide probes placed onto a chip or other surfaces used to detect complementary oligonucleotides from a complex nucleic acid mixture. Since the position of each particular group of probes in the array is known, the identities of the target polynucleotides can be determined based on their binding to a particular position in the microarray.
    • Recent developments in DNA microarray technology make it possible to conduct a large scale assay of a plurality of target nucleic acid molecules on a single solid phase support. U.S. Pat. No. 5,837,832 (Chee et al.) and related patent applications describe immobilizing an array of oligonucleotide probes for hybridization and detection of specific nucleic acid sequences in a sample. Target polynucleotides of interest isolated from a tissue of interest are hybridized to the DNA chip and the specific sequences detected based on the target polynucleotides' preference and degree of hybridization at discrete probe locations. One important use of arrays is in the analysis of differential gene expression, where the profile of expression of genes in different cells or tissues, often a tissue of interest and a control tissue, is compared and any differences in gene expression among the respective tissues are identified. Such information is useful for the identification of the types of genes expressed in a particular tissue type and diagnosis of conditions based on the expression profile.
    • In one example, RNA from the sample of interest is subjected to reverse transcription to obtain labelled cDNA. See U.S. Pat. No. 6,410,229 (Lockhart et al.) The cDNA is then hybridized to oligonucleotides or cDNAs of known sequence arrayed on a chip or other surface in a known order. In another example, the RNA is isolated from a biological sample and hybridised to a chip on which are anchored cDNA probes. The location of the oligonucleotide to which the labelled cDNA hybridizes provides sequence information on the cDNA, while the amount of labelled hybridized RNA or cDNA provides an estimate of the relative representation of the RNA or cDNA of interest. See Schena, et al. Science 270:467-470 (1995). For example, use of a cDNA microarray to analyze gene expression patterns in human cancer is described by DeRisi, et al. (Nature Genetics 14:457-460 (1996)).
    • In a preferred embodiment, nucleic acid probes corresponding to the subject nucleic acids are made. The nucleic acid probes attached to the microarray are designed to be substantially complementary to the nucleic acids of the biological sample such that specific hybridization of the target sequence and the probes of the present invention occurs. This complementarity need not be perfect, in that there may be any number of base pair mismatches that will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. It is expected that the overall homology of the genes at the nucleotide level probably will be about 40% or greater, probably about 60% or greater, and even more probably about 80% or greater; and in addition that there will be corresponding contiguous sequences of about 8-12 nucleotides or longer. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by “substantially complementary” herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions.
    • A nucleic acid probe is generally single stranded but can be partly single and partly double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the oligonucleotide probes range from about 6, 8, 10, 12, 15, 20, 30 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 15 to about 40 bases being particularly preferred. That is, generally entire genes are rarely used as probes. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases. The probes are sufficiently specific to hybridize to a complementary template sequence under conditions known by those of skill in the art. The number of mismatches between the probe's sequences and their complementary template (target) sequences to which they hybridize during hybridization generally do not exceed 15%, usually do not exceed 10% and preferably do not exceed 5%, as-determined by BLAST (default settings).
    • Oligonucleotide probes can include the naturally-occurring heterocyclic bases normally found in nucleic acids (uracil, cytosine, thymine, adenine and guanine), as well as modified bases and base analogues. Any modified base or base analogue compatible with hybridization of the probe to a target sequence is useful in the practice of the invention. The sugar or glycoside portion of the probe can comprise deoxyribose, ribose, and/or modified forms of these sugars, such as, for example, 2′-O-alkyl ribose. In a preferred embodiment, the sugar moiety is 2′-deoxyribose; however, any sugar moiety that is compatible with the ability of the probe to hybridize to a target sequence can be used.
    • In one embodiment, the nucleoside units of the probe are linked by a phosphodiester backbone, as is well known in the art. In additional embodiments, internucleotide linkages can include any linkage known to one of skill in the art that is compatible with specific hybridization of the probe including, but not limited to phosphorothioate, methylphosphonate, sulfamate (e.g., U.S. Pat. No. 5,470,967) and polyamide (i.e., peptide nucleic acids). Peptide nucleic acids are described in Nielsen et al. (1991) Science 254: 1497-1500, U.S. Pat. No. 5,714,331, and Nielsen (1999) Curr. Opin. Biotechnol. 10:71-75.
    • In certain embodiments, the probe can be a chimeric molecule; i.e., can comprise more than one type of base or sugar subunit, and/or the linkages can be of more than one type within the same primer. The probe can comprise a moiety to facilitate hybridization to its target sequence, as are known in the art, for example, intercalators and/or minor groove binders. Variations of the bases, sugars, and internucleoside backbone, as well as the presence of any pendant group on the probe, will be compatible with the ability of the probe to bind, in a sequence-specific fashion, with its target sequence. A large number of structural modifications, are possible within these bounds. Advantageously, the probes according to the present invention may have structural characteristics such that they allow the signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al. (Nucleic Acids Symp. Ser., 24:197-200 (1991)) or in the European Patent No. EP-0225,807. Moreover, synthetic methods for preparing the various heterocyclic bases, sugars, nucleosides and nucleotides that form the probe, and preparation of oligonucleotides of specific predetermined sequence, are well-developed and known in the art. A preferred method for oligonucleotide synthesis incorporates the teaching of U.S. Pat. No. 5,419,966.
    • Multiple probes may be designed for a particular target nucleic acid to account for polymorphism and/or secondary structure in the target nucleic acid, redundancy of data and the like. In some embodiments, where more than one probe per sequence is used, either overlapping probes or probes to different sections of a single target gene are used. That is, two, three, four or more probes, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e. have some sequence in common), or are specific for distinct sequences of a gene. When multiple target polynucleotides are to be detected according to the present invention, each probe or probe group corresponding to a particular target polynucleotide is situated in a discrete area of the microarray.
    • Probes may be in solution, such as in wells or on the surface of a micro-array, or attached to a solid support. Examples of solid support materials that can be used include a plastic, a ceramic, a metal, a resin, a gel and a membrane. Useful types of solid supports include plates, beads, magnetic material, microbeads, hybridization chips, membranes, crystals, ceramics and self-assembling monolayers. One example comprises a two-dimensional or three-dimensional matrix, such as a gel or hybridization chip with multiple probe binding sites (Pevzner et al., J. Biomol. Struc. & Dyn. 9:399-410, 1991; Maskos and Southern, Nuc. Acids Res. 20:1679-84, 1992). Hybridization chips can be used to construct very large probe arrays that are subsequently hybridized with a target nucleic acid. Analysis of the hybridization pattern of the chip can assist in the identification of the target nucleotide sequence. Patterns can be manually or computer analyzed, but it is clear that positional sequencing by hybridization lends itself to computer analysis and automation. In another example, one may use an Affymetrix chip on a solid phase structural support in combination with a fluorescent bead based approach. In yet another example, one may utilise a cDNA microarray. In this regard, the oligonucleotides described by Lockkart et al. (i.e. Affymetrix synthesis probes in situ on the solid phase) are particularly preferred, that is, photolithography.
    • As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By “immobilized” herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal. The binding can be covalent or non-covalent. By “non-covalent binding” and grammatical equivalents herein is meant one or more of either electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as streptavidin, to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By “covalent binding” and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.
    • Nucleic acid probes may be attached to the solid support by covalent binding such as by conjugation with a coupling agent or by covalent or non-covalent binding such as electrostatic interactions, hydrogen bonds or antibody-antigen coupling, or by combinations thereof. Typical coupling agents include biotin/avidin, biotin/streptavidin, Staphylococcus aureus protein A/IgG antibody Fc fragment, and streptavidin/protein A chimeras (T. Sano and C. R. Cantor, Bio/Technology 9:1378-81 (1991)), or derivatives or combinations of these agents. Nucleic acids may be attached to the solid support by a photocleavable bond, an electrostatic bond, a disulfide bond, a peptide bond, a diester bond or a combination of these sorts of bonds. The array may also be attached to the solid support by a selectively releasable bond such as 4,4′-dimethoxytrityl or its derivative. Derivatives which have been found to be useful include 3 or 4 [bis-(4-methoxyphenyl)]-methyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-methyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-hydroxymethyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-chloromethyl-benzoic acid, and salts of these acids.
    • In general, the probes are attached to the microarray in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the microarray, or can be directly synthesized on the microarray.
    • The microarray comprises a suitable solid substrate. By “substrate” or “solid support” or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. The solid phase support of the present invention can be of any solid materials and structures suitable for supporting nucleotide hybridization and synthesis. Preferably, the solid phase support comprises at least one substantially rigid surface on which the primers can be immobilized and the reverse transcriptase reaction performed. The substrates with which the polynucleotide microarray elements are stably associated and may be fabricated from a variety of materials, including plastics, ceramics, metals, acrylamide, cellulose, nitrocellulose, glass, polystyrene, polyethylene vinyl acetate, polypropylene, polymethacrylate, polyethylene, polyethylene oxide, polysilicates, polycarbonates, Teflon, fluorocarbons, nylon, silicon rubber, polyanhydrides, polyglycolic acid, polylactic acid, polyorthoesters, polypropylfumerate, collagen, glycosaminoglycans, and polyamino acids. Substrates may be two-dimensional or three-dimensional in form, such as gels, membranes, thin films, glasses, plates, cylinders, beads, magnetic beads, optical fibers, woven fibers, etc. A preferred form of array is a three-dimensional array. A preferred three-dimensional array is a collection of tagged beads. Each tagged bead has different primers attached to it. Tags are detectable by signalling means such as color (Luminex, Illumina) and electromagnetic field (Pharmaseq) and signals on tagged beads can even be remotely detected (e.g., using optical fibers). The size of the solid support can be any of the standard microarray sizes, useful for DNA microarray technology, and the size may be tailored to fit the particular machine being used to conduct a reaction of the invention. In general, the substrates allow optical detection and do not appreciably fluoresce.
    • In one embodiment, the surface of the microarray and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the microarray is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo-or hetero-bifunctional linkers as are well known. In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.
    • In this embodiment, the oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5′ or 3′ terminus may be attached to the solid support, or attachment may be via an internal nucleoside. In an additional embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.
    • The arrays may be produced according to any convenient methodology, such as preforming the polynucleotide microarray elements and then stably associating them with the surface. Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. A number of different array configurations and methods for their production are known to those of skill in the art and disclosed in WO 95/25116 and WO 95/35505 (photolithographic techniques), U.S. Pat. No. 5,445,934 (in situ synthesis by photolithography), U.S. Pat. No. 5,384,261 (in situ synthesis by mechanically directed flow paths); and U.S. Pat. No. 5,700,637 (synthesis by spotting, printing or coupling); the disclosure of which are herein incorporated in their entirety by reference. Another method for coupling DNA to beads uses specific ligands attached to the end of the DNA to link to ligand-binding molecules attached to a bead. Possible ligand-binding partner pairs include biotin-avidin/streptavidin, or various antibody/antigen pairs such as digoxygenin-antidigoxygenin antibody (Smith et al., Science 258:1122-1126 (1992)). Covalent chemical attachment of DNA to the support can be accomplished by using standard coupling agents to link the 5′-phosphate on the DNA to coated microspheres through a phosphoamidate bond. Methods for immobilization of oligonucleotides to solid-state substrates are well established. See Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994). A preferred method of attaching oligonucleotides to solid-state substrates is described by Guo et al., Nucleic Acids Res. 22:5456-5465 (1994). Immobilization can be accomplished either by in situ DNA synthesis (Maskos and Southern, supra) or by covalent attachment of chemically synthesized oligonucleotides (Guo et al., supra) in combination with robotic arraying technologies.
    • In addition to the solid-phase technology represented by microarray arrays, gene expression can also be quantified using liquid-phase assays. One such system is kinetic polymerase chain reaction (PCR). Kinetic PCR allows for the simultaneous amplification and quantification of specific nucleic acid sequences. The specificity is derived from synthetic oligonucleotide primers designed to preferentially adhere to single-stranded nucleic acid sequences bracketing the target site. This pair of oligonucleotide primers form specific, non-covalently bound complexes on each strand of the target sequence. These complexes facilitate in vitro transcription of double-stranded DNA in opposite orientations. Temperature cycling of the reaction mixture creates a continuous cycle of primer binding, transcription, and re-melting of the nucleic acid to individual strands. The result is an exponential increase of the target dsDNA product. This product can be quantified in real time either through the use of an intercalating dye or a sequence specific probe. SYBR(r) Green 1, is an example of an intercalating dye, that preferentially binds to dsDNA resulting in a concomitant increase in the fluorescent signal. Sequence specific probes, such as used with TaqMan technology, consist of a fluorochrome and a quenching molecule covalently bound to opposite ends of an oligonucleotide. The probe is designed to selectively bind the target DNA sequence between the two primers. When the DNA strands are synthesized during the PCR reaction, the fluorochrome is cleaved from the probe by the exonuclease activity of the polymerase resulting in signal dequenching. The probe signalling method can be more specific than the intercalating dye method, but in each case, signal strength is proportional to the dsDNA product produced. Each type of quantification method can be used in multi-well liquid phase arrays with each well representing primers and/or probes specific to nucleic acid sequences of interest. When used with messenger RNA preparations of tissues or cell lines, an array of probe/primer reactions can simultaneously quantify the expression of multiple gene products of interest. See Germer et al., Genome Res. 10:258-266 (2000); Heid et al., Genome Res. 6:986-994 (1996).


(iv) Measurement of altered neoplastic marker protein levels in cell extracts, for example by immunoassay.

    • Testing for proteinaceous neoplastic marker expression product in a biological sample can be performed by any one of a number of suitable methods which are well known to those skilled in the art. Examples of suitable methods include, but are not limited to, antibody screening of tissue sections, biopsy specimens or bodily fluid samples.
    • To the extent that antibody based methods of diagnosis are used, the presence of the marker protein may be determined in a number of ways such as by Western blotting, ELISA or flow cytometry procedures. These, of course, include both single-site and two-site or “sandwich” assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.
    • Sandwich assays are among the most useful and commonly used assays. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent.
    • In the typical forward sandwich assay, a first antibody having specificity for the marker or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking, covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes) and under suitable conditions (e.g. 25° C.) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the antigen. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the antigen.
    • An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.
    • By “reporter molecule” as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.
    • In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of antigen which was present in the sample. “Reporter molecule” also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.
    • Alternately, fluorescent compounds, such as fluorecein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.


(v) Without limiting the present invention to any one theory or mode of action, during development gene expression is regulated by processes that alter the availability of genes for expression in different cell lineages without any alteration in gene sequence, and these states can be inherited through a cell division—a process called epigenetic inheritance. Epigenetic inheritance is determined by a combination of DNA methylation (modification of cytosine to give 5-methyl cytosine, 5meC) and by modifications of the histone chromosomal proteins that package DNA. Thus methylation of DNA at CpG sites and modifications such as deacetylation of histone H3 on lysine 9, and methylation on lysine 9 or 27 are associated with inactive chromatin, while the converse state of a lack of DNA methylation, acetylation of lysine 9 of histone H3 is associated with open chromatin and active gene expression. In cancer, this epigenetic regulation of gene expression is frequently found to be disrupted (Esteller & Herman, 2000; Jones & Baylin, 2002). Genes such as tumour suppressor or metastasis suppressor genes are often found to be silenced by DNA methylation, while other genes may be hypomethylated and inappropriately expressed. Thus, among genes that elevated or inappropriate expression in cancer, this in some instances is characterised by a loss of methylation of the promoter or regulatory region of the gene.

    • A variety of methods are available for detection of aberrantly methylated DNA of a specific gene, even in the presence of a large excess of normal DNA (Clark 2007). Thus, elevated expression of certain genes may be detected through detection of the presence of hypomethylated sequences in tissue, bodily fluid or other patient samples.
    • Epigenetic alterations and chromatin changes in cancer are also evident in the altered association of modified histones with specific genes(Esteller, 2007); for example activated genes are often found associated with histone H3 that is acetylated on lysine 9 and methylated on lysine 4. The use of antibodies targeted to altered histones allows for the isolation of DNA associated with particular chromatin states and has potential use in cancer diagnosis.


(vi) Determining altered expression of protein neoplastic markers on the cell surface, for example by immunohistochemistry.


(vii) Determining altered protein expression based on any suitable functional test, enzymatic test or immunological test in addition to those detailed in points (iv) and (v) above.


A person of ordinary skill in the art could determine, as a matter of routine procedure, the appropriateness of applying a given method to a particular type of biological sample.


Without limiting the present invention in any way, and as detailed above, gene expression levels can be measured by a variety of methods known in the art. For example, gene transcription or translation products can be measured. Gene transcription products, i.e., RNA, can be measured, for example, by hybridization assays, run-off assays, Northern blots, or other methods known in the art.


Hybridization assays generally involve the use of oligonucleotide probes that hybridize to the single-stranded RNA transcription products. Thus, the oligonucleotide probes are complementary to the transcribed RNA expression product. Typically, a sequence-specific probe can be directed to hybridize to RNA or cDNA. A “nucleic acid probe”, as used herein, can be a DNA probe or an RNA probe that hybridizes to a complementary sequence. One of skill in the art would know how to design such a probe such that sequence specific hybridization will occur. One of skill in the art will further know how to quantify the amount of sequence specific hybridization as a measure of the amount of gene expression for the gene was transcribed to produce the specific RNA.


The hybridization sample is maintained under conditions that are sufficient to allow specific hybridization of the nucleic acid probe to a specific gene expression product. “Specific hybridization”, as used herein, indicates near exact hybridization (e.g., with few if any mismatches). Specific hybridization can be performed under high stringency conditions or moderate stringency conditions. In one embodiment, the hybridization conditions for specific hybridization are high stringency. For example, certain high stringency conditions can be used to distinguish perfectly complementary nucleic acids from those of less complementarity. “High stringency conditions”, “moderate stringency conditions” and “low stringency conditions” for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 and pages 6.3.1-6.3.6 in Current Protocols in Molecular Biology (Ausubel, F. et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998), the entire teachings of which are incorporated by reference herein). The exact conditions that determine the stringency of hybridization depend not only on ionic strength (e.g., 0.2.times.SSC, 0.1.times.SSC), temperature (e.g., room temperature, 42° C., 68° C.) and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS, but also on factors such as the length of the nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences. Thus, equivalent conditions can be determined by varying one or more of these parameters while maintaining a similar degree of identity or similarity between the two nucleic acid molecules. Typically, conditions are used such that sequences at least about 60%, at least about 70%, at least about 80%, at least about 90% or at least about 95% or more identical to each other remain hybridized to one another. By varying hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, conditions that will allow a given sequence to hybridize (e.g., selectively) with the most complementary sequences in the sample can be determined.


Exemplary conditions that describe the determination of wash conditions for moderate or low stringency conditions are described in Kraus, M. and Aaronson, S., 1991. Methods Enzymol., 200:546-556; and in, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, (1998). Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each ° C. by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum mismatch percentage among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in Tm of about 17° C. Using these guidelines, the wash temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought. For example, a low stringency wash can comprise washing in a solution containing 0.2.times.SSC/0.1% SDS for 10 minutes at room temperature; a moderate stringency wash can comprise washing in a pre-warmed solution (42° C.) solution containing 0.2.times.SSC/0.1% SDS for 15 minutes at 42° C.; and a high stringency wash can comprise washing in pre-warmed (68° C.) solution containing 0.1.times.SSC/0.1% SDS for 15 minutes at 68° C. Furthermore, washes can be performed repeatedly or sequentially to obtain a desired result as known in the art. Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of complementarity between the target nucleic acid molecule and the primer or probe used (e.g., the sequence to be hybridized).


A related aspect of the present invention provides a molecular array, which array comprises a plurality of:

    • (i) nucleic acid molecules comprising a nucleotide sequence corresponding to any one or more of the neoplastic marker genes hereinbefore described or a sequence exhibiting at least 80% identity thereto or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (ii) nucleic acid molecules comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iii) nucleic acid probes or oligonucleotides comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iv) probes capable of binding to any one or more of the proteins encoded by the nucleic acid molecules of (i) or a derivative, fragment or, homologue thereof


      wherein the level of expression of said marker genes of (i) or proteins of (iv) is indicative of the neoplastic state of a cell or cellular subpopulation derived from the large intestine.


Preferably, said percent identity is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%.


Low stringency includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions. In general, washing is carried out at Tm=69.3 +0.41 (G+C) % [19]=−12° C. However, the Tm of a duplex DNA decreases by 1° C. with every increase of 1% in the number of mismatched based pairs (Bonner et al (1973) J. Mol. Biol. 81:123).


Preferably, the subject probes are designed to bind to the nucleic acid or protein to which they are directed with a level of specificity which minimises the incidence of non-specific reactivity. However, it would be appreciated that it may not be possible to eliminate all potential cross-reactivity or non-specific reactivity, this being an inherent limitation of any probe based system.


In terms of the probes which are used to detect the subject proteins, they may take any suitable form including antibodies and aptamers.


A library or array of nucleic acid or protein probes provides rich and highly valuable information. Further, two or more arrays or profiles (information obtained from use of an array) of such sequences are useful tools for comparing a test set of results with a reference, such as another sample or stored calibrator. In using an array, individual probes typically are immobilized at separate locations and allowed to react for binding reactions. Primers associated with assembled sets of markers are useful for either preparing libraries of sequences or directly detecting markers from other biological samples.


A library (or array, when referring to physically separated nucleic acids corresponding to at least some sequences in a library) of gene markers exhibits highly desirable properties. These properties are associated with specific conditions, and may be characterized as regulatory profiles. A profile, as termed here refers to a set of members that provides diagnostic information of the tissue from which the markers were originally derived. A profile in many instances comprises a series of spots on an array made from deposited sequences.


A characteristic patient profile is generally prepared by use of an array. An array profile may be compared with one or more other array profiles or other reference profiles. The comparative results can provide rich information pertaining to disease states, developmental state, receptiveness to therapy and other information about the patient.


Another aspect of the present invention provides a diagnostic kit for assaying biological samples comprising an agent for detecting one or more neoplastic markers and reagents useful for facilitating the detection by said agent. Further means may also be included, for example, to receive a biological sample. The agent may be any suitable detecting molecule.


The present invention is further described by the following non-limiting examples:


EXAMPLE 1

Methods and Materials


Affymetrix GeneChip Data


Gene expression profiling data and accompanying clinical data was purchased from GeneLogic Inc (Gaithersburg, Md. USA). For each tissue analyzed, oligonucleotide microarray data for 44,928 probesets (Affymetrix HGU133A & HGU133B, combined), experimental and clinical descriptors, and digitally archived microscopy images of histological preparations were received. A quality control analysis was performed to remove arrays not meeting essential quality control measures as defined by the manufacturer.


Transcript expression levels were calculated by both Microarray Suite (MAS) 5.0 (Affymetrix) and the Robust Multichip Average (RMA) normalization techniques (Affymetrix. GeneChip expression data analysis fundamentals. Affymetrix, Santa Clara, Calif. USA, 2001; Hubbell et al. Bioinformatics, 18:1585-1592, 2002; Irizarry et al. Nucleic Acid Research, 31, 2003)MAS normalized data was used for performing standard quality control routines and the final data set was normalized with RMA for all subsequent analyses.


Univariate Differential Expression


Differentially expressed gene transcripts were identified using a moderated t-test implemented in the limma library downloaded from the Bioconductor repository for R. (G. K. Smyth. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3, 2004; G K Smyth. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, N.Y., 2005). Significance estimates (p-values) were corrected to adjust for multiple hypothesis testing using the Bonferonni correction.


Tissue Specific Expression Patterns


To construct a filter for hypothetically ‘turned on’ gene expression the mean expression level for all 44,928 probesets across the full range of 454 tissues was first estimated. To estimate an expression on/off threshold, the 44,928 mean values were ranked and the expression value equivalent to the 30th percentile across the dataset calculated. This arbitrary threshold was chosen because it was theorized that the majority of transcripts (and presumably more than 30%) in a given specimen should be transcriptionally silenced. Thus this threshold represents a conservative upper bound for what is estimated as non-specific, or background, signal.


Gene Symbol Annotations


To map Affymetrix probeset names to official gene symbols the annotation metadata available from Bioconductor was used. hgu133plus2 library version 1.16.0, which was assembled using Entrez Gene data downloaded on 15 Mar. 2007, was used.


Estimates of Performance Characteristics


Diagnostic utility for each table of markers shown herein was estimated including: sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratio positive, likelihood ratio negative. These estimates were calculated in the same data used to discover the markers and will therefore potentially overestimate the performance characteristics in future tissue samples. To improve the generalisabilty of the estimates a modified jackknife resampling technique was used to calculate a less biased value for each characteristic.


Results


A range of univariate statistical tests were applied on Affymetrix oligonucleotide microarray data to reveal human genes that could be used to discriminate colorectal neoplastic tissues from non-neoplastic tissues. There were further identified a number of gene transcripts that appear to be useful for differentiating colorectal adenomas from colorectal carcinoma. Also identified were a subset of these transcripts that may have particular diagnostic utility because due to the protein products being either secreted or displayed on the cell surface of epithelial cells. Finally, there were identified a further subset of transcripts expressed specifically in neoplastic tissues and at low- or near-background levels in non-neoplastic tissues.


Genes Differentially Expressed in Neoplastic Tissues


From a total GeneChip set of 44,928 probesets it was determined that over 11,000 probesets were differentially expressed by moderated t-test using the limma package in BioConductor (G. K. Smyth, 2004 supra) employing conservative (Bonferroni) multiple test correction. When this list was further filtered to include only those probesets demonstrating a 2-fold or greater mean expression change between the neoplastic and non-neoplastic tissues, 206 probesets were found to be expressed higher in neoplasias relative to normals.


These 205 probesets were annotated using the most recent metadata and annotation packages available for the chips. The 205 overexpressed probesets were mapped to 174 gene symbols.














Δ-expression
ProbeSet ID
Gene Symbol Maps







UP
205
157









Hypothetical Markers Specific for Colorectal Neoplasia


While differential gene expression patterns are useful for diagnostic purposes, this project also seeks to identify diagnostic proteins shed into the lumen of the gut by neoplastic colorectal epithelia. To discover candidate proteins the list of differentially expressed transcripts were filtered with a selection criteria aimed at identifying markers specifically expressed in colorectal neoplasia tissues. This filter criteria is based on a theoretical assumption that most genes on the GeneChip will be turned ‘off’ and that any microarray signals for such ‘off’ transcripts will reflect technical assay background and non-specific oligonucleotide binding. Accordingly, to select genes specifically expressed in neoplastic tumours (i.e. ‘on’) the non-neoplastic signals were compared with a hypothetical background signal threshold from across all genes on the chip. By design, all transcripts in the candidate pool from which the ‘on’ transcripts are chosen are at least two fold overexpressed in the diseased tissues. Combined, it is hypothesized that these criteria yield the subset of differentially expressed genes that are specifically expressed in neoplasia. The expression profile for a representative ‘on’ transcript is shown in FIG. 1.


Genes Differentially Expressed Between Adenomas and Cancer Tissues


There were 33 transcripts observed that were differentially expressed at least two-fold higher in adenoma tissues relative to cancer tissues. In particular, there were identified several transcripts that exhibit an expression pattern specific for adenomas, including SLITRK6 and L1TD1, shown in FIG. 2.


Further, there were also identified cancer specific transcripts. The expression profile of one such transcript, COL11A1 is shown in FIG. 3.


EXAMPLE 2
Probesets Elevated in Neoplasia

Differential expression analysis was applied to Affymetrix gene chip data measuring RNA concentration in 454 colorectal tissues including 161 adenocarcinoma specimens, 29 adenoma specimens, 42 colitis specimens and 222 non-diseased tissues. Using conservative corrections for multiple hypothesis testing, it was determined that over 25% of the 44,928 probesets measured in each tissue experiment were differentially expressed between the 190 neoplasia specimens and 264 non-neoplasia controls. To identify robust biomarkers for colorectal neoplasia the list of putative probeset biomarkers were further filtered to include only those probesets shown to be expressed at least 2-fold higher in neoplastic vs. non-neoplastic tissues.


205 probesets hybridising to approximately 157 putative genes were observed to be expressed at a statistically significant higher level in neoplastic tissues relative to non-neoplastic controls.


Validation/Hypothesis Testing


To validate these discovery results the hybridisation of 199 candidate probesets were measured against RNA extracts from 68 clinical specimens comprising 19 adenomas, 19 adenocarcinomas, and 30 non-diseased controls using a custom-designed ‘Adenoma Gene Chip’. Six (6) probesets were not tested as they were not included on the custom design. It was confirmed that 186/199 (88%) of the target probesets or probesets which also hybridise to the target locus were likewise differentially expressed (P<0.05) in these independently-derived tissues. The results of testing these probesets in 68 independently collected clinical specimens is shown in Table 1.


We further tested the 142 of the 157 unique gene loci to which the 205 probesets are understood to hybridise. We note the remaining 15 gene symbols were not represented in the validation data. We observed that 133 of 142 gene symbols were represented in the validation data by at least one differentially expressed probeset and many symbols included multiple probesets against regions across the putative locus. A complete list of probesets that bind to target loci is shown in Table 2.


Conclusion


The candidate probesets shown in Tables 1 and 2 are differentially expressed in neoplastic colorectal tissues compared to non-neoplastic controls.


EXAMPLE 3
Probesets Demonstrating a Neoplasia-Specific Profile

During analysis of the data, a novel expression profile was observed between neoplastic and non-neoplastic phenotypes. It was hypothesized that a subset of quantitatively differentially expressed probesets are furthermore qualitatively differentially expressed. Such probesets show evidence of a neoplasia-specific gene expression profile, i.e. these probesets appear to be expressed above background levels in neoplastic tissues only. This observation and the resulting hypothesis are based on two principles:

    • 1. That the majority of human transcripts that are present on a genome-wide GeneChip (e.g. U133) will not likely be expressed in the colorectal mucosa; and
    • 2. That microarray binding intensity for such ‘off’ probesets to labelled cRNA will reflect technical assay background, i.e. non-specific oligonucleotide binding.


To generate a list of neoplasia specific probesets the non-neoplastic intensity of differentially expressed probesets was compared with a hypothetical background signal threshold from across all probesets on the chip. Bydesign, all probesets in the candidate pool from which the ‘on’ transcripts are chosen are at least two fold over-expressed in the diseased tissues. Combined, these criteria yield the subset of differentially expressed transcript species that are specifically expressed in neoplasia.


Validation/Hypothesis Testing


The custom gene chip design precludes testing the hypothetically neoplasia-specific probesets using the same principles as used for discovery. In particular, the custom gene chip (by design) does not contain a large pool of probesets anticipated to hybridise to hypothetically ‘off’/'non-transcribed' gene transcripts. This is because the custom gene chip design is biased toward differentially expressed transcripts in colorectal neoplastic tissues.


The usual differential expression testing (limma) was therefore to these candidate probesets for neoplasia-specific transcripts. Of the 33 probesets on the custom gene chip, 32 probesets (or probesets which bind to the same locus) were differentially expressed between the 38 neoplastic tissues (adenoma & cancer) and non-neoplastic controls. The results of these validation experiments is shown in Table 3.


All probesets which are known to hybridise to the gene loci to which the 33 probesets claimed herein were tested. Of the 32 putative gene loci targeted by the probesets, 29 were present in the validation data. Twenty-eight (28) of these 29 gene symbols demonstrated at least one hybridising probeset which was differentially expressed in the neoplastic tissues. Results for these experiments, including all probesets that bind to each target locus in a differentially expressed manner are shown in Table 4.


EXAMPLE 4
Probesets Useful for Characterizing Neoplastic Tissues

Differential expression analysis was applied to Affymetrix gene chip data measuring RNA concentration in neoplastic tissues including 161 adenocarcinoma specimens and 29 adenoma specimens. It was observed that 43 probesets hybridizing to approximately 33 putative gene symbols were expressed higher (P<0.05) in adenoma tissues relative to cancer tissues. Conversely, 145 probesets (104 gene symbols) were identified to be expressed higher in cancer relative to adenomas.


Validation/Hypothesis Testing 188 (43+145) of these probesets were then measured in a set of independent clinical specimens including 19 adenoma tissues and 19 cancer tissues. It was confirmed that 158 (30+128) of the target probesets (or probesets against the same gene locus) were likewise differentially expressed (P<0.05) in these independently-derived tissues. Probesets elevated in adenoma and cancers relative to each other are shown in Table 5 and Table 6 respectively.


It was further observed that 137 (33+104) gene loci are diagnostically useful for discriminating colorectal adenomas and cancers relative to each phenotype. The validation data included probesets designed to hybridise to 128 of these candidate gene symbols. It was observed that 21 of the 31 genes elevated in adenomas relative to cancers were likewise differentially expressed by at least one probeset. Of the 97 gene symbols elevated in cancer relative to adenoma it was confirmed that 89 gene symbols demonstrated at least one probeset in the validation data to be likewise differentially expressed. The validation testing of the adenoma and cancer elevated gene loci is shown in Table 7 and Table 8, respectively.


Conclusion


It was concluded that the candidate probesets shown in FIXME are differentially expressed between adenomatous and adenocarcinoma tissues and thus useful for distinguishing these tissues. Gene transcripts that hybridise to these probesets are thus diagnostically informative in a clinical setting to classify such neoplastic tissues.


EXAMPLE 5
Materials and Methods for Examples 2 To 3

Gene expression profiling data measured in 454 colorectal tissue specimens including neoplastic, normal and non-neoplastic disease controls was purchased from GeneLogic Inc (Gaithersburg, Md. USA). For each tissue specimen an Affymetrix (Santa Clara, Calif. USA) oligonucleotide microarray data totalling 44,928 probesets (HGU133A & HGU133B, combined), experimental and clinical descriptors, and digitally archived microscopy images of histological preparations was received. Prior to applying discovery methods to these data extensive quality control methods were carried out, including statistical exploration, review of clinical records for consistency and histopathology audit of a random sample of arrays. Microarrays that did not meet acceptable quality criteria were removed from the analysis.


Hypothesis Testing


Candidate transcription biomarkers were tested using a custom oligonucleotide microarray of 25-mer oligonucleotide probesets designed to hybridise to candidate RNA transcripts identified during discovery. Differential expression hypotheses were tested using RNA extracts derived from independently collected clinical samples comprising 30 normal colorectal tissues, 19 colorectal adenoma tissues, and 19 colorectal adenocarcinoma tissues. Each RNA extract was confirmed to meet strict quality control criteria.


Colorectal Tissue Specimens


All tissues used for hypothesis testing were obtained from a tertiary referral hospital tissue bank in metropolitan Adelaide, Australia (Repatriation General Hospital and Flinders Medical Centre). Access to the tissue bank for this research was approved by the Research and Ethics Committee of the Repatriation General Hospital and the Ethics Committee of Flinders Medical Centre. Informed patient consent was received for each tissue studied.


Following surgical resection, specimens were placed in a sterile receptacle and collected from theatre. The time from operative resection to collection from theatre was variable but not more than 30 minutes. Samples, approximately 125 mm3 (5×5×5 mm) in size, were taken from the macroscopically normal tissue as far from pathology as possible, defined both by colonic region as well as by distance either proximal or distal to the pathology. Tissues were placed in cryovials, then immediately immersed in liquid nitrogen and stored at −150C until processing.


RNA extraction


RNA extractions were performed using Trizol(R)reagent (Invitrogen, Carlsbad, Calif., USA) as per manufacturer's instructions. Each sample was homogenised in 300 μL of Trizol reagent using a modified Dremel drill and sterilised disposable pestles. An additional 200 μL of Trizol reagent was added to the homogenate and samples were incubated at RT for 10 minutes. 100 μL of chloroform was then added, samples were shaken vortexed for 15 seconds, and incubated at RT for 3 further minutes. The aqueous phase containing target RNA was obtained by centrifugation at 12,000 rpm for 15 min, 40 C. RNA was then precipitated by incubating samples at RT for 10 min with 250 μL of isopropanol. Purified RNA precipitate was collected by centrifugation at 12,000 rpm for 10 minutes, 40 C. and supernatants were discarded. Pellets were then washed with 1 mL 75% ethanol, followed by vortexing and centrifugation at 7,500g for 8 min, 40 C. Finally, pellets were air-dried for 5 min and resuspended in 80 μL of RNase free water. To improve subsequent solubility samples were incubated at 55° C. for 10 min. RNA was quantified by measuring the optical density at A260/280 nm. RNA quality was assessed by electrophoresis on a 1.2% agarose formaldehyde gel.


Gene Chip Processing


To test hypotheses related to biomarker candidates for colorectal neoplasia RNA extracts were assayed using a custom GeneChip designed in collaboration with Affymetrix (Santa Clara, Calif. USA). These custom GeneChips were processed using the standard Affymetrix protocol developed for the HU Gene ST 1.0 array described in (Affy:WTAssay).


Statistical software and Data Processing


The R statistics environment R and BioConductor libraries (BioConductor, www.bioconductor.org) (BIOC) were used for most analyses. To map probeset IDs to gene symbol on the Custom GeneChip, hgu133plus2 library version 2.2.0, which was assembled using Entrez Gene data downloaded on Apr 18 12:30:55 2008 (BIOC) was used.


Hypothesis Testing of Differentially Expressed Biomarkers


To assess differential expression between tissue classes, the Student's t test for equal means between two samples or the robust variant provided by the limma library (Smyth)(limma) was used. The impact of false discovery due to multiple hypothesis testing was mitigated by applying a Bonferroni adjustment to P values in the discovery process (MHT:Bonf). For hypotheses testing the slightly less conservative multiple hypothesis testing correction of Benjamini & Hochberg, which aims to control the false discovery rate of solutions(MHT:BH) was applied.


Discovery of Tissue-Specific Gene Expression Patterns


Discovery methods using gene expression data often yield numerous candidates, many of which are not suitable for commercial products because they involve subtle gene expression differences that would be difficult to detect in laboratory practice. Pepe et al. note that the ‘ideal’ biomarker is detectable in tumor tissue but not detectable (at all) in non-tumour tissue (Pepe:biomarker:development.) To bias toward candidates that meet this criterion, an analysis method was developed that aims to enrich the candidates for biomarkers whose qualitative absence or presence measurement is diagnostic for the phenotype of interest. This method attempts to select candidates that show a prototypical ‘turned-on’ or ‘turned-off’ pattern relative to an estimate of the background/noise expression across the chip. Such RNA transcripts are more likely to correlate with downstream translated proteins with diagnostic potential or to predict upstream genomic changes (e.g. methylation status) that can be used diagnostically. This focus on qualitative rather than quantitative outcomes may simplify the product development process for such biomarkers.


The method is based on the assumption that the pool of extracted RNA species in any given tissue (e.g. colorectal mucosae) will specifically bind to a relatively small subset of the full set of probesets on a GeneChip designed to measure the whole genome. On this assumption, it is estimated that most probesets on a full human gene chip will not exhibit specific, high-intensity signals.


This observation is utilised to approximate the background or ‘non-specific binding’ across the chip by choosing a theoretical level equal to the value of e.g. lowest 30% quantile of the ranked mean values. This quantile can be arbitrarily set to some level below which a reasonable assumption is made that the signals do not represent above-background RNA binding. Finally, this background estimate is used as a threshold to estimate the ‘OFF’ probesets in an experiment for, say, the non-neoplastic tissue specimens.


Conversely, probesets which are 1) expressed above this theoretical threshold level and 2) at differentially higher levels in the tumour specimens may be a tumour specific candidate biomarker. In this case the concept of ‘fold-change’ thresholds can also be conveniently applied to further emphasize the concept of absolute expression increases in a putatively ‘ON’ probeset.


Given the assumption of low background binding for a sizeable fraction of the measured probesets, this method was only used in the large GeneLogic data and discovery. To construct a filter for hypothetically ‘turned on’ biomarkers in the GeneLogic discovery data, the mean expression level for all 44,928 probesets was first estimated across the full range of 454 tissues. The 44,928 mean values were then ranked and the expression value equivalent to the 25th percentile across the dataset calculated. This arbitrary threshold was chosen because it was theorized that the majority of transcripts (and presumably more than 25%) in a given specimen should exhibit low concentration which effectively transcriptional silence. Thus this threshold represents a conservative upper bound for what is estimated as non-specific, or background, expression.


EXAMPLE 6
Determine Gene Identity of a Nucleic Acid Sequence of Interest which is Define by an Affymetrix Probeset

BLAST the sequence of interest using online available Basic Local Alignment Search Tools [BLAST]. e.g. NCBI/BLAST

    • (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
    • (a) Select “Human” in BLAST ASSEMBLED GENOMES on the web page http://blast.ncbi.nlm.nih.gov/Blast.cgi
    • (b) Leave the default settings, i.e.:
      • Database: Genome (all assemblies)
      • Program: megaBLAST: compare highly related nucleotide sequences
      • Optional parameters: Expect: 0.01, Filter: default, Descriptions: 100, Alignments: 100
    • (c) Copy/Paste Sequence into the “BLAST” window
    • (d) Click “Begin Search”
    • (e) Click “View Report”


Assessment of the Open BLAST Search Results


Multiple significant sequence alignments may be identified when “blasting” the sequence.


Identify Gene Nomenclature of the Identified Sequence Match

    • (a) Click the link to one of the identified hits
    • (b) The new page will schematically depict the position of the hit on one chromosome. It will be apparent which gene is hit.
    • (c) Retrieve the “hit” sequence clicking on the link
    • (d) Do a search for the gene in the provided “search” window. This provides the gene nucleotide coordinates for the gene.


Determine Promiscuity of Sequence

    • (a) Open the NCBI/BLAST tool, (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
    • (b) Click on “nucleotide Blast” under “basic BLAST”
    • (c) Copy/paste the sequence of interest into the “Query Sequence” window
    • (d) Click “Blast”.


Assessment of the nBLAST Search Results of the Sequence

    • (a) The nBLAST exercise with the Sequence may result in multiple Blast hits of which some accession entry numbers are listed in “Description”.
    • (b) These hits should be reviewed.


Determine Location of the Sequence in the Gene


The Ensembl database is an online database, which produces and maintains automatic annotation selected eukaryotic genomes (www.ensembl.orq/index.html)


Identify Location of the Sequence in the Gene

    • (a) Set “Search” to Homo Sapiens, Type “the gene name” in the provided Search Field Ensemble.org/index.html)
    • (b) Click “Go”
    • (c) Click the “vega protein_coding Gene: OTTHUMG000000144184” link to get an annotation report
    • (d) Click on “Gene DAS Report” to retrieve information regarding Alternative splice site database: Type “the gene name” in search field
      • Click on “the gene entry”
      • Scroll down to “evidence”
      • Review alternative splice sites
      • Click “Confirmed intron/exons” to get a list of coordinates for the exons & introns.


Alternative Splicing and/or Transcription


The AceView Database provides curated and non-redundant sequence representation of all public mRNA sequences. The database is available through NCBI: http;//www.ncbi.nlm.nih.gov/IEB/Research/Acembly/


Further Investigation of the Gene mRNA Transcripts

    • (a) Type “the gene name” into the provided “search” field
    • (b) Click “Go”
    • (c) The following information is available from the resulting entry in AceView:
      • The number of cDNA clones from which the gene is constructed (ie originated-from experimental work involving isolation of mRNA)
      • The mRNAs predicted to be produced by the gene
      • The existence of non-overlapping alternative exons and validated alternative polyadenylation sites
      • The existence of truncations
      • The possibility of regulated alternate expression
      • Introns recorded as participating in alternatively splicing of the gene
    • (d) Classic splice site motives


Application of Method to LOC643911/hCG_1815491


Materials and Methods


Extraction of RNA


RNA extractions were performed using Trizol(R) reagent (Invitrogen, Carlsbad, Calif., USA) as per manufacturer's instructions. Each sample was homogenised in 300 μL of Trizol reagent using a modified dremel drill and sterilised disposable pestles. Additional 200 μL of Trizol reagent was added to the homogenate and samples were incubated at RT for 10 minutes. 100 μL of chloroform was then added, samples were shaken vortexed for 15 seconds, and incubated at RT for 3 further minutes. The aqueous phase containing target RNA was obtained by centrifugation at 12,000 rpm for 15 min, 40° C. RNA was then precipitated by incubating samples at RT for 10 min with 250 μL of isopropanol. Purified RNA precipitate was collected by centrifugation at 12,000 rpm for 10 minutes, 40. C and supernatants were discarded. Pellets were then washed with 1 mL 75% ethanol, followed by vortexing and centrifugation at 7,500 g for 8 min, 40° C. Finally, pellets were air-dried for 5 min and resuspended in 80 μL of RNase free water. To improve subsequent solubility samples were incubated at 55° C. for 10 min. RNA was quantified by measuring the optical density at A260/280 nm. RNA quality was assessed by electrophoresis on a 1.2% agarose formaldehyde gel.


Gene Chip Processing


RNA samples to analyze on Human Exon 1.0 ST GeneChips were processed using the Affymetrix WT target labeling and control kit (part# 900652) following the protocol described in (Affymetrix 2007 P/N 701880 Rev.4). Briefly: First cycle cDNA was synthesized from 100 ng ribosomal reduced RNA using random hexamer primers tagged with T7 promoter sequence and SuperScript II (Invitrogen, Carlsbad Calif.), this was followed by DNA Polymerase I synthesis of the second strand cDNA. Anti-sense cRNA was then synthesized using T7 polymerase. Second cycle sense cDNA was then synthesised using SuperScript II, dNTP+dUTP, and random hexamers to produce sense strand cDNA incorporating uracil. This single stranded uracil containing cDNA was then fragmented using a combination of uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease1 (APE 1). Finally the DNA was biotin labelled using terminal deoxynucleotidyl transferase (TdT) and the Affymetrix proprietary DNA Labeling reagent. Hybridization to the arrays was carried out at 45° C. for 16-18hours.


Washing and staining of the hybridized GeneChips was carried out using the Affymetrix Fluidics Station 450 and scanned with the Affymetrix Scanner 3000 following recommended protocols.


SYBR Green Based Quantitative Real Time-PCR


Quantitative real time polymerase chain reaction was performed on RNA isolated from clinical samples for the amplification and detection of the various hCG_1815491 transcripts.


Firstly cDNA was synthesized from 2ug of total RNA using the Applied Biosystems High Capacity Reverse transcription Kit (P/N 4368814). After synthesis the reaction was diluted 1:2 with water to obtain a final volume of 40 ul and 1 ul of this diluted cDNA used in subsequent PCR reactions.


PCR was performed in a 25 ul volume using 12.5 ul Promega 2× PCR master mix (P/N M7502), 1.5 ul 5 uM forward primer, 1.5 ul 5 uM reverse primer, 7.875 ul water, 0.625 ul of a 1:3000 dilution of 10,000× stock of SYBR green 1 pure dye (Invitrogen P/N S7567), and 1 ul of cDNA.


Cycling conditions for amplification were 95° for 2minutes×1 cycle, 95° for 15 seconds and 60° for 1 minute×40 cycles. The amplification reactions were performed in a Corbett Research Rotor-Gene RG3000 or a Roche LightCycler480 real-time PCR machine. When the Roche LightCycler480 real-time PCR machine was used for amplification the reaction volume was reduced to 10 ul and performed in a 384 well plate but the relative ratios between all the components remained the same. Final results were calculated using the ΔΔCt method with the expression levels of the various hCG_1815491 transcripts being calculated relative to the expression level of the endogenous house keeping gene HPRT.


End-Point PCR


End point PCR was performed on RNA isolated from clinical samples for the various hCG_1815491 transcripts. Conditions were identical to those described for the SYBR green assay above but with the SYBR green dye being replaced with water. The amplification reactions were performed in a MJ Research PTC-200 thermal cycler. 2.5 μl of the amplified products were analysed on 2% agarose E-gel (Invitrogen) along with a 100-base pair DNA Ladder Marker.


Results


The nucleotide structure and expression levels of transcripts related to hCG_1815491 was analysed based on the identification of diagnostic utility of Affymetrix probesets 238021_s_at and 238022_at from the gene chip analysis.


The gene hCG_1815491 is currently represented in NCBI as a single RefSeq sequence, XM_93911. The RefSeq sequence of hCG_1815491 is based on 89 GenBank accessions from 83 cDNA clones. Prior to March 2006, these clones were predicted to represent two overlapping genes, LOC388279 and LOC650242 (the latter also known as LOC643911). In March 2006, the human genome database was filtered against clone rearrangements, co-aligned with the genome and clustered in a minimal non-redundant way. As a result, LOC388272 and LOC650242 were merged into one gene named hCG_1815491 (earlier references to hCG_1815491 are: LOC388279, LOC643911, LOC650242, XM_944116, AF275804, XM_373688). It has been determined that the Ref Sequence, which is defined by the genomic coordinates 8579310 to 8562303 on human chromosome 16 as defined by the NCBI contig reference NT_010498.15|Hs16_10655, NCBI 36 March 2006 genome encompasses hCG_1815491. The 10 predicted RNA variants derived from this gene have been aligned with the genomic nucleotide sequence residing in the map region 8579310 to 8562303. This alignment analysis revealed the existence of at least 6 exons of which several are alternatively spliced. The identified exons are in contrast to the just 4 exons specified in the NCBI hCG_1815491 RefSeq XM_93911. Two additional putative exons were also identified in the Ref Sequence by examination of included probesets on Affymetrix Genechip HuGene Exon 1.0 that target nucleotide sequences embedded in the Ref Sequence. The identified and expanded exon-intron structure of hCG_1815491 have been used to design specific oligonucleotide primers, which allowed measurement of the expression of RNA variants generated from the Ref Sequence by using PCR-based methodology (FIG. 4)


EXAMPLE 7

Immunohistochemistry is a useful method for evaluating changes in local expression of up or down-regulated markers in human tissue.


Materials and Methods:


Four micrometre sections were incubated in a universal decloaking buffer for 75 minutes at 80 μL to expose masked epitopes. Protein expression was determined using an antibody targeting the C-terminal domain of Mesothelin (MSLN) on colonic biopsies from 30 patients (10 normals, 10 cancers, 10 adenomas). Antibodies were applied for one hour at room temperature. After washing, sections were incubated with polymeric horse-radish peroxidase. Antibody localization was visualized using 3′3′ diaminobenzidine.


Result:


There was a marked upregulation of MSLN in the adenoma and cancer tissues compared to the normal controls. The normal tissues showed mild staining for MSLN in the cytoplasm of the colonic epithelium but the cancer and particularly the adenomas tissues shows significant upregulation of MSLN in their multilayered epithelium. This upregulation was observed in all 10 adenomas tissue and in 9 out of the 10 cancer tissues. These patterns of staining are illustrated in FIGS. 4, 5 and 6.


Conclusion:


Elevated expression of MSLN has been detected in colon neoplasia, confirming the upregulation observed in the mRNA expression data and verifying the diagnostic utility of both the MSLN mRNA and protein for detection of colorectal neoplasia.


EXAMPLE 8
Evidence of MMP3 Protein Expression in Stools of Patients with Colorectal Neoplasia

Affymetrix probeset designated 205828_at was identified to be expressed higher in 190 neoplastic tissue specimens relative to 264 non-neoplastic specimens. The probeset 205828_at hybridizes to RNA transcribed from the gene encoding Matrix Metalloproteinase 3 (MMP3) NM_002422. The differential expression profile of probeset 205828_at was further demonstrated by profiling RNA collected from 68 independent clinical specimens comprising 19 adenomas, 19 adenocarcinomas and 30 non-disease controls, FIG. 7.


Materials and Methods


A commercially available bead-suspension immunoassay targeting the protein MMP3 was purchased from R&D Systems (MMP Kit reagents LMP000 and LMP513) to measure MMP3 concentration in stools of human patients diagnosed with colorectal neoplasia. Proteins were extracted from stool specimens using a phosphate buffered saline wash from 6 non-disease controls, 10 adenoma and 11 adenocarcinoma subjects. The resulting protein extracts were analyzed using the Luminex bead-based suspension MMP3 assay as recommended by manufacturer.


Results


An elevated endogenous expression of MMP3 was observed in stool specimens from patients diagnosed with colon adenomas or adenocarcinomas relative to non-neoplastic controls (FIG. 8).


Conclusion


Measurement of MMP3 protein in bodily fluids such as stool samples is useful for diagnosing colorectal neoplasia.


Tables


Probeset designations include both HG-133plus2 probeset IDs and Human Gene 1.0 ST array probe ids. The latter can be conveniently mapped to Transcript Cluster ID using the Human Gene 1.0ST probe tab file provided by Affymetrix (http://www.affymetrix.com/Auth/analysis/downloads/na22/wtgene/HuGene-1_0-st-v1.probe.tab.zip). Using publicly available software such as NetAffx (provided by Affymetrix), the Transcript Cluster ID may be further mapped to gene symbol, chromosomal location, etc.


Table 1.


Probesets demonstrated to be expressed higher in neoplastic tissues relative to non-neoplastic controls. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 2.


Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between neoplasia and non-neoplastic controls. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Example 2

Table 3.


Probesets which demonstrate a qualitatively (in addition to quantitative) elevated profile in neoplastic tissues relative to non-neoplastic controls. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 4.


Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting qualitative changes in RNA concentration in neoplastic tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 5


Probesets demonstrated to be expressed higher in adenoma tissues relative to cancer tissues. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of adenomas vs. cancers; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 6


Probesets demonstrated to be expressed higher in cancer tissues relative to adenoma tissues. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of cancer tissues vs. adenoma tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 7


Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between adenoma and cancer tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of adenoma tissues vs. cancer tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 8


Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between cancer and adenoma tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of cancer tissues vs. adenoma tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.















TABLE 1







Signif.
D.val

Sens-



TargetPS
Symbol
FDR
5
FC
Spec
CI (95)





















203256_at
CDH3
3.75E−31
4.2476
37.54
98.3
95.5-99.5


200660_at
S100A11:LOC730558:
2.68E−27
3.8969
3.83
97.4
93.9-99.1



LOC730278:LOC729659







201341_at
ENC1
1.44E−26
3.667
3.93
96.7
92.6-98.7


212063_at
MAPK10:CD44
3.35E−26
3.7161
7.06
96.8
92.9-98.8


217523_at
MAPK10:CD44
3.35E−26
3.7151
7.06
96.8
92.9-98.8


201563_at
SORD
3.44E−25
3.4659
4.36
95.8
91.3-98.3


202431_s_at
LOC731404:
5.19E−25
3.6014
4.11
96.4
92.2-98.6



LOC729194:MYC







221577_x_at
GDF15
5.51E−25
3.5554
5.84
96.2
91.8-98.5


204702_s_at
LOC650331:NFE2L3:
1.51E−24
3.52
4.57
96.1
91.6-98.4



LOC642996







203961_at
NEBL
5.41E−24
3.5292
5.52
96.1
91.7-98.4


203962_s_at
NEBL
5.41E−24
3.5295
5.52
96.1
91.7-98.4


201338_x_at
GTF3A
1.74E−22
3.2283
2.92
94.7
89.6-97.6


215091_s_at
GTF3A
1.74E−22
3.2283
2.92
94.7
89.5-97.6


207850_at
CXCL2:CXCL3
5.76E−22
3.2874
7.85
95
  90-97.8


222549_at
CLDN1
6.10E−22
3.2561
13.09
94.8
89.7-97.7


204259_at
MMP7
7.61E−22
3.2624
69.29
94.9
89.8-97.7


228754_at
SLC6A6:LOC728721
1.15E−21
3.2282
5.02
94.7
89.5-97.6


209774_x_at
CXCL2:CXCL3
1.88E−21
3.2884
7.85
95
  90-97.8


218872_at
TESC
3.26E−21
3.2134
16.84
94.6
89.5-97.6


212942_s_at
KIAA1199
8.12E−21
3.0489
25.16
93.6
88-97


209369_at
ANXA3
1.15E−20
3.0417
3.34
93.6
87.9-97  


204404_at
SLC12A2
1.40E−20
3.0281
3.42
93.5
87.9-96.9


225835_at
SLC12A2
1.40E−20
3.0261
3.42
93.5
87.8-96.9


219911_s_at
SLCO4A1
1.46E−20
3.0968
4.84
93.9
88.4-97.2


203510_at
MET
1.50E−20
3.0806
3.35
93.8
88.3-97.1


202936_s_at
SOX9
1.63E−20
3.0982
3.85
93.9
88.4-97.2


201416_at
SOX4
2.30E−20
3.0179
2.89
93.4
87.8-96.9


201417_at
SOX4
2.30E−20
3.0146
2.89
93.4
87.7-96.9


208712_at
CCND1
7.06E−20
2.9082
2.85
92.7
86.7-96.4


204351_at
S100P
4.56E−19
2.9463
4.37
93
87.1-96.6


227475_at
FOXQ1
4.85E−19
2.9494
10.97
93
87.1-96.6


205983_at
DPEP1
5.27E−19
2.8878
23.9
92.6
86.6-96.3


204470_at
CXCL2:CXCL1
5.53E−19
2.9257
10.4
92.8
86.8-96.5


212531_at
LCN2
5.68E−19
2.9407
14.6
92.9
  87-96.5


217867_x_at
BACE2
5.87E−19
2.9042
3.8
92.7
86.7-96.4


228915_at
DACH1
1.05E−18
2.9218
5.81
92.8
86.9-96.5


218704_at
RNF43
2.12E−18
2.9218
3.24
92.8
86.9-96.5


202504_at
TRIM29
2.36E−18
2.8231
11.01
92.1
85.9-96  


241031_at
NLF1
3.12E−18
2.7999
8.12
91.9
85.6-95.9


201195_s_at
SLC7A5:LAT1-3TM
5.11E−18
2.7562
6.31
91.6
85.2-95.7


201656_at
ITGA6
7.38E−18
2.6842
2.62
91
84.5-95.3


229215_at
ASCL2
7.76E−18
2.7573
7.73
91.6
85.3-95.7


217996_at
PHLDA1
1.34E−17
2.7007
5.27
91.2
84.6-95.4


205476_at
CCL20
2.03E−17
2.6222
10.14
90.5
83.8-94.9


226360_at
ZNRF3
2.03E−17
2.7245
4.91
91.3
84.9-95.6


219956_at
GALNT6:ELA1
2.90E−17
2.682
5.27
91
84.4-95.3


201506_at
TGFBI
4.14E−17
2.6863
4.31
91
84.5-95.3


212070_at
GPR56
7.45E−17
2.5866
2.6
90.2
83.5-94.7


212281_s_at
LOC731966:
1.88E−16
2.583
2.77
90.2
83.4-94.7



LOC729599:








TMEM97







202831_at
GPX2
4.00E−16
2.397
3.56
88.5
81.2-93.5


225541_at
LOC442108:
4.37E−16
2.5983
4.19
90.3
83.5-94.8



RPL22L1







218984_at
PUS7:LOC730279
5.26E−16
2.6006
3.06
90.3
83.6-94.8


219630_at
PDZK1IP1
5.38E−16
2.506
4.22
89.5
82.5-94.2


202935_s_at
FLJ37644
1.04E−15
2.4727
3.64
89.2
82.1-94  


204401_at
KCNN4
1.85E−15
2.4677
3.07
89.1
82-94


222696_at
AXIN2
1.90E−15
2.4301
4.44
88.8
81.6-93.7


221923_s_at
NPM1
2.22E−15
2.6018
2.18
90.3
83.5-94.8


201666_at
TIMP1
2.44E−15
2.4295
3.01
88.8
81.6-93.7


210511_s_at
INHBA
2.80E−15
2.5137
3.76
89.6
82.6-94.3


223062_s_at
LOC651255:PSAT1:
3.32E−15
2.4895
5.52
89.3
82.3-94.1



LOC389173:








LOC729779:C8orf62







225520_at
MTHFD1L
4.46E−15
2.4846
4.04
89.3
82.3-94.1


206224_at
CST1
7.04E−15
2.4174
13.01
88.7
81.5-93.6


201014_s_at
PAICS
1.19E−14
2.3935
2.49
88.4
81.3-93.5


209309_at
AZGP1:LOC401393
1.31E−14
2.3949
6.19
88.4
81.2-93.5


218796_at
C20orf42
1.38E−14
2.4561
2.78
89
  82-93.9


60474_at
C20orf42
1.38E−14
2.4547
2.78
89
81.9-93.9


219787_s_at
ECT2
1.42E−14
2.4283
2.82
88.8
81.6-93.7


231832_at
WDR51B:GALNT4
1.79E−14
2.4259
2.12
88.7
81.6-93.7


218507_at
HIG2
2.50E−14
2.3654
4.25
88.2
80.9-93.3


202286_s_at
TACSTD2
3.13E−14
2.3701
15.71
88.2
80.9-93.3


205513_at
TCN1
4.81E−14
2.3019
15.22
87.5
80.1-92.8


224428_s_at
CDCA7:LOC442172
6.41E−14
2.2662
4.27
87.1
79.6-92.5


203124_s_at
SLC11A2
7.07E−14
2.3616
2.18
88.1
80.8-93.3


224915_x_at
TALDO1:C20orf199
8.45E−14
2.2732
2.87
87.2
79.7-92.6


226227_x_at
TALDO1:C20orf199
8.45E−14
2.2707
2.87
87.2
79.7-92.6


226835_s_at
TALDO1:C20orf199
8.45E−14
2.2746
2.87
87.2
79.7-92.6


200832_s_at
SCD:LOC651109:
1.23E−13
2.2759
4.28
87.2
79.8-92.6



LOC645313







204170_s_at
CKS2
2.13E−13
2.2413
4.15
86.9
79.3-92.3


219682_s_at
TBX3
3.27E−13
2.2498
4.94
87
79.4-92.4


203313_s_at
TGIF
3.35E−13
2.175
2.12
86.2
78.4-91.8


201601_x_at
IFITM1
4.78E−13
2.0659
3.87
84.9
  77-90.8


214022_s_at
IFITM1
4.78E−13
2.065
3.87
84.9
  77-90.8


201328_at
ETS2
5.23E−13
2.2182
2.36
86.6
  79-92.2


201112_s_at
CSE1L
7.98E−13
2.2336
2.28
86.8
79.2-92.2


210766_s_at
CSE1L
7.98E−13
2.232
2.28
86.8
79.2-92.2


205361_s_at
TMEM23:PFDN4:
1.69E−12
2.2328
2.24
86.8
79.2-92.3



HDAC9







218086_at
NPDC1
2.66E−12
2.169
2.53
86.1
78.4-91.8


206286_s_at
TDGF1:TDGF3
3.07E−12
2.1205
6.33
85.5
77.7-91.4


204855_at
SERPINB5
4.80E−12
2.1265
10.36
85.6
77.8-91.4


203878_s_at
MMP11
6.30E−12
2.0959
4.55
85.3
77.4-91.1


202833_s_at
SERPINA1
7.12E−12
2.0804
3.43
85.1
77.1-91  


211429_s_at
SERPINA1
7.12E−12
2.0818
3.43
85.1
77.2-91  


228303_at
No Symbol
9.19E−12
2.1527
1.61
85.9
78.2-91.6


225767_at
No Symbol
9.19E−12
2.1514
1.614
85.9
78.1-91.6


226311_at
No Symbol
9.19E−12
2.1527
1.61
85.9
78.1-91.6


226777_at
No Symbol
9.19E−12
2.152
1.61
85.9
78.1-91.6


227140_at
No Symbol
9.19E−12
2.152
1.61
85.9
78.1-91.6


229802_at
No Symbol
9.19E−12
2.1519
1.61
85.9
78.2-91.6


232151_at
No Symbol
9.19E−12
2.1534
1.61
85.9
78.1-91.6


213880_at
LGR5
1.10E−11
2.0619
7.89
84.9
76.9-90.8


225295_at
SLC39A10
2.32E−11
2.1227
1.93
85.6
77.7-91.3


205470_s_at
KLK11
3.11E−11
2.0097
6.04
84.3
76.2-90.3


205174_s_at
QPCT
3.46E−11
2.0435
3.03
84.7
76.6-90.7


222449_at
TMEPAI
3.73E−11
2.0605
2.2
84.9
  77-90.8


222450_at
TMEPAI
3.73E−11
2.0616
2.2
84.9
76.9-90.9


238021_s_at
LOC643911
3.73E−11
1.647
1.33
79.5
70.8-86.5


227174_at
WDR72
5.22E−11
1.9844
14.11
83.9
75.8-90.1


202779_s_at
UBE2S:LOC731049,
5.62E−11
1.9821
2.4
83.9
75.8-90  



UBE2S:LOC731049







219727_at
DUOX2
9.34E−11
1.9355
9.27
83.3
75.1-89.6


210445_at
FABP6
1.28E−10
1.9366
3.01
83.4
75.1-89.6


205828_at
MMP3
1.44E−10
1.8964
15.63
82.8
74.6-89.2


218963_s_at
KRT23
3.58E−10
1.8856
6.81
82.7
74.5-89.1


223447_at
REG4
5.97E−10
1.8052
7.75
81.7
73.2-88.3


238984_at
REG4
5.97E−10
1.8036
7.75
81.6
73.3-88.3


204475_at
MMP1
1.22E−09
1.8132
10.59
81.8
73.4-88.3


228653_at
RP5-875H10.1
1.33E−09
1.8788
1.99
82.6
74.3-89.1


204580_at
MMP12
1.99E−09
1.7881
6.24
81.4
  73-88.1


203895_at
PLCB4
2.29E−09
1.8389
2.37
82.1
73.7-88.6


203896_s_at
PLCB4
2.29E−09
1.8414
2.37
82.1
73.8-88.6


235210_s_at
RPESP
2.38E−09
1.8005
9.07
81.6
73.2-88.2


201468_s_at
NQO1
2.68E−09
1.6978
2.62
80.2
71.6-87.1


210519_s_at
NQO1
2.68E−09
1.6973
2.62
80.2
71.6-87  


222608_s_at
ANLN
4.94E−09
1.7543
2.63
81
72.5-87.7


212344_at
SULF1
9.70E−09
1.7754
1.74
81.3
72.9-88  


212353_at
SULF1
9.70E−09
1.7777
1.74
81.3
72.9-88  


212354_at
SULF1
9.70E−09
1.7751
1.74
81.3
72.8-87.9


201925_s_at
CD55
1.45E−08
1.7612
2.22
81.1
72.6-87.8


201926_s_at
CD55
1.45E−08
1.7603
2.22
81.1
72.5-87.8


202954_at
PAK3:UBE2C
1.74E−08
1.6455
2.82
79.5
70.9-86.4


209792_s_at
KLK10
2.64E−08
1.6142
4.52
79
70.2-86.1


205890_s_at
UBD:GABBR1, UBD
4.07E−08
1.6362
6.59
79.3
70.6-86.3


209773_s_at
RRM2
4.25E−08
1.6077
2.25
78.9
70.2-86  


234331_s_at
FAM84A:LOC653602
5.97E−08
1.6031
1.73
78.9
70.1-86  


206976_s_at
HSPH1
6.17E−08
1.6476
1.85
79.5
70.8-86.5


202718_at
IGFBP2
8.07E−08
1.6348
1.93
79.3
70.6-86.3


225664_at
TMEM30A:COL12A1
9.48E−08
1.6379
3.16
79.4
70.7-86.3


231766_s_at
TMEM30A:COL12A1
9.48E−08
1.6394
3.16
79.4
70.7-86.3


201261_x_at
BGN
1.01E−07
1.5939
2.69
78.7
69.9-85.9


213905_x_at
BGN
1.01E−07
1.596
2.69
78.8
69.9-85.8


204127_at
RFC3
1.25E−07
1.5497
2.25
78.1
69.2-85.3


207457_s_at
C6orf21:LY6G6D,
1.34E−07
1.5549
6.64
78.2
69.3-85.4



C6orf21:LY6G6D,








C6orf21:LY6G6D







210052_s_at
TPX2
1.56E−07
1.6655
2.03
79.8
71.1-86.7


202859_x_at
LOC652128:IGHG1:
1.99E−07
1.6331
3.1
79.3
70.6-86.3



IGHM:IGHV4-31:








LOC647189:IGHV1-69:








IGHA1:IL8:EXOC7:SIX6:








IGHD:IGH@:IGHG3:








C12orf32:ZCWPW2:








IFI6:IGHG4:IGHA2:








IGHG2:RAC1







211506_s_at
LOC652128:IGHG1:
1.99E−07
1.6324
3.1
79.3
70.6-86.4



IGHM:IGHV4-31:








LOC647189:IGHV1-69:








IGHA1:IL8:EXOC7:








SIX6:IGHD:IGH@:








IGHG3:C12orf32:








ZCWPW2:IFI6:








IGHG4:IGHA2:








IGHG2:RAC1







205479_s_at
PLAU
2.25E−07
1.5392
3.5
77.9
69.1-85.1


238017_at
RDHE2
2.71E−07
1.5511
2.52
78.1
69.3-85.3


204320_at
COL11A1
2.93E−07
1.5718
2.6
78.4
69.6-85.6


37892_at
COL11A1
2.93E−07
1.57
2.6
78.4
69.5-85.6


203213_at
CDC2
3.58E−07
1.5342
2.72
77.8
  69-85.1


210559_s_at
CDC2
3.58E−07
1.5348
2.72
77.9
  69-85.1


232252_at
DUSP27
4.68E−07
1.5123
4.81
77.5
68.7-84.8


225799_at
MGC4677,
7.40E−07
1.4933
2.04
77.2
68.3-84.6



MGC4677:








LOC541471







206239_s_at
SPINK1
1.70E−06
1.4816
2.74
77.1
68.1-84.5


225806_at
C14orf94
2.40E−06
1.6542
1.19
79.6
70.9-86.5


204885_s_at
MSLN
3.78E−06
1.4263
1.93
76.2
67.2-83.7


202998_s_at
ENTPD4:LOXL2
4.81E−06
1.3717
2.19
75.4
66.3-83  


207158_at
APOBEC1
9.49E−06
1.3811
1.63
75.5
66.4-83.1


218211_s_at
MLPH
1.16E−05
1.4176
1.47
76.1
67.1-83.6


205366_s_at
HOXB6
1.33E−05
1.3346
1.87
74.8
65.7-82.5


225681_at
CTHRC1
1.83E−05
1.2913
2.57
74.1
64.9-81.8


205815_at
REG3A
2.22E−05
1.2228
12.09
73
63.8-80.9


214974_x_at
CXCL5
2.79E−05
1.281
4.48
73.9
64.8-81.7


207173_x_at
CDH11
3.44E−05
1.2644
2.25
73.6
64.4-81.5


209955_s_at
IFIH1:FAP
6.66E−05
1.2544
2.33
73.5
64.3-81.3


205886_at
REG1B
8.08E−05
1.1731
13.15
72.1
62.8-80.1


205713_s_at
COMP
0.0001
1.1543
1.69
71.8
62.6-79.9


208079_s_at
AURKA:STK6P
0.0001
1.1173
1.81
71.2
61.8-79.3


209218_at
SQLE
0.0001
1.1362
2.69
71.5
62.2-79.6


212190_at
SERPINE2
0.0002
1.1279
1.9
71.4
62.1-79.5


219955_at
L1TD1
0.0002
1.1579
2.36
71.9
62.6-79.9


236894_at
L1TD1
0.0002
1.1598
2.36
71.9
62.6-79.9


209875_s_at
SPP1
0.0004
1.0666
3.32
70.3
60.9-78.5


205910_s_at
CEL
0.0006
1.0877
1.46
70.7
61.2-78.8


209752_at
REG1A
0.0006
1.0018
10.93
69.2
59.8-77.5


213975_s_at
LILRA1:LILRB1
0.0013
1.0772
1.55
70.5
61.1-78.7


202310_s_at
COL1A1
0.0018
1.007
2.5
69.3
59.9-77.5


202311_s_at
COL1A1
0.0018
1.0058
2.5
69.2
59.8-77.5


217430_x_at
COL1A1
0.0018
1.006
2.5
69.3
59.9-77.5


221729_at
COL5A2
0.0026
1.054
1.36
70.1
60.7-78.4


221730_at
COL5A2
0.0026
1.0559
1.36
70.1
60.8-78.4


205825_at
PCSK1
0.0029
1.107
1.48
71
61.6-79.2


203860_at
PCCA
0.0038
0.9396
1.42
68.1
58.6-76.5


224646_x_at
RPS12:H19
0.0051
1.0213
1.47
69.5
60.1-77.8


205941_s_at
COL10A1
0.0143
0.8495
2.05
66.4
  57-75.1


226237_at
COL8A1
0.0254
0.8307
1.43
66.1
56.6-74.8


223970_at
RETNLB
0.0304
0.8148
1.47
65.8
56.3-74.4


205765_at
CYP3A5:CYP3A7
0.0545
0.8252
1.58
66
56.4-74.6


232176_at
SLITRK6
0.0576
0.8693
1.31
66.8
57.3-75.4


232481_s_at
SLITRK6
0.0576
0.8701
1.31
66.8
57.4-75.3


235976_at
SLITRK6
0.0576
0.868
1.31
66.8
57.4-75.3


200665_s_at
SPARC
0.0684
0.6727
1.45
63.2
53.6-72  


205927_s_at
CTSE
0.0694
0.7488
1.83
64.6
55.1-73.3


214651_s_at
HOXA9
0.0759
0.7491
1.41
64.6
  55-73.3


204051_s_at
SFRP4
0.0829
0.6983
1.29
63.7
54.1-72.4


202404_s_at
COL1A2:
0.1891
0.6492
1.9
62.7
53.1-71.6



LOC728628







204620_s_at
CSPG2
0.9788
0.1834
1.05
53.7
44-63


221731_x_at
CSPG2
0.9788
0.183
1.05
53.6
44.1-63  


203083_at
THBS2
0.9844
0.2784
1.26
55.5
  46-64.8


214235_at
CYP3A5:CYP3A43:
0.9932
0.3165
1.16
56.3
46.7-65.6



CYP3A5P2




























TABLE 2





Gene


Signif.


Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
D.val5
FC
Spec
(95)






















CDH3
802708-HuGene_st:280037-HuGene_st:1019645-
CDH3
3.75E−31
4.2474
37.54
98.3
95.5-99.5



HuGene_st:119416-HuGene_st:642035-









HuGene_st:665706-HuGene_st:249831-









HuGene_st:604066-HuGene_st:260528-









HuGene_st:166615-HuGene_st:411984-









HuGene_st:520679-HuGene_st:1071177-









HuGene_st:988525-HuGene_st:317603-









HuGene_st:301020-HuGene_st:693824-









HuGene_st:468436-HuGene_st:203256_at:









265728-HuGene_st:806796-HuGene_st:893171-









HuGene_st








ENC1
216704-HuGene_st:529141-HuGene_st:968541-
ENC1
1.44E−26
3.6666
3.93
96.7
92.6-98.7



HuGene_st:1015647-HuGene_st:524348-









HuGene_st:291883-HuGene_st:154485-









HuGene_st:174870-HuGene_st:967480-









HuGene_st:729586-HuGene_st:826381-









HuGene_st:40464-HuGene_st:340065-









HuGene_st:1066975-HuGene_st:1090631-









HuGene_st:201340_s_at:86039-HuGene_st:686829-









HuGene_st:733896-HuGene_st:201341_at:698873-









HuGene_st:730768-HuGene_st:403595-HuGene_st








CD44
366106-HuGene_st:314808-HuGene_st:59730-
MAPK10:CD44
3.35E−26
3.7114
7.06
96.8
92.9-98.8



HuGene_st:599371-HuGene_st:391296-









HuGene_st:1031797-HuGene_st:314340-









HuGene_st:10723-HuGene_st:950067-









HuGene_st:282016-HuGene_st:480680-









HuGene_st:69560-HuGene_st:388781-









HuGene_st:243049-HuGene_st:374652-









HuGene_st:194553-HuGene_st:1075454-









HuGene_st:204489_s_at:619139-









HuGene_st:210916_s_at:542762-









HuGene_st:1557905_s_at:212014_x_at:229221_at:









204490_s_at:234418_x_at:209835_x_at:212063_at:









216062_at:777408-HuGene_st:234411_x_at:217523_at:









216056_at: 1565868_at:83114-HuGene_st








SORD
510024-HuGene_st:895709-HuGene_st:1079720-
SORD
3.44E−25
3.4665
4.36
95.8
91.3-98.3



HuGene_st:566899-HuGene_st:339498-









HuGene_st:91263-HuGene_st:256497-









HuGene_st:720484-HuGene_st:187420-









HuGene_st:580807-HuGene_st:267000-









HuGene_st:321981-HuGene_st:1019581-









HuGene_st:1020801-HuGene_st:520376-









HuGene_st:670131-HuGene_st:201562_s_at:









455746-HuGene_st:67454-HuGene_st:201563_at:









309303-HuGene_st:1001165-HuGene_st:411387-









HuGene_st:49636-HuGene_st








MYC
292645-HuGene_st:257928-HuGene_st:284020-
LOC731404:
5.19E−25
3.5977
4.11
96.4
92.2-98.6



HuGene_st:517374-HuGene_st:869576-
LOC729194:








HuGene_st:1099727-HuGene_st:33994-
MYC








HuGene_st:781657-HuGene_st:509634-









HuGene_st:273419-HuGene_st:1068468-









HuGene_st:1095763-HuGene_st:149150-









HuGene_st:841622-HuGene_st:730300-









HuGene_st:964312-HuGene_st:963427-









HuGene_st:202431_s_at:522112-HuGene_st:









244089_at:239931_at:649622-HuGene_st








GDF15
716715-HuGene_st:81268-HuGene_st:221576_at:
GDF15
5.51E−25
3.5534
5.84
96.2
91.9-98.5



1032661-HuGene_st:430762-HuGene_st:392223-









HuGene_st:325978-HuGene_st:273598-









HuGene_st:229868_s_at:835644-HuGene_st:271704-









HuGene_st:1097896-HuGene_st:692830-









HuGene_st:1033023-HuGene_st:85522-









HuGene_st:954824-HuGene_st:221577_x_at:









634293-HuGene_st:594344-HuGene_st:









231517-HuGene_st:307405-HuGene_st:31827-









HuGene_st:496173-HuGene_st:636515-









HuGene_st:30047-HuGene_st








NFE2L3
95873-HuGene_st:1058969-HuGene_st:86088-
LOC650331:
1.51E−24
3.523
4.57
96.1
91.7-98.4



HuGene_st:1093456-HuGene_st:347351-
NFE2L3:








HuGene_st:878719-HuGene_st:880179-
LOC642996








HuGene_st:240089_at:822197-HuGene_st:873612-









HuGene_st:517821-HuGene_st:489354-









HuGene_st:20603-HuGene_st:204702_s_at








NEBL
923272-HuGene_st:580150-HuGene_st:925039-
NEBL
5.41E−24
3.5322
5.52
96.1
91.7-98.4



HuGene_st:451073-HuGene_st:23015-









HuGene_st:714203-HuGene_st:479241-









HuGene_st:1092604-HuGene_st:458919-









HuGene_st:207279_s_at:932542-









HuGene_st:203962_s_at:889861-









HuGene_st:106510-HuGene_st:997698-









HuGene_st:116329-HuGene_st:1000081-









HuGene_st:216882_s_at:374229-









HuGene_st:107562-HuGene_st:203961_at:









103041-HuGene_st:553617-HuGene_st:244077_at:









92634-HuGene_st:233280_at:217585_at








GTF3A
955636-HuGene_st:336043-HuGene_st:876286-
GTF3A
1.74E−22
3.2254
2.92
94.7
89.5-97.6



HuGene_st:147251-HuGene_st:27776-HuGene_st:









88229-HuGene_st:508903-HuGene_st:98817-









HuGene_st:158745-HuGene_st:386048-









HuGene_st:611132-HuGene_st:23049-









HuGene_st:247205-HuGene_st:995043-









HuGene_st:655976-HuGene_st:140189-









HuGene_st:1043983-HuGene_st:903143-









HuGene_st:577269-HuGene_st:659477-









HuGene_st:215091_s_at:201338_x_at:942640-









HuGene_st








CLDN1
557209-HuGene_st:769363-HuGene_st:96611-
CLDN1
6.10E−22
3.2528
13.09
94.8
89.7-97.7



HuGene_st:517610-HuGene_st:737746-









HuGene_st:847409-HuGene_st:100345-









HuGene_st:391208-HuGene_st:98926-









HuGene_st:130886-HuGene_st:134239-









HuGene_st:647196-HuGene_st:1054117-









HuGene_st:218182_s_at:511075-









HuGene_st:510210-HuGene_st:781587-









HuGene_st:1081991-HuGene_st:155669-









HuGene_st:1020398-HuGene_st:620570-









HuGene_st:222549_at:502206-HuGene_st:









943250-HuGene_st:916987-HuGene_st








MMP7
267137-HuGene_st:1068392-HuGene_st:794865-
MMP7
7.61E−22
3.2633
69.29
94.9
89.8-97.7



HuGene_st:876922-HuGene_st:669567-









HuGene_st:1039935-HuGene_st:514120-









HuGene_st:1092830-HuGene_st:745768-









HuGene_st:272260-HuGene_st:30733-









HuGene_st:401681-HuGene_st:854024-









HuGene_st:221616-HuGene_st:805045-









HuGene_st:783838-HuGene_st:204259_at:









934756-HuGene_st:446688-HuGene_st:10259-









HuGene_st:267021-HuGene_st:889042-HuGene_st








SLC6A6
128406-HuGene_st:85866-HuGene_st:835577-
SLC6A6:
1.15E−21
3.2313
5.02
94.7
89.6-97.6



HuGene_st:475923-HuGene_st:249964-
LOC728721








HuGene_st:362002-HuGene_st:126399-









HuGene_st:205921_s_at:319890-









HuGene_st:748425-HuGene_st:447287-









HuGene_st:1091412-HuGene_st:62392-









HuGene_st:44403-HuGene_st:825742-









HuGene_st:510986-HuGene_st:205920_at:661693-









HuGene_st:843791-HuGene_st:228754_at:705910-









HuGene_st:1561538_at:972205-HuGene_st:65222-









HuGene_st:747017-HuGene_st:239474_at:955688-









HuGene_st:211030_s_at








CXCL1
11327-HuGene_st:626337-HuGene_st:322604-
CXCL2:
1.88E−21
3.2911
7.85
95
  90-97.8



HuGene_st:256806-HuGene_st:261067-HuGene_st:
CXCL3








448247-HuGene_st:666569-HuGene_st:222646-









HuGene_st:262117-HuGene_st:798675-









HuGene_st:391369-HuGene_st:865299-









HuGene_st:877897-HuGene_st:575433-









HuGene_st:43120-HuGene_st:42070-









HuGene_st:33632-HuGene_st:965957-









HuGene_st:556939-HuGene_st:26460-HuGene_st:









796450-HuGene_st:230101_at:541868-









HuGene_st:1064107-HuGene_st:490134-









HuGene_st:230192-HuGene_st:645829-









HuGene_st:455502-HuGene_st:249140-









HuGene_st:906606-HuGene_st:1098767-









HuGene_st:721989-HuGene_st:500578-









HuGene_st:33301-HuGene_st:204470_at:









622384-HuGene_st:209774_x_at:432036-









HuGene_st:30559-HuGene_st:187557-









HuGene_st:1101027-HuGene_st:1038334-









HuGene_st:260925-HuGene_st:515662-









HuGene_st:258081-HuGene_st:1569203_at:280828-









HuGene_st:1000069-HuGene_st:509822-









HuGene_st:890213-HuGene_st:739461-









HuGene_st:342746-HuGene_st:98929-









HuGene_st:818131-HuGene_st:1091592-









HuGene_st:420504-HuGene_st:41644-









HuGene_st:655278-HuGene_st:188562-









HuGene_st:458602-HuGene_st








CXCL2
11327-HuGene_st:626337-HuGene_st:322604-
CXCL2:
1.95E−21
3.2941
7.85
95
  90-97.8



HuGene_st:256806-HuGene_st:261067-
CXCL3








HuGene_st:448247-HuGene_st:666569-









HuGene_st:222646-HuGene_st:262117-









HuGene_st:798675-HuGene_st:391369-









HuGene_st:865299-HuGene_st:877897-









HuGene_st:575433-HuGene_st:43120-









HuGene_st:42070-HuGene_st:33632-









HuGene_st:965957-HuGene_st:556939-









HuGene_st:26460-HuGene_st:796450-









HuGene_st:230101_at:541868-HuGene_st:









490134-HuGene_st:1064107-HuGene_st:









230192-HuGene_st:645829-HuGene_st:









455502-HuGene_st:249140-HuGene_st:









906606-HuGene_st:1098767-HuGene_st:









721989-HuGene_st:500578-HuGene_st:33301-









HuGene_st:207850_at:622384-HuGene_st:









204470_at:209774_x_at:432036-HuGene_st:









30559-HuGene_st:187557-HuGene_st:1101027-









HuGene_st:1038334-HuGene_st:260925-









HuGene_st:515662-HuGene_st:258081-









HuGene_st:1569203_at:280828-HuGene_st:









1000069-HuGene_st:509822-HuGene_st:890213-









HuGene_st:739461-HuGene_st:342746-HuGene_st:









98929-HuGene_st:818131-HuGene_st:1091592-









HuGene_st:420504-HuGene_st:41644-HuGene_st:









655278-HuGene_st:188562-HuGene_st:458602-









HuGene_st








CXCL3
11327-HuGene_st:626337-HuGene_st:322604-
CXCL2:
1.95E−21
3.2892
7.85
95
90.1-97.8



HuGene_st:256806-HuGene_st:261067-HuGene_st:
CXCL3








448247-HuGene_st:666569-HuGene_st:222646-









HuGene_st:262117-HuGene_st:798675-HuGene_st:









391369-HuGene_st:865299-HuGene_st:877897-









HuGene_st:575433-HuGene_st:43120-HuGene_st:









42070-HuGene_st:33632-HuGene_st:965957-









HuGene_st:556939-HuGene_st:26460-HuGene_st:









796450-HuGene_st:230101_at:541868-









HuGene_st:490134-HuGene_st:1064107-









HuGene_st:230192-HuGene_st:645829-HuGene_st:









455502-HuGene_st:249140-HuGene_st:906606-









HuGene_st:1098767-HuGene_st:721989-









HuGene_st:500578-HuGene_st:33301-HuGene_st:









207850_at:622384-HuGene_st:209774_x_at:









432036-HuGene_st:30559-HuGene_st:187557-









HuGene_st:1101027-HuGene_st:1038334-









HuGene_st:260925-HuGene_st:515662-HuGene_st:









258081-HuGene_st:1569203_at:280828-









HuGene_st:1000069-HuGene_st:509822-HuGene_st:









890213-HuGene_st:739461-HuGene_st:342746-









HuGene_st:98929-HuGene_st:818131-HuGene_st:









1091592-HuGene_st:420504-HuGene_st:41644-









HuGene_st:655278-HuGene_st:188562-HuGene_st:









458602-HuGene_st








TESC
921201-HuGene_st:608171-HuGene_st:146516-
TESC
3.26E−21
3.2128
16.84
94.6
89.4-97.6



HuGene_st:484639-HuGene_st:107953-HuGene_st:









765929-HuGene_st:948263-HuGene_st:78061-









HuGene_st:808895-HuGene_st:69258-









HuGene_st:1017219-HuGene_st:244981-









HuGene_st:116590-HuGene_st:263121-HuGene_st:









260709-HuGene_st:218872_at:240553_at:









243302-HuGene_st:936401-HuGene_st:8542-









HuGene_st








KIAA1199
1008852-HuGene_st:897250-HuGene_st:264350-
KIAA1199
8.12E−21
3.0498
25.16
93.6
88-97



HuGene_st:309186-HuGene_st:442314-









HuGene_st:14957-HuGene_st:16406-









HuGene_st:742741-HuGene_st:115371-









HuGene_st:864695-HuGene_st:83178-HuGene_st:









107689-HuGene_st:444553-HuGene_st:972252-









HuGene_st:822568-HuGene_st:55289-









HuGene_st:744719-HuGene_st:999558-









HuGene_st:93042-HuGene_st:287365-









HuGene_st:215140_at:239747_s_at:1554685_a_at:









239746_at:719670-HuGene_st:212942_s_at:









15281-HuGene_st








ANXA3
839382-HuGene_st:366797-HuGene_st:1053078-
ANXA3
1.15E−20
3.0459
3.34
93.6
88-97



HuGene_st:469415-HuGene_st:506093-HuGene_st:









78819-HuGene_st:149613-HuGene_st:48457-









HuGene_st:316401-HuGene_st:35420-









HuGene_st:165320-HuGene_st:987987-









HuGene_st:437259-HuGene_st:34408-HuGene_st:









689653-HuGene_st:212737-HuGene_st:1018751-









HuGene_st:358834-HuGene_st:1097138-









HuGene_st:931805-HuGene_st:796166-









HuGene_st:209369_at:358455-HuGene_st








SLCO4A1
181673-HuGene_st:556210-HuGene_st:125087-
SLCO4A1
1.46E−20
3.0952
4.84
93.9
88.4-97.2



HuGene_st:555973-HuGene_st:690409-









HuGene_st:885495-HuGene_st:52728-









HuGene_st:272770-HuGene_st:21709-









HuGene_st:661785-HuGene_st:229239_x_at:1554332_a_at:









233439-HuGene_st:471571-HuGene_st:219911_s_at:









556433-HuGene_st:248366-HuGene_st:543178-









HuGene_st:1026187-HuGene_st:981152-









HuGene_st:236109-HuGene_st:381101-









HuGene_st:141523-HuGene_st:739914-HuGene_st








MET
388394-HuGene_st:648631-HuGene_st:15602-
MET
1.50E−20
3.0827
3.35
93.8
88.3-97.1



HuGene_st:176281-HuGene_st:748069-HuGene_st:









1008518-HuGene_st:1087950-HuGene_st:988485-









HuGene_st:796914-HuGene_st:331502-









HuGene_st:103511-HuGene_st:61232-









HuGene_st:278022-HuGene_st:112349-HuGene_st:









926399-HuGene_st:510918-HuGene_st:213816_s_at:









211599_x_at:367353-HuGene_st:311383-









HuGene_st:791322-HuGene_st:1076627-









HuGene_st:213807_x_at:697685-









HuGene_st:203510_at:825027-HuGene_st








SOX9
772629-HuGene_st:546810-HuGene_st:787388-
SOX9
1.63E−20
3.0954
3.85
93.9
88.4-97.2



HuGene_st:629934-HuGene_st:1026354-









HuGene_st:863993-HuGene_st:573850-









HuGene_st:583284-HuGene_st:944246-









HuGene_st:56367-HuGene_st:851353-









HuGene_st:191947-HuGene_st:202936_s_at:610027-









HuGene_st:564548-HuGene_st:361189-









HuGene_st:978036-HuGene_st:10753-









HuGene_st:762890-HuGene_st:399511-









HuGene_st:669806-HuGene_st:893973-









HuGene_st








SOX4
455510-HuGene_st:631864-HuGene_st:41874-
SOX4
2.30E−20
3.0197
2.89
93.4
87.7-96.9



HuGene_st:1567906_at:213665_at:1001159-









HuGene_st:1082118-HuGene_st:11876-HuGene_st:









195182-HuGene_st:6275-HuGene_st:1032572-









HuGene_st:413494-HuGene_st:251834-









HuGene_st:201416_at:213668_s_at:622600-









HuGene_st:201418_s_at:389422-









HuGene_st:731726-HuGene_st:119384-









HuGene_st:201417_at:438341-HuGene_st:









893969-HuGene_st:591113-









HuGene_st:725118-HuGene_st








CCND1
210671-HuGene_st:693250-HuGene_st:850876-
CCND1
7.06E−20
2.9073
2.85
92.7
86.8-96.4



HuGene_st:140311-HuGene_st:1002162-









HuGene_st:1018086-HuGene_st:407388-









HuGene_st:984437-HuGene_st:141586-









HuGene_st:647830-HuGene_st:790359-HuGene_st:









210601-HuGene_st:794719-HuGene_st:









208711_s_at:179331-HuGene_st:208712_at:592143-









HuGene_st:583936-HuGene_st:960743-









HuGene_st:632867-HuGene_st:125910-









HuGene_st








FOXQ1
763699-HuGene_st:567459-HuGene_st:447803-
FOXQ1
4.85E−19
2.9444
10.97
93
87.1-96.6



HuGene_st:319823-HuGene_st:304771-HuGene_st:









1086901-HuGene_st:444851-HuGene_st:742304-









HuGene_st:301921-HuGene_st:227475_at:541230-









HuGene_st:894028-HuGene_st:89134-









HuGene_st:1082772-HuGene_st:850136-









HuGene_st:293941-HuGene_st:55647-









HuGene_st








DPEP1
195459-HuGene_st:60499-HuGene_st:783842-
DPEP1
5.27E−19
2.8897
23.9
92.6
86.5-96.3



HuGene_st:457180-HuGene_st:450442-









HuGene_st:414432-HuGene_st:312589-









HuGene_st:598841-HuGene_st:13146-









HuGene_st:677461-HuGene_st:66845-HuGene_st:









26927-HuGene_st:405654-HuGene_st:931982-









HuGene_st:205983_at:529997-HuGene_st:496293-









HuGene_st:301001-HuGene_st:312462-









HuGene_st:495102-HuGene_st:270434-









HuGene_st:1074719-HuGene_st:









734183-HuGene_st








LCN2
769185-HuGene_st:478322-HuGene_st:1089212-
LCN2
5.68E−19
2.9407
14.6
92.9
  87-96.6



HuGene_st:427722-









HuGene_st:341012-HuGene_st:277123-









HuGene_st:866455-HuGene_st:545638-









HuGene_st:974940-HuGene_st:942257-









HuGene_st:446106-HuGene_st:666350-









HuGene_st:755674-HuGene_st:1040520-HuGene_st:









212531_at:374635-HuGene_st:924701-









HuGene_st:899307-HuGene_st:911350-









HuGene_st:586877-HuGene_st








BACE2
790683-HuGene_st:54885-HuGene_st:545060-
BACE2
5.87E−19
2.9056
3.8
92.7
86.7-96.4



HuGene_st:863425-HuGene_st:159264-HuGene_st:









718321-HuGene_st:211932-HuGene_st:705852-









HuGene_st:1090860-HuGene_st:1004109-









HuGene_st:281923-HuGene_st:449589-









HuGene_st:1049187-HuGene_st:217867_x_at:









222446_s_at:733284-HuGene_st:378351-









HuGene_st:525711-HuGene_st:834444-HuGene_st:









889532-HuGene_st:172501-HuGene_st:659292-









HuGene_st:748638-HuGene_st








DACH1
686187-HuGene_st:985190-HuGene_st:1011822-
DACH1
1.05E−18
2.9243
5.81
92.8
86.8-96.5



HuGene_st:1092705-HuGene_st:693255-









HuGene_st:722787-HuGene_st:465556-









HuGene_st:113230-HuGene_st:49101-









HuGene_st:290879-HuGene_st:646013-









HuGene_st:3984-HuGene_st:378631-









HuGene_st:1002554-HuGene_st:620749-









HuGene_st:802309-HuGene_st:82679-









HuGene_st:205471_s_at:303920-HuGene_st:









338273-HuGene_st:20454-HuGene_st:1567100_at:









205472_s_at:228915_at:1562342_at:169641-









HuGene_st:984254-HuGene_st:1567101_at








RNF43
680908-HuGene_st:971480-HuGene_st:933045-
RNF43
2.12E−18
2.9237
3.24
92.8
86.9-96.5



HuGene_st:512035-HuGene_st:246870-









HuGene_st:542187-HuGene_st:235920-









HuGene_st:398750-HuGene_st:377708-









HuGene_st:509050-HuGene_st:292965-









HuGene_st:228826_at:228828_at:581833-









HuGene_st:205211-HuGene_st:292037-









HuGene_st:297431-HuGene_st:875834-









HuGene_st:101494-HuGene_st:631606-









HuGene_st:110817-HuGene_st:442527-









HuGene_st:218704_at:284952-HuGene_st:239588_s_at:









7711-HuGene_st:244226_s_at:232238-HuGene_st:









239589_at:678261-HuGene_st:978591-HuGene_st:









692794-HuGene_st:401794-HuGene_st:29943-









HuGene_st:997900-HuGene_st:1085055-HuGene_st:612499-









HuGene_st:202326-HuGene_st:520369-HuGene_st:728337-









HuGene_st:469125-HuGene_st:529498-HuGene_st:166542-









HuGene_st:963597-HuGene_st:82123-









HuGene_st:851970-HuGene_st








TRIM29
84230-HuGene_st:776118-HuGene_st:317358-
TRIM29
2.36E−18
2.8229
11.01
92.1
85.9-96 



HuGene_st:848242-HuGene_st:304181-HuGene_st:245405-









HuGene_st:150773-HuGene_st:398649-HuGene_st:









202504_at:653465-HuGene_st:693258-HuGene_st:









211002_s_at:393591-HuGene_st:584774-









HuGene_st:816340-HuGene_st:426369-









HuGene_st:1085014-HuGene_st:1023102-









HuGene_st:105055-HuGene_st:237257-









HuGene_st:1076218-HuGene_st:905217-HuGene_st








NLF1
269939-HuGene_st:314919-HuGene_st:552234-
NLF1
3.12E−18
2.7997
8.12
91.9
85.7-95.9



HuGene_st:622058-HuGene_st:68900-HuGene_st:









376228-HuGene_st:194806-HuGene_st:923707-









HuGene_st:745661-HuGene_st:996995-









HuGene_st:534469-HuGene_st:560627-









HuGene_st:711203-HuGene_st:241031_at:93378-









HuGene_st:611899-HuGene_st:57671-









HuGene_st:443570-HuGene_st:231416-HuGene_st








SLC7A5
496060-HuGene_st:951443-HuGene_st:212037-
SLC7A5:
5.11E−18
2.7527
6.31
91.6
85.2-95.7



HuGene_st:766877-HuGene_st:54540-
LAT1-3TM








HuGene_st:467618-HuGene_st:663825-









HuGene_st:705196-HuGene_st:426149-









HuGene_st:852968-HuGene_st:215712-









HuGene_st:854122-HuGene_st:885601-









HuGene_st:517431-HuGene_st:127432-









HuGene_st:330269-HuGene_st:545636-









HuGene_st:636901-HuGene_st:814676-









HuGene_st:201195_s_at:450412-HuGene_st:









389490-HuGene_st








ASCL2
342676-HuGene_st:857204-HuGene_st:748900-
ASCL2
7.76E−18
2.7559
7.73
91.6
85.3-95.7



HuGene_st:853536-HuGene_st:945534-









HuGene_st:295182-HuGene_st:1038742-









HuGene_st:1100969-HuGene_st:940755-









HuGene_st:229215_at:209473-HuGene_st:710287-









HuGene_st:920942-HuGene_st:236012-









HuGene_st:474427-HuGene_st:207607_at:272814-









HuGene_st:584635-HuGene_st:793415-HuGene_st:









724997-HuGene_st:746596-HuGene_st:792089-









HuGene_st:623773-HuGene_st:1085101-HuGene_st








PHLDA1
810737-HuGene_st:617999-HuGene_st:84013-
PHLDA1
1.34E−17
2.7011
5.27
91.2
84.7-95.4



HuGene_st:972772-HuGene_st:843746-









HuGene_st:217999_s_at:218000_s_at:865439-









HuGene_st:949246-HuGene_st:660326-









HuGene_st:759020-HuGene_st:140047-









HuGene_st:217997_at:942344-HuGene_st:









1056055-HuGene_st:793477-HuGene_st:









800341-HuGene_st:363808-HuGene_st:217998_at:









225842_at:234244-HuGene_st:893315-









HuGene_st:217996_at:940094-HuGene_st:









588322-HuGene_st:706809-HuGene_st








CCL20
454699-HuGene_st:213798-HuGene_st:391284-
CCL20
2.03E−17
2.6209
10.14
90.5
83.8-94.9



HuGene_st:628958-HuGene_st:733349-









HuGene_st:609947-HuGene_st:437757-









HuGene_st:803267-HuGene_st:400137-









HuGene_st:542758-HuGene_st:650731-









HuGene_st:781726-HuGene_st:617384-









HuGene_st:537758-HuGene_st:176182-









HuGene_st:297268-HuGene_st:205476_at:183884-









HuGene_st:486887-HuGene_st:827625-









HuGene_st:314818-HuGene_st:65947-HuGene_st








ZNRF3
395397-HuGene_st:749062-HuGene_st:491467-
ZNRF3
2.03E−17
2.7278
4.91
91.4
84.9-95.5



HuGene_st:978668-HuGene_st:364904-









HuGene_st:157166-HuGene_st:176366-









HuGene_st:296148-HuGene_st:428183-









HuGene_st:867313-HuGene_st:732465-









HuGene_st:426052-HuGene_st:244820_at:









31672-HuGene_st:226360_at:149994-









HuGene_st:620378-HuGene_st:243014_at:









401539-HuGene_st:713294-HuGene_st:814560-









HuGene_st:205482-HuGene_st:276580-HuGene_st:









231419-HuGene_st








TMEM97
458988-HuGene_st:845548-HuGene_st:184387-
LOC731966:
1.88E−16
2.5821
2.77
90.2
83.4-94.7



HuGene_st:583199-HuGene_st:1045327-
LOC729599:








HuGene_st:568790-HuGene_st:52799-
TMEM97








HuGene_st:1018996-HuGene_st:212279_at:









980043-HuGene_st:942215-HuGene_st:184687-









HuGene_st:979249-HuGene_st:212282_at:825431-









HuGene_st:1008874-HuGene_st:280056-









HuGene_st:212281_s_at:256071-HuGene_st:596777-









HuGene_st:10453-HuGene_st








GPX2
526503-HuGene_st:607351-HuGene_st:824087-
GPX2
4.00E−16
2.3996
3.56
88.5
81.2-93.5



HuGene_st:249710-HuGene_st:1052500-









HuGene_st:727999-HuGene_st:129991-









HuGene_st:548286-HuGene_st:912827-









HuGene_st:228033-HuGene_st:138844-









HuGene_st:93652-HuGene_st:953341-









HuGene_st:365006-HuGene_st:402697-









HuGene_st:434203-HuGene_st:552705-









HuGene_st:651410-HuGene_st:106023-









HuGene_st:408006-HuGene_st:281352-









HuGene_st:202831_at:721501-HuGene_st:239595_at








RPL22L1
772808-HuGene_st:181084-HuGene_st:494932-
LOC442108:
4.37E−16
2.6007
4.19
90.3
83.6-94.9



HuGene_st:1058299-HuGene_st:463691-
RPL22L1








HuGene_st:43581-HuGene_st:383669-









HuGene_st:852429-HuGene_st:507824-









HuGene_st:759518-HuGene_st:225541_at:302606-









HuGene_st:635124-HuGene_st:399732-









HuGene_st:97487-HuGene_st:449121-









HuGene_st:533177-HuGene_st:373445-









HuGene_st:986445-HuGene_st:656340-









HuGene_st:494985-HuGene_st:249336-









HuGene_st:673318-HuGene_st:815820-









HuGene_st:226052-HuGene_st:282085-









HuGene_st:990639-HuGene_st:20450-









HuGene_st:133162-HuGene_st:403826-









HuGene_st:856534-HuGene_st:437128-









HuGene_st:563837-HuGene_st:1032326-









HuGene_st:57026-HuGene_st:792488-









HuGene_st:165053-HuGene_st:244269-









HuGene_st:618543-HuGene_st:292279-









HuGene_st:848648-HuGene_st:23825-









HuGene_st:210450-HuGene_st:278025-HuGene_st








PUS7
188478-HuGene_st:676751-HuGene_st:364450-
PUS7:
5.26E−16
2.6017
3.06
90.3
83.6-94.8



HuGene_st:323572-HuGene_st:1073917-
LOC730279








HuGene_st:520873-HuGene_st:104521-









HuGene_st:38904-HuGene_st:243458-









HuGene_st:233716-HuGene_st:521418-









HuGene_st:189829-HuGene_st:622175-









HuGene_st:352376-HuGene_st:404327-









HuGene_st:795156-HuGene_st:965807-









HuGene_st:360606-HuGene_st:447010-









HuGene_st:853552-HuGene_st:218984_at:









233563-HuGene_st








PDZK1IP1
327351-HuGene_st:692667-HuGene_st:61336-
PDZK1IP1
5.38E−16
2.5049
4.22
89.5
82.5-94.2



HuGene_st:120414-HuGene_st:874822-









HuGene_st:922904-HuGene_st:783689-









HuGene_st:301666-HuGene_st:976408-









HuGene_st:1003400-HuGene_st:653237-









HuGene_st:76927-HuGene_st:1050028-









HuGene_st:984155-HuGene_st:834996-









HuGene_st:1553589_a_at:219630_at:211897-









HuGene_st:289125-HuGene_st:27948-









HuGene_st:678521-HuGene_st:768406-









HuGene_st:834666-HuGene_st








FLJ37644
202935_s_at:230419_at
FLJ37644
1.04E−15
2.4695
3.64
89.2
82.1-94 


KCNN4
144049-HuGene_st:871303-HuGene_st:187064-
KCNN4
1.85E−15
2.4698
3.07
89.2
82.1-94 



HuGene_st:1009798-HuGene_st:306542-









HuGene_st:945226-HuGene_st:489209-









HuGene_st:846968-HuGene_st:468559-









HuGene_st:546781-HuGene_st:993022-









HuGene_st:510713-HuGene_st:39255-









HuGene_st:176231-HuGene_st:204401_at:140466-









HuGene_st:534792-HuGene_st:511374-









HuGene_st:319720-HuGene_st:745030-HuGene_st








AXIN2
466765-HuGene_st:940175-HuGene_st:409416-
AXIN2
1.90E−15
2.4309
4.44
88.8
81.7-93.7



HuGene_st:855558-HuGene_st:201699-









HuGene_st:717222-HuGene_st:650014-









HuGene_st:376280-HuGene_st:1046349-









HuGene_st:218016-HuGene_st:224498_x_at:









222695_s_at:43779-HuGene_st:309785-HuGene_st:









679194-HuGene_st:606406-HuGene_st:48333-









HuGene_st:758349-HuGene_st:224176_s_at:982781-









HuGene_st:222696_at:904523-HuGene_st:732685-









HuGene_st:774988-HuGene_st:189491-









HuGene_st:317267-HuGene_st








NPM1
771033-HuGene_st:995636-HuGene_st:360439-
NPM1
2.22E−15
2.6004
2.18
90.3
83.6-94.8



HuGene_st:808147-HuGene_st:1046029-









HuGene_st:740084-HuGene_st:221691_x_at:









200063_s_at








TIMP1
676809-HuGene_st:14950-HuGene_st:152072-
TIMP1
2.44E−15
2.4307
3.01
88.8
81.6-93.7



HuGene_st:1042197-HuGene_st:480229-









HuGene_st:344184-HuGene_st:1032497-









HuGene_st:101433-HuGene_st:1010207-









HuGene_st:338299-HuGene_st:192845-HuGene_st:









153535-HuGene_st:1063549-HuGene_st:685630-









HuGene_st:761585-HuGene_st:357407-









HuGene_st:362978-HuGene_st:686046-









HuGene_st:201666_at:296784-HuGene_st:









242170-HuGene_st:677163-HuGene_st








INHBA
402595-HuGene_st:289422-HuGene_st:151327-
INHBA
2.80E−15
2.5141
3.76
89.6
82.7-94.3



HuGene_st:363337-HuGene_st:344276-









HuGene_st:874496-HuGene_st:395552-









HuGene_st:36929-HuGene_st:1088123-









HuGene_st:328796-HuGene_st:838338-









HuGene_st:623455-HuGene_st:1088331-









HuGene_st:1030680-HuGene_st:865665-









HuGene_st:21051l_s_at:746887-HuGene_st:909672-









HuGene_st:204926_at:548889-HuGene_st








PSAT1
139416-HuGene_st:795030-HuGene_st:160439-
LOC651255:
3.32E−15
2.4893
5.52
89.3
82.3-94.2



HuGene_st:322148-HuGene_st:85375-
PSAT1:








HuGene_st:223335-HuGene_st:2658-
LOC389173:








HuGene_st:399855-HuGene_st:220892_s_at:
LOC729779:








941491-HuGene_st:1017348-HuGene_st:856207-
C8orf62








HuGene_st:194347-HuGene_st:553133-









HuGene_st:223062_s_at:987517-HuGene_st:336174-









HuGene_st








MTHFD1L
478940-HuGene_st:729886-HuGene_st:826803-
MTHFD1L
4.46E−15
2.4849
4.04
89.3
82.3-94.1



HuGene_st:504735-HuGene_st:632092-









HuGene_st:926226-HuGene_st:417984-









HuGene_st:752367-HuGene_st:919180-









HuGene_st:574022-HuGene_st:1096822-









HuGene_st:516882-HuGene_st:683402-









HuGene_st:843250-HuGene_st:548091-









HuGene_st:209210-HuGene_st:238923-









HuGene_st:852630-HuGene_st:231094_s_at:









97046-HuGene_st:225520_at:225518_x_at:









240552_at:106397-HuGene_st:363602-HuGene_st








CST1
95123-HuGene_st:125297-HuGene_st:235257-
CST1
7.04E−15
2.4183
13.01
88.7
81.6-93.7



HuGene_st:102028-HuGene_st:291462-









HuGene_st:206224_at:906914-HuGene_st:









936009-HuGene_st:1055285-HuGene_st








PAICS
426927-HuGene_st:871276-HuGene_st:297278-
PAICS
1.19E−14
2.3937
2.49
88.4
81.2-93.5



HuGene_st:832875-HuGene_st:287760-HuGene_st:









667051-HuGene_st:1057511-HuGene_st:1064821-









HuGene_st:25834-HuGene_st:467534-









HuGene_st:1057741-HuGene_st:760475-









HuGene_st:2629-HuGene_st:151478-HuGene_st:667637-









HuGene_st:302338-HuGene_st:201014_s_at:264119-









HuGene_st:685936-HuGene_st:201013_s_at:171734-









HuGene_st:333427-HuGene_st








AZGP1
363333-HuGene_st:620891-HuGene_st:619378-
AZGP1:
1.31E−14
2.3989
6.19
88.5
81.3-93.5



HuGene_st:741747-HuGene_st:28018-
LOC401393








HuGene_st:594026-HuGene_st:222884-









HuGene_st:1006522-HuGene_st:974237-









HuGene_st:473891-HuGene_st:784628-









HuGene_st:488818-HuGene_st:209309_at:









217014_s_at:63620-HuGene_st:366096-









HuGene_st:950952-HuGene_st:601798-









HuGene_st:399823-HuGene_st:734365-









HuGene_st:1054227-HuGene_st








C20orf42
405380-HuGene_st:276728-HuGene_st:
C20orf42
1.38E−14
2.4573
2.78
89
 82-93.9



60228-HuGene_st:754922-HuGene_st:444538-









HuGene_st:733591-HuGene_st:159372-









HuGene_st:763243-HuGene_st:978177-









HuGene_st:752032-HuGene_st:673425-









HuGene_st:591638-HuGene_st:229545_at:









60474_at:335096-HuGene_st:1029169-









HuGene_st:326834-HuGene_st:1028510-









HuGene_st:218796_at:15777-HuGene_st:582076-









HuGene_st:455924-HuGene_st:835558-









HuGene_st:232479_at:889482-









HuGene_st:915156-HuGene_st








ECT2
770888-HuGene_st:82454-HuGene_st:171418-
ECT2
1.42E−14
2.4271
2.82
88.8
81.6-93.7



HuGene_st:52318-HuGene_st:530079-









HuGene_st:288145-HuGene_st:234992_x_at:









64803-HuGene_st:705846-HuGene_st:158755-









HuGene_st:554622-HuGene_st:237241_at:629949-









HuGene_st:222681-HuGene_st:241642-









HuGene_st:143403-HuGene_st:770445-









HuGene_st:218688-HuGene_st:700408-HuGene_st:









165018-HuGene_st:917458-HuGene_st:219787_s_at:









609829-HuGene_st:110350-HuGene_st








WDR51B
659635-HuGene_st:465621-HuGene_st:886760-
WDR51B:
1.79E−14
2.4266
2.12
88.7
81.6-93.7



HuGene_st:222145-HuGene_st:67663-
GALNT4








HuGene_st:359031-HuGene_st:36172-









HuGene_st:290669-HuGene_st:148935-









HuGene_st:41107-HuGene_st:229778-









HuGene_st:965397-HuGene_st:51869-









HuGene_st:583938-HuGene_st:640969-









HuGene_st:744231-HuGene_st:371123-









HuGene_st:1059241-HuGene_st:39345-









HuGene_st:684483-HuGene_st:231832_at:









226283_at:313270-HuGene_st








HIG2
246364-HuGene_st:881374-HuGene_st:841420-
HIG2
2.50E−14
2.366
4.25
88.2
80.9-93.3



HuGene_st:674772-HuGene_st:761463-









HuGene_st:977422-HuGene_st:470541-









HuGene_st:82081-HuGene_st:266176-









HuGene_st:127241-HuGene_st:833078-









HuGene_st:218507_at:766773-HuGene_st:153456-









HuGene_st:1554452_a_at:727443-









HuGene_st:342125-HuGene_st:921181-









HuGene_st:507618-HuGene_st:128889-









HuGene_st:786248-HuGene_st:801240-









HuGene_st:286419-HuGene_st








TACSTD2
1004611-HuGene_st:755233-HuGene_st:815649-
TACSTD2
3.13E−14
2.3686
15.71
88.2
80.9-93.3



HuGene_st:567105-HuGene_st:8281-









HuGene_st:1041491-HuGene_st:339450-









HuGene_st:227128_s_at:653539-









HuGene_st:1079680-HuGene_st:958592-









HuGene_st:202286_s_at:620831-HuGene_st:









53075-HuGene_st:1009541-









HuGene_st:861600-HuGene_st:181597-HuGene_st:









130895-HuGene_st:849592-HuGene_st








TCN1
293164-HuGene_st:505517-HuGene_st:1070815-
TCN1
4.81E−14
2.3035
15.22
87.5
 80-92.8



HuGene_st:178742-HuGene_st:286092-









HuGene_st:479663-HuGene_st:464294-









HuGene_st:243324-HuGene_st:181726-









HuGene_st:321817-HuGene_st:593508-









HuGene_st:779892-HuGene_st:1077339-









HuGene_st:951254-HuGene_st:91481-









HuGene_st:801919-HuGene_st:329572-









HuGene_st:415460-HuGene_st:611568-









HuGene_st:888427-HuGene_st:352827-









HuGene_st:205513_at








CDCA7
776822-HuGene_st:460577-HuGene_st:73904-
CDCA7:
6.41E−14
2.2638
4.27
87.1
79.6-92.5



HuGene_st:164226-HuGene_st:268581-
LOC442172








HuGene_st:1038532-HuGene_st:418719-









HuGene_st:491386-HuGene_st:701450-









HuGene_st:1021593-HuGene_st:207989-









HuGene_st:516224-HuGene_st:872337-









HuGene_st:299408-HuGene_st:46784-









HuGene_st:187234-HuGene_st:745531-









HuGene_st:754921-HuGene_st:142653-









HuGene_st:230060_at:310790-HuGene_st:









224428_s_at:929597-HuGene_st








SLC11A2
107248-HuGene_st:501575-HuGene_st:23656-
SLC11A2
7.07E−14
2.362
2.18
88.1
80.7-93.2



HuGene_st:221382-HuGene_st:774882-









HuGene_st:752508-HuGene_st:132318-









HuGene_st:1009819-HuGene_st:60401-









HuGene_st:914535-HuGene_st:1037630-









HuGene_st:519284-HuGene_st:19391-









HuGene_st:873314-HuGene_st:437100-









HuGene_st:203125_x_at:1028733-









HuGene_st:203123_s_at:1029520-









HuGene_st:1078393-HuGene_st:203124_s_at:









237106_at:357798-HuGene_st:210047_at








SCD
446192-HuGene_st:562893-HuGene_st:713000-
SCD:
1.23E−13
2.2789
4.28
87.3
79.8-92.6



HuGene_st:1054693-HuGene_st:698268-
LOC651109:








HuGene_st:1088784-HuGene_st:87215-
LOC645313








HuGene_st:64902-HuGene_st:211708_s_at:1019041-









HuGene_st:749928-HuGene_st:211162_x_at:891971-









HuGene_st:433956-HuGene_st:200831_s_at:130491-









HuGene_st:200832_s_at:214388-HuGene_st








CKS2
139489-HuGene_st:193566-HuGene_st:404458-
CKS2
2.13E−13
2.2406
4.15
86.9
79.2-92.3



HuGene_st:318195-HuGene_st:744649-









HuGene_st:710242-HuGene_st:221677-









HuGene_st:452466-HuGene_st:274401-









HuGene_st:1091509-HuGene_st:617848-









HuGene_st:871385-HuGene_st:869931-









HuGene_st:204170_s_at








TBX3
976999-HuGene_st:995051-HuGene_st:1093752-
TBX3
3.27E−13
2.249
4.94
87
79.5-92.4



HuGene_st:228344_s_at:91464-HuGene_st:185883-









HuGene_st:152524-HuGene_st:229565_x_at:761496-









HuGene_st:396474-HuGene_st:34571-HuGene_st:









862915-HuGene_st:50568-HuGene_st:229576_s_at:









1041335-HuGene_st:897089-HuGene_st:193698-









HuGene_st:222917_s_at:58151-HuGene_st:18446-









HuGene_st:821350-HuGene_st:470069-









HuGene_st:219682_s_at:243234_at:385428-









HuGene_st:872020-HuGene_st:219399-









HuGene_st:225544_at:652999-HuGene_st








CSE1L
757480-HuGene_st:23664-HuGene_st:913239-
CSE1L
7.98E−13
2.2314
2.28
86.8
79.2-92.3



HuGene_st:766409-HuGene_st:353842-









HuGene_st:248622-HuGene_st:173835-









HuGene_st:570272-HuGene_st:545123-









HuGene_st:843659-HuGene_st:313522-









HuGene_st:517527-HuGene_st:795866-









HuGene_st:485221-HuGene_st:1003371-









HuGene_st:110422-HuGene_st:564736-









HuGene_st:201112_s_at:706263-









HuGene_st:210766_s_at:224382-HuGene_st:









201111_at:985134-HuGene_st:720754-HuGene_st








PFDN4
28403-HuGene_st:31309-HuGene_st:925296-
TMEM23:
1.69E−12
2.2333
2.24
86.8
79.1-92.3



HuGene_st:587633-HuGene_st:918571-
PFDN4:








HuGene_st:547690-HuGene_st:702390-
HDAC9








HuGene_st:291601-HuGene_st:218399-









HuGene_st:990433-HuGene_st:1455-HuGene_st:









975016-HuGene_st:990960-HuGene_st:









205361_s_at:39033-HuGene_st:763499-









HuGene_st:663125-HuGene_st:20745-









HuGene_st:254305-HuGene_st:205360_at








NPDC1
907995-HuGene_st:26898-HuGene_st:921321-
NPDC1
2.66E−12
2.1699
2.53
86.1
78.3-91.7



HuGene_st:845513-HuGene_st:273361-









HuGene_st:1018950-HuGene_st:398079-









HuGene_st:268093-HuGene_st:299764-









HuGene_st:963808-HuGene_st:81566-









HuGene_st:785389-HuGene_st:951435-









HuGene_st:218086_at:1014678-HuGene_st:









304194-HuGene_st:206447-HuGene_st:914011-









HuGene_st:276494-HuGene_st:1069732-









HuGene_st:405336-HuGene_st:962827-









HuGene_st:117974-HuGene_st:554799-









HuGene_st:711186-HuGene_st:884580-









HuGene_st:351662-HuGene_st:691470-









HuGene_st:92212-HuGene_st:354271-









HuGene_st:539456-HuGene_st:125362-









HuGene_st:166269-HuGene_st:15150-









HuGene_st:586601-HuGene_st:100718-HuGene_st:









364482-HuGene_st:323014-HuGene_st:928836-









HuGene_st:229380-HuGene_st:317669-









HuGene_st:310638-HuGene_st:561684-









HuGene_st:151109-HuGene_st:432072-









HuGene_st:425009-HuGene_st:883763-









HuGene_st








TDGF1
509506-HuGene_st:636337-HuGene_st:1020236-
TDGF1:
3.07E−12
2.1179
6.33
85.5
77.7-91.3



HuGene_st:764617-HuGene_st:287790-
TDGF3








HuGene_st:206286_s_at:1012920-HuGene_st:633937-









HuGene_st:2464-HuGene_st:85190-HuGene_st








IL8
1044664-HuGene_st:714746-HuGene_st:442029-
AHNAK:
3.28E−12
2.3281
1.73
87.8
80.3-93 



HuGene_st:119200-HuGene_st:550444-
IGHG1








HuGene_st:493978-HuGene_st:713906-









HuGene_st:943156-HuGene_st:504843-









HuGene_st:501902-HuGene_st:497219-









HuGene_st:23149-HuGene_st:387164-









HuGene_st:562654-HuGene_st:1047492-









HuGene_st:538558-HuGene_st:239300-









HuGene_st:211430_s_at:390695-HuGene_st:1081759-









HuGene_st:144630-HuGene_st:661013-HuGene_st:393191-









HuGene_st:55017-HuGene_st:1005159-HuGene_st:359116-









HuGene_st:373132-HuGene_st:689050-HuGene_st:611041-









HuGene_st:715689-HuGene_st:289354-HuGene_st:820633-









HuGene_st:555788-HuGene_st:988945-HuGene_st:307991-









HuGene_st:211506_s_at:924368-HuGene_st:47911-









HuGene_st:929972-HuGene_st:561100-









HuGene_st:68522-HuGene_st:217039_x_at:









231668_x_at:1080400-HuGene_st:141662-









HuGene_st:765200-HuGene_st:648539-









HuGene_st:274868-









HuGene_st:233969_at








SERPINB5
237063-HuGene_st:329959-HuGene_st:806576-
SERPINB5
4.80E−12
2.1258
10.36
85.6
77.8-91.4



HuGene_st:690681-HuGene_st:536963-









HuGene_st:923557-HuGene_st:183189-









HuGene_st:25703-HuGene_st:959811-









HuGene_st:1087872-HuGene_st:774653-









HuGene_st:1019802-HuGene_st:909910-









HuGene_st:533096-HuGene_st:213088-









HuGene_st:387940-HuGene_st:769890-









HuGene_st:133132-HuGene_st:204855_at:806980-









HuGene_st:749473-HuGene_st:470592-









HuGene_st:254090-HuGene_st:1555551_at








MMP11
324921-HuGene_st:203877_at:718792-
MMP11
6.30E−12
2.0946
4.55
85.3
77.4-91.1



HuGene_st:935371-HuGene_st:514533-









HuGene_st:213602_s_at:671549-HuGene_st:858774-









HuGene_st:986917-HuGene_st:127919-HuGene_st:









943793-HuGene_st:670295-HuGene_st:1036101-









HuGene_st:922731-HuGene_st:203878_s_at:844472-









HuGene_st:519881-HuGene_st:203876_s_at:715236-









HuGene_st:963997-HuGene_st:155442-HuGene_st








SERPINA1
1045251-HuGene_st:994130-HuGene_st:83597-
SERPINA1
7.12E−12
2.0812
3.43
85.1
77.1-91 



HuGene_st:515713-HuGene_st:853812-









HuGene_st:1018939-HuGene_st:52824-









HuGene_st:624314-HuGene_st:75136-









HuGene_st:667302-HuGene_st:975350-









HuGene_st:616531-HuGene_st:211429_s_at:521503-









HuGene_st:1068115-HuGene_st:560886-HuGene_st:









202833_s_at:135752-HuGene_st:646987-









HuGene_st:230318_at:141207-HuGene_st:520102-









HuGene_st:228566-HuGene_st:723345-HuGene_st








LGR5
784585-HuGene_st:777519-HuGene_st:937559-
LGR5
1.10E−11
2.0623
7.89
84.9
76.9-90.8



HuGene_st:297045-HuGene_st:796093-









HuGene_st:783411-HuGene_st:876648-









HuGene_st:842003-HuGene_st:102017-









HuGene_st:562251-HuGene_st:295997-









HuGene_st:747520-HuGene_st:811121-









HuGene_st:677407-HuGene_st:522834-









HuGene_st:475414-HuGene_st:802999-









HuGene_st:1066925-HuGene_st:216864-









HuGene_st:890928-HuGene_st:179502-









HuGene_st:79633-HuGene_st:210393_at:









241266_at:213880_at








KLK11
549986-HuGene_st:890775-HuGene_st:236557-
KLK11
3.11E−11
2.0091
6.04
84.2
76.1-90.4



HuGene_st:450049-HuGene_st:1004334-









HuGene_st:1069590-HuGene_st:300088-









HuGene_st:787829-HuGene_st:220172-









HuGene_st:668386-HuGene_st:205470_s_at:232801-









HuGene_st:569957-HuGene_st:273555-









HuGene_st:471415-HuGene_st:171521-









HuGene_st:1060009-HuGene_st








QPCT
261837-HuGene_st:108729-HuGene_st:942514-
QPCT
3.46E−11
2.0418
3.03
84.6
76.6-90.6



HuGene_st:184578-HuGene_st:454020-









HuGene_st:202482-HuGene_st:1012784-









HuGene_st:854999-HuGene_st:62841-









HuGene_st:271540-HuGene_st:524919-









HuGene_st:78507-HuGene_st:89785-









HuGene_st:728309-HuGene_st:625205-









HuGene_st:170279-HuGene_st:561083-









HuGene_st:322236-HuGene_st:205174_s_at:









303448-HuGene_st








TMEPAI
69901-HuGene_st:272000-HuGene_st:290146-
TMEPAI
3.73E−11
2.0603
2.2
84.9
76.9-90.8



HuGene_st:949819-HuGene_st:38546-









HuGene_st:576310-HuGene_st:1043092-









HuGene_st:1032094-HuGene_st:54841-









HuGene_st:520417-HuGene_st:482971-









HuGene_st:390671-HuGene_st:222449_at:









217875_s_at:616128-HuGene_st:626087-









HuGene_st:452007-HuGene_st:222450_at:793710-









HuGene_st:935955-HuGene_st:190534-









HuGene_st:147633-HuGene_st:505849-









HuGene_st:108118-HuGene_st








WDR72
829740-HuGene_st:1063796-HuGene_st:725768-
WDR72
5.22E−11
1.9862
14.11
84
75.8-90.1



HuGene_st:227174_at:36564-HuGene_st:









236741_at:604794-HuGene_st:1040675-HuGene_st:









527199-HuGene_st:1052168-HuGene_st:1563874_at:









177868-HuGene_st:667158-HuGene_st:542462-









HuGene_st:136243-HuGene_st:551835-HuGene_st








UBE2S
50114-HuGene_st:827969-HuGene_st:618483-
UBE2S:
5.62E−11
1.9793
2.4
83.9
75.8-90.1



HuGene_st:403161-HuGene_st:202779_s_at:588403-
LOC731049,








HuGene_st:235992-HuGene_st:261249-
UBE2S:








HuGene_st:692372-HuGene_st:86733-
LOC731049








HuGene_st:892371-HuGene_st:415931-









HuGene_st:285497-HuGene_st:1092919-









HuGene_st:692891-HuGene_st:651401-









HuGene_st:1097987-HuGene_st:753061-









HuGene_st:989526-HuGene_st:209702-









HuGene_st:883359-HuGene_st:356270-









HuGene_st:946490-HuGene_st:975035-









HuGene_st:9564-HuGene_st








DUOX2
1099413-HuGene_st:659224-HuGene_st:156555-
DUOX2
9.34E−11
1.9359
9.27
83.3
75.1-89.6



HuGene_st:324189-HuGene_st:213344-









HuGene_st:978958-HuGene_st:301512-









HuGene_st:541945-HuGene_st:793215-









HuGene_st:791778-HuGene_st:737640-









HuGene_st:246083-HuGene_st:798367-









HuGene_st:826588-HuGene_st:442908-









HuGene_st:870549-HuGene_st:1015396-









HuGene_st:79359-HuGene_st:587684-









HuGene_st:633860-HuGene_st:659015-









HuGene_st:219727_at:307924-HuGene_st








FABP6
306586-HuGene_st:486210-HuGene_st:205174-
FABP6
1.28E−10
1.9367
3.01
83.4
75.2-89.6



HuGene_st:918118-HuGene_st:123214-









HuGene_st:776487-HuGene_st:292087-









HuGene_st:399564-HuGene_st:791516-









HuGene_st:221287-HuGene_st:288462-









HuGene_st:210445_at:86381-HuGene_st:191002-









HuGene_st:62247-HuGene_st:248143-









HuGene_st:618873-HuGene_st:117294-HuGene_st








MMP3
542596-HuGene_st:149350-HuGene_st:35444-
MMP3
1.44E−10
1.8957
15.63
82.8
74.5-89.2



HuGene_st:200029-HuGene_st:438906-









HuGene_st:357556-HuGene_st:206224-









HuGene_st:483424-HuGene_st:701539-









HuGene_st:945713-HuGene_st:766524-









HuGene_st:664043-HuGene_st:560206-









HuGene_st:191436-HuGene_st:526573-









HuGene_st:822598-HuGene_st:634624-









HuGene_st:7912-HuGene_st:392207-









HuGene_st:205828_at:134417-HuGene_st:









569533-HuGene_st








KRT23
962342-HuGene_st:65048-HuGene_st:941972-
KRT23
3.58E−10
1.887
6.81
82.7
74.4-89.1



HuGene_st:290153-HuGene_st:120900-









HuGene_st:151180-HuGene_st:980580-









HuGene_st:587527-HuGene_st:33349-









HuGene_st:439472-HuGene_st:882546-









HuGene_st:693456-HuGene_st:611219-









HuGene_st:917080-HuGene_st:890494-









HuGene_st:274715-HuGene_st:218963_s_at:









501017-HuGene_st:82313-HuGene_st:590458-









HuGene_st








MMP1
61706-HuGene_st:300572-HuGene_st:1020786-
MMP1
1.22E−09
1.8163
10.59
81.8
73.5-88.4



HuGene_st:437171-HuGene_st:671620-









HuGene_st:689073-HuGene_st:622653-









HuGene_st:958445-HuGene_st:445730-









HuGene_st:914223-HuGene_st:693724-









HuGene_st:673683-HuGene_st:524115-









HuGene_st:422476-HuGene_st:361198-









HuGene_st:710307-HuGene_st:468477-









HuGene_st:840324-HuGene_st:1070117-









HuGene_st:473664-HuGene_st:732367-









HuGene_st:204475_at:353235-HuGene_st








RP5-
538290-HuGene_st:177752-HuGene_st:428459-
RP5-
1.33E−09
1.8807
1.99
82.6
74.4-89.1


875H10.1
HuGene_st:376412-HuGene_st:769774-
875H10.1








HuGene_st:862879-HuGene_st:242626_at:811503-









HuGene_st:488462-HuGene_st:964336-









HuGene_st:498480-HuGene_st:1047616-HuGene_st:









187658-HuGene_st:201892-HuGene_st:372716-









HuGene_st:1038921-HuGene_st:930484-









HuGene_st:1569433_at:990429-HuGene_st:1077002-









HuGene_st:193834-HuGene_st:228653_at:208211-









HuGene_st








MMP12
372865-HuGene_st:108955-HuGene_st:80569-
MMP12
1.99E−09
1.7858
6.24
81.4
73-88



HuGene_st:354173-HuGene_st:1078790-









HuGene_st:969948-HuGene_st:868781-









HuGene_st:574015-HuGene_st:615370-









HuGene_st:628463-HuGene_st:515838-









HuGene_st:130587-HuGene_st:165281-









HuGene_st:49605-HuGene_st:821221-









HuGene_st:131503-HuGene_st:337285-









HuGene_st:759246-HuGene_st:1040687-









HuGene_st:204580_at








PLCB4
10322-HuGene_st:957911-HuGene_st:35530-
PLCB4
2.29E−09
1.8407
2.37
82.1
73.8-88.6



HuGene_st:107476-HuGene_st:770342-









HuGene_st:701058-HuGene_st:76455-









HuGene_st:662074-HuGene_st:330909-









HuGene_st:98190-HuGene_st:895165-









HuGene_st:120897-HuGene_st:215874-









HuGene_st:575063-HuGene_st:618779-









HuGene_st:370708-HuGene_st:874698-









HuGene_st:203896_s_at:203895_at:768644-









HuGene_st:958443-HuGene_st:976920-









HuGene_st:531382-HuGene_st:240728_at:









1024936-HuGene_st








RPESP
216316-HuGene_st:211185-HuGene_st:396353-
RPESP
2.38E−09
1.8014
9.07
81.6
73.1-88.2



HuGene_st:723267-HuGene_st:853543-









HuGene_st:472245-HuGene_st:177506-









HuGene_st:271443-HuGene_st:437371-









HuGene_st:429127-HuGene_st:1010482-









HuGene_st:629529-HuGene_st:814381-









HuGene_st:619363-HuGene_st:235209_at:









235210_s_at:296762-HuGene_st








ANLN
522941-HuGene_st:550252-HuGene_st:477118-
ANLN
4.94E−09
1.7558
2.63
81
72.5-87.7



HuGene_st:858635-HuGene_st:34728-









HuGene_st:165560-HuGene_st:226318-









HuGene_st:207100-HuGene_st:842538-









HuGene_st:343961-HuGene_st:899690-









HuGene_st:705871-HuGene_st:42619-









HuGene_st:984996-HuGene_st:733290-









HuGene_st:1008901-HuGene_st:752472-









HuGene_st:619756-HuGene_st:674545-









HuGene_st:558324-HuGene_st:261208-









HuGene_st:222608_s_at:1552619_a_at








SULF1
807443-HuGene_st:671986-HuGene_st:381424-
SULF1
9.70E−09
1.7762
1.74
81.3
72.8-87.9



HuGenez_st:187508-HuGene_st:532406-









HuGene_st:740854-HuGene_st:730003-









HuGene_st:754502-HuGene_st:20084-









HuGene_st:517026-HuGene_st:1045684-









HuGene_st:512275-HuGene_st:166879-









HuGene_st:72604-HuGene_st:34752-









HuGene_st:933799-HuGene_st:212353_at:









212354_at:1063384-HuGene_st:492122-









HuGene_st:212344_at:482916-









HuGene_st:530745-HuGene_st








CD55
422754-HuGene_st:440808-HuGene_st:531637-
CD55
1.45E−08
1.7603
2.22
81.1
72.6-87.8



HuGene_st:22645-HuGene_st:891581-









HuGene_st:980059-HuGene_st:907061-









HuGene_st:536297-HuGene_st:31908-









HuGene_st:1051267-HuGene_st:154663-









HuGene_st:688144-HuGene_st:216097-









HuGene_st:988881-HuGene_st:932482-









HuGene_st:813995-HuGene_st:449911-









HuGene_st:1555950_a_at:201926_s_at:









201925_s_at:241616_at:243395_at:630657-









HuGene_st:288375-HuGene_st:750208-









HuGene_st:241615_x_at:721979-HuGene_st








UBE2C
352222-HuGene_st:202954_at:1098731-
PAK3:
1.74E−08
1.6437
2.82
79.4
70.8-86.5



HuGene_st:627921-HuGene_st:49079-
UBE2C








HuGene_st:989700-HuGene_st:941779-









HuGene_st:9599-HuGene_st:736605-









HuGene_st:814147-HuGene_st:379525-









HuGene_st:514999-HuGene_st:634987-









HuGene_st:1070235-HuGene_st:697185-









HuGene_st:1032891-HuGene_st:827728-









HuGene_st:109552-HuGene_st:956095-









HuGene_st:489433-HuGene_st








KLK10
303816-HuGene_st:935808-HuGene_st:586276-
KLK10
2.64E−08
1.6155
4.52
79
70.3-86.1



HuGene_st:1045718-HuGene_st:209792_s_at:279985-









HuGene_st:679337-HuGene_st:542814-









HuGene_st:238963-HuGene_st:910249-









HuGene_st:1009566-HuGene_st:989821-









HuGene_st:167404-HuGene_st:140675-









HuGene_st:702375-HuGene_st:497565-









HuGene_st:868046-HuGene_st:428218-









HuGene_st:196226-HuGene_st








UBD
918426-HuGene_st:402478-HuGene_st:152370-
UBD:
4.07E−08
1.6371
6.59
79.3
70.5-86.3



HuGene_st:1031056-HuGene_st:266533-
GABBR1,








HuGene_st:338984-HuGene_st:248325-
UBD








HuGene_st:675615-HuGene_st:917763-









HuGene_st:74769-HuGene_st:435761-









HuGene_st:94745-HuGene_st:614172-









HuGene_st:871149-HuGene_st:374784-









HuGene_st:205890_s_at:757108-









HuGene_st








RRM2
158317-HuGene_st:573546-HuGene_st:788577-
RRM2
4.25E−08
1.608
2.25
78.9
70.2-86 



HuGene_st:209773_s_at:126031-HuGene_st:1064973-









HuGene_st:456984-HuGene_st:503676-









HuGene_st:236699-HuGene_st:240795-









HuGene_st:523072-HuGene_st:201890_at








FAM84A
351279-HuGene_st:452541-HuGene_st:
FAM84A:
5.97E−08
1.6052
1.73
78.9
70-86



228319_at:973835-HuGene_st:412010-
LOC653602








HuGene_st:1032585-HuGene_st:254221-









HuGene_st:948951-HuGene_st:252448-









HuGene_st:968035-HuGene_st:367165-









HuGene_st:1079872-HuGene_st:641006-









HuGene_st:104989-HuGene_st:401120-









HuGene_st:87362-HuGene_st:910211-









HuGene_st:234335_s_at:228459_at:714477-









HuGene_st:725313-HuGene_st:225667_s_at:









234331_s_at








HSPH1
74086-HuGene_st:246081-HuGene_st:887199-
HSPH1
6.17E−08
1.647
1.85
79.5
70.8-86.5



HuGene_st:430002-HuGene_st:268776-









HuGene_st:760404-HuGene_st:454747-









HuGene_st:984599-HuGene_st:205087-









HuGene_st:215482-HuGene_st:208744_x_at:









398393-HuGene_st:315510-HuGene_st:









957456-HuGene_st:468891-HuGene_st:669816-









HuGene_st:1086868-HuGene_st:774542-









HuGene_st:160544-HuGene_st:1033297-









HuGene_st:977601-HuGene_st:206976_s_at:









363341-HuGene_st








IGFBP2
50377-HuGene_st:401927-HuGene_st:845904-
IGFBP2
8.07E−08
1.6359
1.93
79.3
70.6-86.3



HuGene_st:601554-HuGene_st:398340-









HuGene_st:314502-HuGene_st:218007-









HuGene_st:686058-HuGene_st:788427-









HuGene_st:964835-HuGene_st:376015-









HuGene_st:1093382-HuGene_st:202718_at:









303829-HuGene_st:1089028-HuGene_st:









439677-HuGene_st:715676-HuGene_st:









801130-HuGene_st:696938-HuGene_st:224352-









HuGene_st:983285-HuGene_st








COL12A1
405565-HuGene_st:874183-HuGene_st:1057284-
TMEM30A:
9.48E−08
1.6377
3.16
79.4
70.7-86.3



HuGene_st:234951_s_at:180263-HuGene_st:905983-
COL12A1








HuGene_st:140178-HuGene_st:620694-









HuGene_st:913204-HuGene_st:1063560-









HuGene_st:289954-HuGene_st:567963-









HuGene_st:319853-HuGene_st:1009559-









HuGene_st:415220-HuGene_st:419264-









HuGene_st:31736-HuGene_st:303383-









HuGene_st:231766_s_at:595404-









HuGene_st:435472-HuGene_st:447689-









HuGene_st:759154-HuGene_st:794749-









HuGene_st:225664_at:231879_at








BGN
279145-HuGene_st:429977-HuGene_st:45294-
BGN
1.01E−07
1.594
2.69
78.7
  70-85.8



HuGene_st:722197-HuGene_st:171694-









HuGene_st:643594-HuGene_st:201262_s_at:









1090822-HuGene_st:497499-









HuGene_st:1051954-HuGene_st:381650-









HuGene_st:978124-HuGene_st:422042-









HuGene_st:1096605-HuGene_st:861988-









HuGene_st:973749-HuGene_st:164623-









HuGene_st:213905_x_at:838396-









HuGene_st:11448-HuGene_st:201261_x_at:









987820-HuGene_st:111675-HuGene_st:









298959-HuGene_st








RFC3
848747-HuGene_st:3592-HuGene_st:785802-
RFC3
1.25E−07
1.551
2.25
78.1
69.2-85.3



HuGene_st:404399-HuGene_st:837611-









HuGene_st:815998-HuGene_st:697366-









HuGene_st:133672-HuGene_st:180712-









HuGene_st:435344-HuGene_st:756480-









HuGene_st:567461-HuGene_st:204128_s_at:898295-









HuGene_st:952352-HuGene_st:976745-









HuGene_st:665489-HuGene_st:11314-









HuGene_st:204127_at








LY6G6D
80885-HuGene_st:260184-HuGene_st:222480-
C6orf21:
1.34E−07
1.5536
6.64
78.1
69.3-85.4



HuGene_st:123649-HuGene_st:290348-
LY6G6D,








HuGene_st:207457_s_at:263557-
C6orf21:








HuGene_st:49853-HuGene_st:556933-
LY6G6D,








HuGene_st:153804-HuGene_st:89374-
C6orf21:








HuGene_st:738758-HuGene_st:883797-
LY6G6D








HuGene_st:649378-HuGene_st:787525-









HuGene_st:974035-HuGene_st:722632-









HuGene_st:736016-HuGene_st:254189-









HuGene_st:152334-HuGene_st:318378-









HuGene_st:35133-HuGene_st








TPX2
210052_s_at:626194-HuGene_st:116965-
TPX2
1.56E−07
1.6664
2.03
79.8
71.1-86.7



HuGene_st:631447-HuGene_st:218832-









HuGene_st:835196-HuGene_st:865389-









HuGene_st:784001-HuGene_st:653583-









HuGene_st:150197-HuGene_st:583927-









HuGene_st:501611-HuGene_st:1101424-









HuGene_st:715774-HuGene_st:1097812-









HuGene_st:290350-HuGene_st:325542-









HuGene_st:635970-HuGene_st:157916-









HuGene_st:918534-HuGene_st:787891-HuGene_st








PLAU
131855-HuGene_st:471777-HuGene_st:246040-
PLAU
2.25E−07
1.5372
3.5
77.9
69.1-85.2



HuGene_st:31176-HuGene_st:323438-HuGene_st:









211668_s_at:1027344-HuGene_st:1076162-









HuGene_st:186016-HuGene_st:156254-









HuGene_st:692506-HuGene_st:783863-









HuGene_st:52541-HuGene_st:738306-









HuGene_st:611756-HuGene_st:7925-









HuGene_st:1085903-HuGene_st:585614-









HuGene_st:205479_s_at:410729-HuGene_st:390198-









HuGene_st:1043179-HuGene_st:708663-









HuGene_st:589365-HuGene_st








RDHE2
533383-HuGene_st:530222-HuGene_st:515817-
RDHE2
2.71E−07
1.5509
2.52
78.1
69.2-85.3



HuGene_st:163536-HuGene_st:229834-









HuGene_st:178723-HuGene_st:795130-









HuGene_st:850113-HuGene_st:964061-









HuGene_st:314806-HuGene_st:905527-









HuGene_st:740748-HuGene_st:581500-









HuGene_st:238017_at:133825-HuGene_st:









320855-HuGene_st:855530-HuGene_st:945673-









HuGene_st:436054-HuGene_st:665205-HuGene_st








COL11A1
254341-HuGene_st:485975-HuGene_st:869898-
COL111A1
2.93E−07
1.5722
2.6
78.4
69.6-85.5



HuGene_st:755872-HuGene_st:2674-









HuGene_st:230890-HuGene_st:6042-









HuGene_st:1100922-HuGene_st:800510-









HuGene_st:64257-HuGene_st:301971-









HuGene_st:360139-HuGene_st:549979-









HuGene_st:603002-HuGene_st:756718-









HuGene_st:1043994-HuGene_st:198973-









HuGene_st:550144-HuGene_st:986684-









HuGene_st:743059-HuGene_st:708360-









HuGene_st:575064-HuGene_st:633985-









HuGene_st:392228-HuGene_st:204320_at:









121425-HuGene_st:468885-HuGene_st:20543-









HuGene_st:170503-HuGene_st








CDC2
1086386-HuGene_st:472750-HuGene_st:503957-
CDC2
3.58E−07
1.5339
2.72
77.8
 69-85.1



HuGene_st:486448-HuGene_st:210559_s_at:601189-









HuGene_st:231534_at:251684-HuGene_st:1039286-









HuGene_st:373877-HuGene_st:490933-









HuGene_st:913358-HuGene_st:714839-









HuGene_st:203214_x_at:428760-









HuGene_st:203213_at:217937-









HuGene_st:922512-HuGene_st:422389-









HuGene_st:44156-HuGene_st:15376-









HuGene_st:576658-HuGene_st:302174-









HuGene_st:127098-HuGene_st








DUSP27
612025-HuGene_st:737703-HuGene_st:124098-
DUSP27
4.68E−07
1.5106
4.81
77.5
68.6-84.8



HuGene_st:102948-HuGene_st:35826-









HuGene_st:226732-HuGene_st:513585-









HuGene_st:135885-HuGene_st:737040-









HuGene_st:446627-HuGene_st:724445-









HuGene_st:289189-HuGene_st:5396-









HuGene_st:520095-HuGene_st:172210-









HuGene_st:277848-HuGene_st:312172-









HuGene_st:903613-HuGene_st:232252_at:303717-









HuGene_st:846174-HuGene_st








LOC541471
276744-HuGene_st:644672-HuGene_st:812194-
MGC4677,
7.40E−07
1.4932
2.04
77.2
68.3-84.6



HuGene_st:279980-HuGene_st:225799_at:624891-
MGC4677:








HuGene_st:149287-HuGene_st:277416-
LOC541471








HuGene_st:709116-HuGene_st:236489-









HuGene_st:873188-HuGene_st:129947-HuGene_st:









569637-HuGene_st:916693-









HuGene_st:469295-HuGene_st








SPINK1
366191-HuGene_st:47871-HuGene_st:365962-
SPINK1
1.70E−06
1.4805
2.74
77
68.1-84.4



HuGene_st:427748-HuGene_st:190115-









HuGene_st:393701-HuGene_st:206239_s_at:67198-









HuGene_st:507942-HuGene_st:547524-









HuGene_st:755318-HuGene_st:814516-









HuGene_st:511654-HuGene_st:159182-









HuGene_st:250165-HuGene_st:381410-









HuGene_st:85856-HuGene_st:199974-









HuGene_st:97379-HuGene_st:620717-









HuGene_st:1058758-HuGene_st:267993-









HuGene_st:371764-HuGene_st








C14orf94
225806_at:243446_at:88782-HuGene_st:537586-
C14orf94
2.40E−06
1.653
1.19
79.6
70.8-86.5



HuGene_st:973643-HuGene_st:646464-









HuGene_st:729584-HuGene_st:973338-









HuGene_st:95576-HuGene_st:301260-









HuGene_st:559586-HuGene_st:942952-









HuGene_st:82798-HuGene_st:218383_at: 165751-









HuGene_st:965936-HuGene_st:31043-









HuGene_st:650638-HuGene_st:984201-









HuGene_st:925802-HuGene_st:306659-









HuGene_st:345230-HuGene_st








MSLN
63302-HuGene_st:821643-HuGene_st:99135-
MSLN
3.78E−06
1.4279
1.93
76.2
67.2-83.8



HuGene_st:192667-HuGene_st:765000-









HuGene_st:44188-HuGene_st:59621-









HuGene_st:465236-HuGene_st:559922-









HuGene_st:82252-HuGene_st:1039687-









HuGene_st:1053735-HuGene_st:204885_s_at:









870302-HuGene_st:246473-









HuGene_st:58043-HuGene_st:122629-









HuGene_st:826602-HuGene_st:689741-









HuGene_st:931732-HuGene_st:227498-HuGene_st








LOXL2
818138-HuGene_st:46172-HuGene_st:346541-
ENTPD4:LOXL2
4.81E−06
1.373
2.19
75.4
66.3-82.9



HuGene_st:281266-HuGene_st:202998_s_at:









1074111-HuGene_st:228808_s_at:271051-









HuGene_st:827532-HuGene_st:228823-









HuGene_st:950166-HuGene_st:254550-









HuGene_st:260752-HuGene_st:937941-









HuGene_st:328673-HuGene_st:966956-









HuGene_st:84360-HuGene_st:34062-









HuGene_st:291104-HuGene_st:898787-









HuGene_st:202997_s_at:626390-









HuGene_st:929733-HuGene_st








APOBEC1
735977-HuGene_st:188849-HuGene_st:423265-
APOBEC1
9.49E−06
1.3847
1.63
75.6
66.5-83.1



HuGene_st:882201-HuGene_st:237979-









HuGene_st:708999-HuGene_st:293863-









HuGene_st:372914-HuGene_st:237042-









HuGene_st:207158_at:1080489-HuGene_st:









815110-HuGene_st:417875-HuGene_st:745636-









HuGene_st:34403-HuGene_st:650730-









HuGene_st:164111-HuGene_st:360993-









HuGene_st








MLPH
549562-HuGene_st:92890-HuGene_st:305885-
MLPH
1.16E−05
1.4174
1.47
76.1
67.1-83.6



HuGene_st:709610-HuGene_st:337433-









HuGene_st:128794-HuGene_st:824637-









HuGene_st:131043-HuGene_st:702794-









HuGene_st:533212-HuGene_st:398611-









HuGene_st:423382-HuGene_st:865544-









HuGene_st:546078-HuGene_st:505182-









HuGene_st:400420-HuGene_st:316126-









HuGene_st:586617-HuGene_st:506198-









HuGene_st:218211_s_at:229150_at:









976628-HuGene_st








HOXB6
339062-HuGene_st:885612-HuGene_st:1075575-
HOXB6
1.33E−05
1.3346
1.87
74.8
65.6-82.4



HuGene_st:746940-HuGene_st:103632-









HuGene_st:883931-HuGene_st:552163-









HuGene_st:249935-HuGene_st:726433-









HuGene_st:31257-HuGene_st:242080-









HuGene_st:630137-HuGene_st:959882-









HuGene_st:546294-HuGene_st:241578-









HuGene_st:142774-HuGene_st:881260-









HuGene_st:290100-HuGene_st:447667-









HuGene_st:205366_s_at:299629-









HuGene_st:831836-HuGene_st








CTHRC1
235232-HuGene_st:86783-HuGene_st:426340-
CTHRC1
1.83E−05
1.2895
2.57
74
64.9-81.8



HuGene_st:385407-HuGene_st:647908-









HuGene_st:756615-HuGene_st:978256-









HuGene_st:651961-HuGene_st:193568-









HuGene_st:310105-HuGene_st:393578-









HuGene_st








REG3A
290546-HuGene_st:265033-HuGene_st:385905-
REG3A
2.22E−05
1.2218
12.09
72.9
63.7-80.8



HuGene_st:459677-HuGene_st:230871-









HuGene_st:214805-HuGene_st:1060074-









HuGene_st:816902-HuGene_st:1092213-









HuGene_st:942177-HuGene_st:191737-HuGene_st:









729928-HuGene_st:205815_at:256155-









HuGene_st:677349-HuGene_st








CXCL5
264137-HuGene_st:272626-HuGene_st:745715-
CXCL5
2.79E−05
1.2805
4.48
73.9
64.8-81.7



HuGene_st:968572-HuGene_st:1054472-









HuGene_st:394185-HuGene_st:181128-









HuGene_st:456756-HuGene_st:415578-









HuGene_st:215101_s_at:214974_x at:935926-









HuGene_st:781518-HuGene_st:235326-HuGene_st:









941963-HuGene_st:242589-HuGene_st:798477-









HuGene_st:257906-HuGene_st:350119-









HuGene_st:222708-HuGene_st








CDH11
167614-HuGene_st:234040-HuGene_st:609892-
CDH11
3.44E−05
1.2652
2.25
73.7
64.4-81.5



HuGene_st:583244-HuGene_st:863670-









HuGene_st:599824-HuGene_st:142981-









HuGene_st:96018-HuGene_st:217538-









HuGene_st:634855-HuGene_st:60296-









HuGene_st:546348-HuGene_st:206371-









HuGene_st:960949-HuGene_st:353648-









HuGene_st:184349-HuGene_st:356919-









HuGene_st:611963-HuGene_st:626011-









HuGene_st:543798-HuGene_st:









207173_x_at:207172 s at








FAP
993707-HuGene_st:132558-HuGene_st:581008-
IFIH1:
6.66E−05
1.2541
2.33
73.5
64.2-81.3



HuGene_st:209955_s_at:600137-
FAP








HuGene_st:284881-HuGene_st:40379-









HuGene_st_








REG1B
796972-HuGene_st:1089426-HuGene_st:762519-
REG1B
8.08E−05
1.1728
13.15
72.1
62.8-80.1



HuGene_st:270006-HuGene_st:553619-









HuGene_st:279169-HuGene_st:342759-









HuGene_st:337497-HuGene_st:898145-









HuGene_st:603979-HuGene_st:134214-









HuGene_st:469380-HuGene_st:332107-









HuGene_st:608771-HuGene_st:965588-









HuGene_st:205886_at:1010838-HuGene_st:714363-









HuGene_st:29068-HuGene_st:215693-HuGene_st








COMP
401785-HuGene_st:710767-HuGene_st:996888-
COMP
0.0001
1.1565
1.69
71.8
62.6-79.9



HuGene_st:348725-HuGene_st:492440-









HuGene_st:307171-HuGene_st:121009-









HuGene_st:205713_s_at








AURKA
147919-HuGene_st:826493-HuGene_st:453415-
AURKA:
0.0001
1.1173
1.81
71.2
61.8-79.3



HuGene_st:126529-HuGene_st:799451-
STK6P








HuGene_st:673418-HuGene_st:571370-









HuGene_st:470643-HuGene_st:926370-









HuGene_st:93908-HuGene_st:426906-









HuGene_st:636365-HuGene_st:326617-









HuGene_st:208080_at:582788-HuGene_st:647783-









HuGene_st:458308-HuGene_st:204092_s_at:121857-









HuGene_st:1059753-HuGene_st:70315-









HuGene_st








SQLE
181699-HuGene_st:213577_at:285928-
SQLE
0.0001
1.1354
2.69
71.5
62.1-79.6



HuGene_st:367103-HuGene_st:827097-









HuGene_st:213562_s_at:819545-HuGene_st:354972-









HuGene_st:779168-HuGene_st:1010566-









HuGene_st:47822-HuGene_st:861626-









HuGene_st:895693-HuGene_st:94812-









HuGene_st:967759-HuGene_st:625566-









HuGene_st:890030-HuGene_st:566347-









HuGene_st:296617-HuGene_st:894379-









HuGene_st:1023221-HuGene_st:198540-









HuGene_st:117280-HuGene_st








L1TD1
859419-HuGene_st:968483-HuGene_st:1010927-
L1TD1
0.0002
1.1589
2.36
71.9
62.6-79.9



HuGene_st:236894_at:715579-HuGene_st:540230-









HuGene_st:414266-HuGene_st:572495-









HuGene_st:327643-HuGene_st:1058922-









HuGene_st:18534-HuGene_st:1063550-









HuGene_st:1030986-HuGene_st:842123-









HuGene_st:709222-HuGene_st:887612-









HuGene_st:219955_at:496121-HuGene_st:









942986-HuGene_st:799837-HuGene_st








SERPINE2
443903-HuGene_st:959444-HuGene_st:48734-
SERPINE2
0.0002
1.1283
1.9
71.4
62.1-79.4



HuGene_st:664848-HuGene_st:1052179-









HuGene_st:227487_s_at:902213-HuGene_st:621638-









HuGene_st:230208-HuGene_st:14188-HuGene_st:









854259-HuGene_st:929830-HuGene_st:670835-









HuGene_st:48860-HuGene_st:31861-HuGene_st:









722385-HuGene_st:1057158-HuGene_st:466703-









HuGene_st:10961-HuGene_st:824130-









HuGene_st:347407-HuGene_st:205406-HuGene_st








CEL
1553970_s_at: 898561-HuGene_st:857424-
CEL
0.0006
1.0863
1.46
70.6
61.3-78.8



HuGene_st:456577-HuGene_st:1035054-









HuGene_st:539061-HuGene_st:788693-









HuGene_st:314198-HuGene_st:786044-









HuGene_st:205910_s_at:958725-HuGene_st:473620-









HuGene_st:74757-HuGene_st:169727-









HuGene_st:711091-HuGene_st:461956-









HuGene_st:897116-HuGene_st:911062-









HuGene_st:796522-HuGene_st








LILRB1
213975_s_at
LILRA1:
0.0013
1.0781
1.55
70.5
61.1-78.7




LILRB1







COL1A1
487433-HuGene_st:719132-
COL1A1
0.0018
1.0063
2.5
69.3
59.9-77.6



HuGene_st:1556499_s_at:202311_s_at:









202310_s_at:1003153-









HuGene_st:1029566-HuGene_st








COL5A2
292241-HuGene_st
COL5A2
0.0026
1.0556
1.36
70.1
60.8-78.3


PCSK1
981596-HuGene_st:31911-HuGene_st:701212-
PCSK1
0.0029
1.1077
1.48
71
61.7-79.1



HuGene_st:673651-HuGene_st:166044-









HuGene_st:989024-HuGene_st:1039153-









HuGene_st:688811-HuGene_st:1068709-









HuGene_st:1083910-HuGene_st:527047-









HuGene_st:994213-HuGene_st:190818-









HuGene_st:785459-HuGene_st:127562-









HuGene_st:1012339-HuGene_st:343010-









HuGene_st:109185-HuGene_st:115345-









HuGene_st:470044-HuGene_st:856975-









HuGene_st:454100-HuGene_st








PCCA
54827-HuGene_st:1042448-HuGene_st:175778-
PCCA
0.0038
0.939
1.42
68.1
58.6-76.5



HuGene_st:203860_at








H19
634871-HuGene_st:51379-HuGene_st:803516-
RPS12:
0.0051
1.0228
1.47
69.5
60.2-77.8



HuGene_st:336451-HuGene_st:254511-
H19








HuGene_st:632993-HuGene_st








COL10A1
288876-HuGene_st:815716-
COL10A1
0.0143
0.8493
2.05
66.4
56.9-74.9



HuGene_st:615071-HuGene_st:865385-









HuGene_st:1067078-HuGene_st








CYP3A5
NA
CYP3A5:
0.0562
0.8249
1.58
66
56.5-74.6




CYP3A7







CYP3A5P2
NA
CYP3A5:
0.0562
0.8246
1.58
66
56.5-74.6




CYP3A7







SLITRK6
NA
SLITRK6
0.0576
0.8687
1.31
66.8
57.3-75.3


SPARC
NA
SPARC
0.0684
0.6714
1.45
63.1
53.6-72  


CTSE
NA
CTSE
0.0694
0.7465
1.83
64.6
 55-73.3


HOXA9
NA
HOXA9
0.0759
0.7505
1.41
64.6
55.1-73.3


SFRP4
NA
SFRP4
0.0829
0.6983
1.29
63.7
 54-72.4


COL1A2
NA
COL1A2:
0.1891
0.6508
1.9
62.8
53.1-71.6




LOC728628







THBS2
NA
THBS2
0.9844
0.2782
1.26
55.5
45.9-64.8






















TABLE 3







Signif.


Sens-



TargetPS
Symbol
FDR
D.val5
FC
Spec
CI (95)





















217523_at
MAPK10:CD44
3.35E−26
3.7166
7.06
96.8
92.9-98.8


204702_s_at
LOC650331:NFE2L3:LOC642996
1.51E−24
3.521
4.57
96.1
91.7-98.4


207850_at
CXCL2:CXCL3
5.76E−22
3.2893
7.85
95
  90-97.8


204259_at
MMP7
7.61E−22
3.2634
69.29
94.9
89.8-97.7


228915_at
DACH1
1.05E−18
2.9232
5.81
92.8
86.9-96.5


241031_at
NLF1
3.12E−18
2.8001
8.12
91.9
85.7-95.9


223062_s_at
LOC651255:PSAT1:LOC389173:LOC729779:
3.32E−15
2.4882
5.52
89.3
82.3-94.2



C8orf62


206224_at
CST1
7.04E−15
2.4165
13.01
88.7
81.5-93.6


209309_at
AZGP1:LOC401393
1.31E−14
2.3986
6.19
88.5
81.3-93.5


219787_s_at
ECT2
1.42E−14
2.4245
2.82
88.7
81.6-93.7


202286_s_at
TACSTD2
3.13E−14
2.3676
15.71
88.2
80.9-93.3


227140_at
No Symbol
9.19E−12
2.1522
1.61
85.9
78.2-91.6


229802_at
No Symbol
9.19E−12
2.1536
1.61
85.9
78.2-91.6


213880_at
LGR5
1.10E−11
2.0621
7.89
84.9
76.9-90.8


205174_s_at
QPCT
3.46E−11
2.0422
3.03
84.6
76.7-90.6


238021_s_at
LOC643911
3.73E−11
1.6459
1.33
79.5
70.8-86.5


227174_at
WDR72
5.22E−11
1.9854
14.11
84
75.8-90.1


238984_at
REG4
5.97E−10
1.8033
7.75
81.6
73.2-88.3


204475_at
MMP1
1.22E−09
1.8138
10.59
81.8
73.4-88.4


222608_s_at
ANLN
4.94E−09
1.7541
2.63
81
72.4-87.7


211506_s_at
LOC652128:IGHG1:IGHM:IGHV4-
1.99E−07
1.6343
3.1
79.3
70.6-86.3



31:LOC647189:IGHV1-



69:IGHA1:IL8:EXOC7:SIX6:IGHD:



IGH@:IGHG3:C12orf32:ZCWPW2:



IFI6:IGHG4:IGHA2:IGHG2:RAC1


204320_at
COL11A1
2.93E−07
1.5718
2.6
78.4
69.6-85.6


37892_at
COL11A1
2.93E−07
1.5707
2.6
78.4
69.6-85.6


232252_at
DUSP27
4.68E−07
1.5112
4.81
77.5
68.6-84.8


225806_at
C14orf94
2.40E−06
1.6519
1.19
79.6
70.9-86.6


204885_s_at
MSLN
3.78E−06
1.4266
1.93
76.2
67.2-83.7


214974_x_at
CXCL5
2.79E−05
1.2818
4.48
73.9
64.7-81.6


236894_at
L1TD1
0.0002
1.1596
2.36
71.9
62.6-79.9


205910_s_at
CEL
0.0006
1.0869
1.46
70.7
61.3-78.8


202311_s_at
COL1A1
0.0018
1.0054
2.5
69.2
59.9-77.6


205825_at
PCSK1
0.0029
1.1086
1.48
71
61.7-79.1


226237_at
COL8A1
0.0254
0.8303
1.43
66.1
56.6-74.7


235976_at
SLITRK6
0.0576
0.8689
1.31
66.8
57.2-75.3























TABLE 4





Gene


Signif.


Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
D.val5
FC
Spec
(95)






















CD44
366106-HuGene_st:314808-HuGene_st:59730-
MAPK10:CD44
3.35E−26
3.7136
7.06
96.8
92.9-98.8



HuGene_st:599371-HuGene_st:391296-



HuGene_st:1031797-HuGene_st:314340-



HuGene_st:10723-HuGene_st:950067-



HuGene_st:282016-HuGene_st:480680-



HuGene_st:69560-HuGene_st:388781-



HuGene_st:243049-HuGene_st:374652-



HuGene_st:194553-HuGene_st:1075454-



HuGene_st:204489_s_at:619139-



HuGene_st:210916_s_at:542762-



HuGene_st:1557905_s_at:212014_x_at:229221_at:



204490_s_at:234418_x_at:209835_x_at:212063_at:



216062_at:777408-



HuGene_st:234411_x_at:217523_at:216056_at:



1565868_at:83114-HuGene_st


NFE2L3
95873-HuGene_st:1058969-HuGene_st:86088-
LOC650331:NFE2L3:
1.51E−24
3.5213
4.57
96.1
91.6-98.4



HuGene_st:1093456-HuGene_st:347351-
LOC642996



HuGene_st:878719-HuGene_st:880179-



HuGene_st:240089_at:822197-



HuGene_st:873612-HuGene_st:517821-



HuGene_st:489354-HuGene_st:20603-



HuGene_st:204702_s_at


MMP7
267137-HuGene_st:1068392-
MMP7
7.61E−22
3.2652
69.29
94.9
89.8-97.8



HuGene_st:794865-HuGene_st:876922-



HuGene_st:669567-HuGene_st:1039935-



HuGene_st:514120-HuGene_st:1092830-



HuGene_st:745768-HuGene_st:272260-



HuGene_st:30733-HuGene_st:401681-



HuGene_st:854024-HuGene_st:221616-



HuGene_st:805045-HuGene_st:783838-



HuGene_st:204259_at:934756-



HuGene_st:446688-HuGene_st:10259-



HuGene_st:267021-HuGene_st:889042-



HuGene_st


CXCL3
11327-HuGene_st:626337-HuGene_st:322604-
CXCL2:CXCL3
1.95E−21
3.2907
7.85
95

90-97.8




HuGene_st:256806-HuGene_st:261067-



HuGene_st:448247-HuGene_st:666569-



HuGene_st:222646-HuGene_st:262117-



HuGene_st:798675-HuGene_st:391369-



HuGene_st:865299-HuGene_st:877897-



HuGene_st:575433-HuGene_st:43120-



HuGene_st:42070-HuGene_st:33632-



HuGene_st:965957-HuGene_st:556939-



HuGene_st:26460-HuGene_st:796450-



HuGene_st:230101_at:541868-



HuGene_st:490134-HuGene_st:1064107-



HuGene_st:230192-HuGene_st:645829-



HuGene_st:455502-HuGene_st:249140-



HuGene_st:906606-HuGene_st:1098767-



HuGene_st:721989-HuGene_st:500578-



HuGene_st:33301-



HuGene_st:207850_at:622384-



HuGene_st:209774_x_at:432036-



HuGene_st:30559-HuGene_st:187557-



HuGene_st:1101027-HuGene_st:1038334-



HuGene_st:260925-HuGene_st:515662-



HuGene_st:258081-



HuGene_st:1569203_at:280828-



HuGene_st:1000069-HuGene_st:509822-



HuGene_st:890213-HuGene_st:739461-



HuGene_st:342746-HuGene_st:98929-



HuGene_st:818131-HuGene_st:1091592-



HuGene_st:420504-HuGene_st:41644-



HuGene_st:655278-HuGene_st:188562-



HuGene_st:458602-HuGene_st


DACH1
686187-HuGene_st:985190-
DACH1
1.05E−18
2.9206
5.81
92.8
86.9-96.5



HuGene_st:1011822-HuGene_st:1092705-



HuGene_st:693255-HuGene_st:722787-



HuGene_st:465556-HuGene_st:113230-



HuGene_st:49101-HuGene_st:290879-



HuGene_st:646013-HuGene_st:3984-



HuGene_st:378631-HuGene_st:1002554-



HuGene_st:620749-HuGene_st:802309-



HuGene_st:82679-



HuGene_st:205471_s_at:303920-



HuGene_st:338273-HuGene_st:20454-



HuGene_st:1567100_at:205472_s_at:



228915_at:562342_at:169641-



HuGene_st:984254-HuGene_st:1567101_at


NLF1
269939-HuGene_st:314919-
NLF1
3.12E−18
2.8001
8.12
91.9
85.7-95.9



HuGene_st:552234-HuGene_st:622058-



HuGene_st:68900-HuGene_st:376228-



HuGene_st:194806-HuGene_st:923707-



HuGene_st:745661-HuGene_st:996995-



HuGene_st:534469-HuGene_st:560627-



HuGene_st:711203-



HuGene_st:241031_at:93378-



HuGene_st:611899-HuGene_st:57671-



HuGene_st:443570-HuGene_st:231416-



HuGene_st


PSAT1
139416-HuGene_st:795030-
LOC651255:PSAT1:
3.32E−15
2.4883
5.52
89.3
82.3-94.1



HuGene_st:160439-HuGene_st:322148-
LOC389173:LOC729779:



HuGene_st:85375-HuGene_st:223335-
C8orf62



HuGene_st:2658-HuGene_st:399855-



HuGene_st:220892_s_at:941491-



HuGene_st:1017348-HuGene_st:856207-



HuGene_st:194347-HuGene_st:553133-



HuGene_st:223062_s_at:987517-



HuGene_st:336174-HuGene_st


CST1
95123-HuGene_st:125297-HuGene_st:235257-
CST1
7.04E−15
2.4165
13.01
88.7
81.5-93.7



HuGene_st:102028-HuGene_st:291462-



HuGene_st:206224_at:906914-



HuGene_st:936009-HuGene_st:1055285-



HuGene_st


AZGP1
363333-HuGene_st:620891-
AZGP1:LOC401393
1.31E−14
2.3984
6.19
88.5
81.3-93.5



HuGene_st:619378-HuGene_st:741747-



HuGene_st:28018-HuGene_st:594026-



HuGene_st:222884-HuGene_st:1006522-



HuGene_st:974237-HuGene_st:473891-



HuGene_st:784628-HuGene_st:488818-



HuGene_st:209309_at:217014_s_at:63620-



HuGene_st:366096-HuGene_st:950952-



HuGene_st:601798-HuGene_st:399823-



HuGene_st:734365-HuGene_st:1054227-



HuGene_st


ECT2
770888-HuGene_st:82454-HuGene_st:171418-
ECT2
1.42E−14
2.4269
2.82
88.8
81.6-93.7



HuGene_st:52318-HuGene_st:530079-



HuGene_st:288145-



HuGene_st:234992_x_at:64803-



HuGene_st:705846-HuGene_st:158755-



HuGene_st:554622-



HuGene_st:237241_at:629949-



HuGene_st:222681-HuGene_st:241642-



HuGene_st:143403-HuGene_st:770445-



HuGene_st:218688-HuGene_st:700408-



HuGene_st:165018-HuGene_st:917458-



HuGene_st:219787_s_at:609829-



HuGene_st:110350-HuGene_st


TACSTD2
1004611-HuGene_st:755233-
TACSTD2
3.13E−14
2.3693
15.71
88.2
80.9-93.3



HuGene_st:815649-HuGene_st:567105-



HuGene_st:8281-HuGene_st:1041491-



HuGene_st:339450-



HuGene_st:227128_s_at:653539-



HuGene_st:1079680-HuGene_st:958592-



HuGene_st:202286_s_at:620831-



HuGene_st:53075-HuGene_st:1009541-



HuGene_st:861600-HuGene_st:181597-



HuGene_st:130895-HuGene_st:849592-



HuGene_st


IL8
1044664-HuGene_st:714746-
AHNAK:IGHG1
3.28E−12
2.3273
1.73
87.8
80.3-93



HuGene_st:442029-HuGene_st:119200-



HuGene_st:550444-HuGene_st:493978-



HuGene_st:713906-HuGene_st:943156-



HuGene_st:504843-HuGene_st:501902-



HuGene_st:497219-HuGene_st:23149-



HuGene_st:387164-HuGene_st:562654-



HuGene_st:1047492-HuGene_st:538558-



HuGene_st:239300-



HuGene_st:211430_s_at:390695-



HuGene_st:1081759-HuGene_st:144630-



HuGene_st:661013-HuGene_st:393191-



HuGene_st:55017-HuGene_st:1005159-



HuGene_st:359116-HuGene_st:373132-



HuGene_st:689050-HuGene_st:611041-



HuGene_st:715689-HuGene_st:289354-



HuGene_st:820633-HuGene_st:555788-



HuGene_st:988945-HuGene_st:307991-



HuGene_st:211506_s_at:924368-



HuGene_st:47911-HuGene_st:929972-



HuGene_st:561100-HuGene_st:68522-



HuGene_st:217039_x_at:231668_x_at:1080400-



HuGene_st:141662-HuGene_st:765200-



HuGene_st:648539-HuGene_st:274868-



HuGene_st:233969_at


LGR5
784585-HuGene_st:777519-
LGR5
1.10E−11
2.0645
7.89
84.9
76.9-90.8



HuGene_st:937559-HuGene_st:297045-



HuGene_st:796093-HuGene_st:783411-



HuGene_st:876648-HuGene_st:842003-



HuGene_st:102017-HuGene_st:562251-



HuGene_st:295997-HuGene_st:747520-



HuGene_st:811121-HuGene_st:677407-



HuGene_st:522834-HuGene_st:475414-



HuGene_st:802999-HuGene_st:1066925-



HuGene_st:216864-HuGene_st:890928-



HuGene_st:179502-HuGene_st:79633-



HuGene_st:210393_at:241266_at:213880_at


QPCT
261837-HuGene_st:108729-
QPCT
3.46E−11
2.0415
3.03
84.6
76.7-90.6



HuGene_st:942514-HuGene_st:184578-



HuGene_st:454020-HuGene_st:202482-



HuGene_st:1012784-HuGene_st:854999-



HuGene_st:62841-HuGene_st:271540-



HuGene_st:524919-HuGene_st:78507-



HuGene_st:89785-HuGene_st:728309-



HuGene_st:625205-HuGene_st:170279-



HuGene_st:561083-HuGene_st:322236-



HuGene_st:205174_s_at:303448-HuGene_st


WDR72
829740-HuGene_st:1063796-
WDR72
5.22E−11
1.9856
14.11
84
75.9-90



HuGene_st:725768-



HuGene_st:227174_at:36564-



HuGene_st:236741_at:604794-



HuGene_st:1040675-HuGene_st:527199-



HuGene_st:1052168-



HuGene_st:1563874_at:177868-



HuGene_st:667158-HuGene_st:542462-



HuGene_st:136243-HuGene_st:551835-



HuGene_st


REG4
186424-HuGene_st:382639-
REG4
5.97E−10
1.8057
7.75
81.7
73.3-88.3



HuGene_st:931162-HuGene_st:400261-



HuGene_st:638045-HuGene_st:852602-



HuGene_st:628254-HuGene_st:849775-



HuGene_st:274371-



HuGene_st:1554436_a_at:1092015-



HuGene_st:223447_at:29614-



HuGene_st:661518-HuGene_st:580789-



HuGene_st:929866-HuGene_st:160171-



HuGene_st:954850-HuGene_st:758344-



HuGene_st:254891-



HuGene_st:238984_at:421464-



HuGene_st:758547-HuGene_st:364821-



HuGene_st:701510-HuGene_st


MMP1
61706-HuGene_st:300572-
MMP1
1.22E−09
1.8141
10.59
81.8
73.4-88.4



HuGene_st:1020786-HuGene_st:437171-



HuGene_st:671620-HuGene_st:689073 -



HuGene_st:622653-HuGene_st:958445-



HuGene_st:445730-HuGene_st:914223-



HuGene_st:693724-HuGene_st:673683-



HuGene_st:524115-HuGene_st:422476-



HuGene_st:361198-HuGene_st:710307-



HuGene_st:468477-HuGene_st:840324-



HuGene_st:1070117-HuGene_st:473664-



HuGene_st:732367-



HuGene_st:204475_at:353235-HuGene_st


ANLN
522941-HuGene_st:550252-
ANLN
4.94E−09
1.7566
2.63
81
72.5-87.7



HuGene_st:477118-HuGene_st:858635-



HuGene_st:34728-HuGene_st:165560-



HuGene_st:226318-HuGene_st:207100-



HuGene_st:842538-HuGene_st:343961-



HuGene_st:899690-HuGene_st:705871-



HuGene_st:42619-HuGene_st:984996-



HuGene_st:733290-HuGene_st:1008901-



HuGene_st:752472-HuGene_st:619756-



HuGene_st:674545-HuGene_st:558324-



HuGene_st:261208-



HuGene_st:222608_s_at:1552619_a_at


COL11A1
254341-HuGene_st:485975-
COL11A1
2.93E−07
1.5724
2.6
78.4
69.6-85.6



HuGene_st:869898-HuGene_st:755872-



HuGene_st:2674-HuGene_st:230890-



HuGene_st:6042-HuGene_st:1100922-



HuGene_st:800510-HuGene_st:64257-



HuGene_st:301971-HuGene_st:360139-



HuGene_st:549979-HuGene_st:603002-



HuGene_st:756718-HuGene_st:1043994-



HuGene_st:198973-HuGene_st:550144-



HuGene_st:986684-HuGene_st:743059-



HuGene_st:708360-HuGene_st:575064-



HuGene_st:633985-HuGene_st:392228-



HuGene_st:204320_at:121425-



HuGene_st:468885-HuGene_st:20543-



HuGene_st:170503-HuGene_st


DUSP27
612025-HuGene_st:737703-
DUSP27
4.68E−07
1.5098
4.81
77.5
68.6-84.8



HuGene_st:124098-HuGene_st:102948-



HuGene_st:35826-HuGene_st:226732-



HuGene_st:513585-HuGene_st:135885-



HuGene_st:737040-HuGene_st:446627-



HuGene_st:724445-HuGene_st:289189-



HuGene_st:5396-HuGene_st:520095-



HuGene_st:172210-HuGene_st:277848-



HuGene_st:312172-HuGene_st:903613-



HuGene_st:232252_at:303717-



HuGene_st:846174-HuGene_st


C14orf94
225806_at:243446_at:88782-
C14orf94
2.40E−06
1.6524
1.19
79.6
70.9-86.5



HuGene_st:537586-HuGene_st:973643-



HuGene_st:646464-HuGene_st:729584-



HuGene_st:973338-HuGene_st:95576-



HuGene_st:301260-HuGene_st:559586-



HuGene_st:942952-HuGene_st:82798-



HuGene_st:218383_at:165751-



HuGene_st:965936-HuGene_st:31043-



HuGene_st:650638-HuGene_st:984201-



HuGene_st:925802-HuGene_st:306659-



HuGene_st:345230-HuGene_st


MSLN
63302-HuGene_st:821643-HuGene_st:99135-
MSLN
3.78E−06
1.427
1.93
76.2
67.2-83.7



HuGene_st:192667-HuGene_st:765000-



HuGene_st:44188-HuGene_st:59621-



HuGene_st:465236-HuGene_st:559922-



HuGene_st:82252-HuGene_st:1039687-



HuGene_st:1053735-



HuGene_st:2048 85_s_at:870302-



HuGene_st:246473-HuGene_st:58043-



HuGene_st:122629-HuGene_st:826602-



HuGene_st:689741-HuGene_st:931732-



HuGene_st:227498-HuGene_st


CXCL5
264137-HuGene_st:272626-
CXCL5
2.79E−05
1.2814
4.48
73.9
64.7-81.7



HuGene_st:745715-HuGene_st:968572-



HuGene_st:1054472-HuGene_st:394185-



HuGene_st:181128-HuGene_st:456756-



HuGene_st:415578-



HuGene_st:215101_s_at:214974_x_at:935926-



HuGene_st:781518-HuGene_st:235326-



HuGene_st:941963-HuGene_st:242589-



HuGene_st:798477-HuGene_st:257906-



HuGene_st:350119-HuGene_st:222708-



HuGene_st


L1TD1
859419-HuGene_st:968483-
L1TD1
2.00E−04
1.1595
2.36
71.9
62.6-79.9



HuGene_st:1010927-



HuGene_st:236894_at:715579-



HuGene_st:540230-HuGene_st:414266-



HuGene_st:572495-HuGene_st:327643-



HuGene_st:1058922-HuGene_st:18534-



HuGene_st:1063550-HuGene_st:1030986-



HuGene_st:842123-HuGene_st:709222-



HuGene_st:887612-



HuGene_st:219955_at:496121-



HuGene_st:942986-HuGene_st:799837-



HuGene_st


CEL
1553970_s_at:898561-HuGene_st:857424-
CEL
6.00E−04
1.0872
1.46
70.7
61.3-78.8



HuGene_st:456577-HuGene_st:1035054-



HuGene_st:539061-HuGene_st:788693-



HuGene_st:314198-HuGene_st:786044-



HuGene_st:205910_s_at:958725-



HuGene_st:473620-HuGene_st:74757-



HuGene_st:169727-HuGene_st:711091-



HuGene_st:461956-HuGene_st:897116-



HuGene_st:911062-HuGene_st:796522-



HuGene_st


COL1A1
487433-HuGene_st:719132-
COL1A1
1.80E−03
1.0053
2.5
69.2
59.9-77.6



HuGene_st:1556499_s_at:202311_s_at:



202310_s_at:1003153-



HuGene_st:1029566-HuGene_st


PCSK1
981596-HuGene_st:31911-HuGene_st:701212-
PCSK1
2.90E−03
1.1082
1.48
71
61.6-79.1



HuGene_st:673651-HuGene_st:166044-



HuGene_st:989024-HuGene_st:1039153-



HuGene_st:688811-HuGene_st:1068709-



HuGene_st:1083910-HuGene_st:527047-



HuGene_st:994213-HuGene_st:190818-



HuGene_st:785459-HuGene_st:127562-



HuGene_st:1012339-HuGene_st:343010-



HuGene_st:109185-HuGene_st:115345-



HuGene_st:470044-HuGene_st:85 6975-



HuGene_st:454100-HuGene_st


COL8A1
713455-HuGene_st
COL8A1
2.54E−02
0.8325
1.43
66.1
56.6-74.7






















TABLE 5







Signif.


Sens-
CI


TargetPS
Symbol
FDR
D.val5
FC
Spec
(95)





















213106_at
ATP8A1
6.60E−08
2.2884
3.11
87.4
76.9-94.1


210107_at
CLCA1
3.19E−07
2.1573
9.98
86
75.2-93.1


204811_s_at
CACNA2D2
3.61E−05
1.659
4.41
79.7
67.7-88.5


223969_s_at
RETNLB
4.3968E−05 
1.6581
11.64
79.6
67.7-88.5


223970_at
RETNLB
4.3968E−05 
1.6576
11.64
79.6
67.8-88.5


228232_s_at
VSIG2
0.0001
1.5718
2.4
78.4
66.3-87.6


242601_at
LOC253012
0.0001
1.5777
5.28
78.5
66.5-87.6


227719_at
No Symbol
0.0002
1.642
1.98
79.4
67.4-88.3


237521_x_at
No Symbol
0.0002
1.6433
1.98
79.4
67.5-88.3


203240_at
FCGBP
3.00E−04
1.5005
3.07
77.3
65.2-86.7


204897_at
PTGER4
6.00E−04
1.4732
1.55
76.9
64.7-86.4


227676_at
FAM3D
0.001 
1.2706
2.15
73.7
61.3-83.8


205765_at
CYP3A5
1.20E−03
1.5279
1.8
77.8
65.6-87.1


232176_at
SLITRK6
0.0016
1.3618
5.96
75.2
62.8-85


232481_s_at
SLITRK6
0.0016
1.3607
5.96
75.2
62.9-85


235976_at
SLITRK6
0.0016
1.3648
5.96
75.3
62.9-84.9


221874_at
KIAA1324
3.80E−03
1.325
2.1
74.6
62.2-84.5


226248_s_at
KIAA1324
0.0038
1.3246
2.1
74.6
62.2-84.6


204607_at
HMGCS2
5.20E−03
1.2354
3.59
73.2
60.7-83.3


203963_at
CA12
6.50E−03
1.1828
1.86
72.3
59.7-82.6


204508_s_at
CA12
6.50E−03
1.1861
1.86
72.3
59.8-82.6


215867_x_at
CA12
6.50E−03
1.1858
1.86
72.3
59.7-82.6


227725_at
ST6GALNAC1
0.0068
1.1419
1.76
71.6
59-82


200884_at
CKB
7.30E−03
1.1481
2.25
71.7
59.1-82.1


219955_at
L1TD1
7.70E−03
1.2502
3.27
73.4
60.9-83.5


236894_at
L1TD1
0.0077
1.2465
3.27
73.3
60.9-83.5


205259_at
NR3C2
1.29E−02
1.1933
1.63
72.5
60.1-82.8


218211_s_at
MLPH
1.38E−02
1.2269
1.59
73
60.5-83.2


214234_s_at
CYP3A5P2
1.94E−02
1.098
1.7
70.8
58.1-81.3


214235_at
CYP3A5P2
1.94E−02
1.0976
1.7
70.8
58.2-81.3


204895_x_at
MUC4:TAF5L:LOC650855:LOC645744
4.53E−02
1.1998
1.31
72.6
60.1-82.8


217109_at
MUC4:TAF5L:LOC650855:LOC645744
4.53E−02
1.2028
1.31
72.6
60.2-82.8


217110_s_at
MUC4:TAF5L:LOC650855:LOC645744
4.53E−02
1.198
1.31
72.5

60-82.8



221841_s_at
KLF4
7.31E−02
1.0009
1.58
69.2
56.5-79.9


215125_s_at
UGT1A9
7.37E−02
1.0664
1.28
70.3
57.6-80.9


208063_s_at
CAPN9
7.40E−02
0.998
1.84
69.1
56.4-79.9


214433_s_at
SELENBP1
9.02E−02
0.9783
2
68.8

56-79.6



226302_at
ATP8B1
0.093 
1.039
1.4
69.8
57.2-80.5


231832_at
WDR51B
0.1284
1.0008
1.28
69.2
56.5-79.9


219543_at
PBLD
1.66E−01
0.8734
1.89
66.9
54.2-77.9


208937_s_at
ID1
2.34E−01
0.7639
1.66
64.9
52.1-76.2


205927_s_at
CTSE
2.81E−01
0.7393
3.23
64.4
51.6-75.8


229070_at
C6orf105
0.7794
0.7027
1.37
63.7
50.9-75.2






















TABLE 6







Signif.


Sens-
CI


TargetPS
Symbol
FDR
D.val5
FC
Spec
(95)





















200665_s_at
SPARC
 3.05E−09
2.3771
3.24
88.3

78-94.6



212667_at
SPARC
3.0479E−09
2.3752
3.24
88.3
78.1-94.6


211964_at
COL4A2
5.5315E−09
2.4316
2.87
88.8
78.8-95


211966_at
COL4A2
5.5315E−09
2.4321
2.87
88.8
78.8-95


211980_at
COL4A1
 1.243E−08
2.3031
3.03
87.5
77.2-94.2


211981_at
COL4A1
 1.243E−08
2.3045
3.03
87.5
77.2-94.2


218638_s_at
SPON2
1.9471E−08
2.3321
3.38
87.8
77.5-94.3


221729_at
COL5A2
5.7658E−08
2.2145
3.31
86.6

76-93.5



221730_at
COL5A2
5.7658E−08
2.2138
3.31
86.6
75.9-93.6


208782_at
FSTL1
7.8434E−08
2.228
2.64
86.7
76.1-93.7


201261_x_at
BGN
9.6881E−08
2.2253
2.99
86.7

76-93.6



213905_x_at
BGN
9.6881E−08
2.2232
2.99
86.7
76.1-93.6


209955_s_at
IFIH1:FAP
 1.358E−07
2.2261
4.88
86.7
76.2-93.6


226237_at
COL8A1
3.6053E−07
2.1456
3.09
85.8
75-93


202310_s_at
COL1A1
 5.44E−07
2.012
3.29
84.3
73-92


202311_s_at
COL1A1
 5.44E−07
2.0131
3.29
84.3
73.1-92


217430_x_at
COL1A1
5.4426E−07
2.015
3.29
84.3
73.2-92


201438_at
COL6A3
5.7026E−07
2.0286
2.73
84.5
73.5-92.1


202403_s_at
COL1A2:LOC728628
 8.85E−07
2.0609
2.62
84.9
73.9-92.4


202404_s_at
COL1A2:LOC728628
 8.85E−07
2.0621
2.62
84.9
73.7-92.4


229218_at
COL1A2:LOC728628
8.8466E−07
2.0618
2.62
84.9
73.9-92.4


208850_s_at
THY1
1.0326E−06
1.9159
3.34
83.1
71.8-91.1


208851_s_at
THY1
1.0326E−06
1.915
3.34
83.1
71.7-91.1


213869_x_at
THY1
1.0326E−06
1.9132
3.34
83.1
71.7-91.1


203477_at
COL15A1
1.0611E−06
2.0121
3.37
84.3
73.2-91.9


201616_s_at
CALD1
 1.11E−06
2.1136
1.7
85.5
74.6-92.8


212077_at
CALD1
1.1059E−06
2.1131
1.7
85.5
74.5-92.8


201162_at
IGFBP7
1.1574E−06
2.0016
1.91
84.2
72.9-91.8


201163_s_at
IGFBP7
 1.16E−06
1.999
1.91
84.1

73-91.9



210511_s_at
INHBA
1.1943E−06
2.0027
3.38
84.2

73-91.9



225664_at
TMEM30A:COL12A1
1.2492E−06
2.0313
4.16
84.5
73.4-92.1


231766_s_at
TMEM30A:COL12A1
1.2492E−06
2.0303
4.16
84.5
73.4-92.1


231879_at
TMEM30A:COL12A1
1.2492E−06
2.0325
4.16
84.5
73.5-92.1


203325_s_at
COL5A1
1.6076E−06
1.934
2.75
83.3
72.1-91.3


212488_at
COL5A1
1.6076E−06
1.9342
2.75
83.3
72.1-91.3


212489_at
COL5A1
1.6076E−06
1.9339
2.75
83.3

72-91.2



203083_at
THBS2
2.3382E−06
1.9081
6.5
83
71.6-91


202291_s _at
MGP:C12orf46
 2.50E−06
1.999
2.62
84.1

73-91.9



201645_at
TNC
 3.74E−06
1.9608
2.14
83.7
72.5-91.5


201852_x_at
COL3A1
 9.29E−06
1.8472
2.32
82.2
70.7-90.5


211161_s_at
COL3A1
9.2906E−06
1.8501
2.32
82.3
70.7-90.5


215076_s_at
COL3A1
9.2906E−06
1.8495
2.32
82.2
70.7-90.5


232458_at
COL3A1
9.2906E−06
1.8473
2.32
82.2
70.7-90.5


212344_at
SULF1
1.4436E−05
1.7528
2.84
81
69.3-89.5


212353_at
SULF1
1.4436E−05
1.7555
2.84
81
69.2-89.5


212354_at
SULF1
1.4436E−05
1.7521
2.84
80.9
69.3-89.5


201185_at
HTRA1
1.7178E−05
1.7346
2.29
80.7
68.9-89.3


202998_s_at
ENTPD4:LOXL2
 1.99E−05
1.7754
2.45
81.3
69.6-89.7


224724_at
SULF2
2.0766E−05
1.6837
2.25
80
68.2-88.7


233555_s_at
SULF2
2.0766E−05
1.6795
2.25
79.9

68-88.7



201069_at
MMP2
2.5409E−05
1.7345
3.02
80.7

69-89.3



201147_s_at
TIMP3
 2.62E−05
1.7776
2.56
81.3
69.6-89.7


201150_s_at
TIMP3
 2.62E−05
1.7774
2.56
81.3
69.6-89.7


209156_s_at
COL6A2
2.9551E−05
1.7373
1.67
80.7

69-89.4



227099_s_at
LOC387763
  0.00003052
1.8968
1.43
82.9
71.4-90.9


214247_s_at
DKK3
3.1838E−05
1.7434
1.86
80.8
69.1-89.5


202450_s_at
CTSK
 3.98E−05
1.7153
2.16
80.4
68.7-89.1


225799_at
MGC4677, MGC4677:LOC541471
4.1139E−05
1.8003
1.45
81.6
70-90


209395_at
CHI3L1:MYBPH
5.1515E−05
1.6358
3.06
79.3
67.4-88.2


209396_s_at
CHI3L1:MYBPH
5.1515E−05
1.6352
3.06
79.3
67.4-88.2


202878_ s_at
CD93
 5.19E−05
1.667
2.36
79.8
67.9-88.6


204320_at
COL11A1
5.3391E−05
1.7594
2.55
81
69.3-89.6


37892_at
COL11A1
5.3391E−05
1.7556
2.55
81
69.3-89.6


221011_s_at
LBH
6.3299E−05
1.6771
1.9
79.9
68.1-88.7


213125_at
OLFML2B
6.6557E−05
1.7057
1.97
80.3
68.5-89


204475_at
MMP1
7.0616E−05
1.6759
3.91
79.9

68-88.8



226694_at
AKAP2:PALM2:PALM2-AKAP2
7.4206E−05
1.7231
1.58
80.6
68.8-89.2


202766_s_at
FBN1
0.0001
1.5984
1.48
78.8
66.7-87.9


205828_at
MMP3
0.0001
1.6223
6.68
79.1
67.3-88.1


207191_s_at
ISLR
0.0001
1.6448
1.87
79.5
67.5-88.4


213428_s_at
COL6A1
0.0001
1.7301
1.58
80.6
68.8-89.3


226930_at
FNDC1
0.0001
1.521
3.14
77.7
65.6-87


201792_at
AEBP1
0.0002
1.4772
2.11
77
64.8-86.5


203878_s_at
MMP11
0.0002
1.6971
1.28
80.2
68.4-88.9


211959_at
IGFBP5
0.0002
1.5662
3.96
78.3
66.3-87.5


225710_at
No Symbol
0.0002
1.6426
1.98
79.4
67.5-88.4


226311_at
No Symbol
0.0002
1.6436
1.98
79.4
67.5-88.3


226777_at
No Symbol
0.0002
1.645
1.98
79.5
67.5-88.4


227140_at
No Symbol
0.0002
1.6427
1.98
79.4
67.6-88.3


229802_at
No Symbol
0.0002
1.6421
1.98
79.4
67.5-88.3


205479_s_at
PLAU
0.0003
1.484
2.11
77.1
64.9-86.5


210495_x_at
FN1
0.0003
1.494
2.87
77.2
65.1-86.6


211719_x_at
FN1
0.0003
1.4894
2.87
77.2
65.1-86.7


212464_s_at
FN1
0.0003
1.493
2.87
77.2

65-86.7



216442_x_at
FN1
0.0003
1.4935
2.87
77.2

65-86.6



217762_s_at
RAB31
0.0003
1.4864
2.08
77.1

65-86.6



217763_s_at
RAB31
0.0003
1.4848
2.08
77.1
64.9-86.6


217764_s_at
RAB31
0.0003
1.4882
2.08
77.2

65-86.5



225681_at
CTHRC1
0.0003
1.4588
3.41
76.7
64.5-86.3


201105_at
LGALS1
0.0004
1.4844
1.61
77.1
64.9-86.6


208788_at
ELOVL5
0.0004
1.5418
1.86
78
65.8-87.2


224694_at
ANTXR1
0.0005
1.52
2
77.6
65.5-86.9


200974_at
ACTA2
0.0006
1.4251
1.75
76.2

64-85.8



210095_s_at
IGFBP3
0.0006
1.5538
1.38
78.1

66-87.4



201426_s_at
VIM
 8.00E−04
1.4819
1.48
77.1
64.9-86.4


219087_at
ASPN
0.0009
1.4046
2.75
75.9
63.6-85.5


227566_at
HNT
0.001 
1.4215
2.26
76.1

64-85.7



201667_at
GJA1
 1.30E−03
1.4084
1.63
75.9
63.7-85.6


200600_at
MSN
 1.40E−03
1.4942
1.36
77.2

65-86.7



204051_s_at
SFRP4
0.0015
1.4056
2.2
75.9
63.6-85.6


209101_at
CTGF
0.0015
1.3331
1.78
74.7
62.4-84.6


204620_s_at
CSPG2
0.0016
1.21
1.38
72.7
60.3-83


211571_s_at
CSPG2
0.0016
1.2123
1.38
72.8
60.1-82.9


215646_s_at
CSPG2
0.0016
1.2095
1.38
72.7
60.3-83


221731_x_at
CSPG2
0.0016
1.2115
1.38
72.8
60.3-83


204006_s_at
FCGR3B
0.0026
1.2308
2.14
73.1
60.6-83.2


203570_at
LOXL1
0.0027
1.4048
1.33
75.9
63.7-85.6


201744_s_at
LUM
 2.90E−03
1.3418
2.18
74.9
62.5-84.7


202283_at
SERPINF1
 3.10E−03
1.2121
1.76
72.8
60.2-83


209596_at
MXRA5
0.0034
1.2974
1.62
74.2
61.7-84.1


210809_s_at
POSTN
0.005 
1.3011
2.58
74.2
61.8-84.2


205547_s_at
TAGLN
0.0051
1.1829
2.19
72.3
59.7-82.6


202237_at
NNMT
 5.40E−03
1.223
1.44
73
60.4-83.1


202238_s_at
NNMT
 5.40E−03
1.2259
1.44
73
60.5-83.1


218468_s_at
GREM1
0.007 
1.3017
1.31
74.2
61.8-84.2


218469_at
GREM1
0.007 
1.3027
1.31
74.3
61.9-84.2


208747_s_at
C1S
0.0088
1.3575
1.77
75.1
62.9-85


224560_at
TIMP2
0.0097
1.1629
1.72
72
59.4-82.3


231579_s_at
TIMP2
0.0097
1.1641
1.72
72
59.5-82.4


209875_s_at
SPP1
0.0109
1.0673
3.91
70.3
57.6-80.9


202859_x_at
IL8
0.0112
1.3238
4.54
74.6
62.2-84.5


200832_s_at
SCD:LOC651109:LOC645313
 1.27E−02
1.0749
2.33
70.5
57.9-81.1


201058_s_at
MYL9
0.0131
1.1765
1.37
72.2
59.6-82.5


203645_s_at
CD163
0.0146
1.1655
2.19
72
59.4-82.3


215049_x_at
CD163
0.0146
1.1664
2.19
72
59.4-82.3


202917_s_at
S100A8
 1.48E−02
1.0979
3.17
70.8
58.3-81.4


201289_at
CYR61
0.015 
1.0919
1.69
70.7
58.1-81.2


210764_s_at
CYR61
0.015 
1.0938
1.69
70.8
58.2-81.2


218559_s_at
MAFB
0.0182
1.162
1.48
71.9
59.3-82.3


203382_s_at
APOE
0.0285
1.1124
1.43
71.1
58.5-81.6


201893_x_at
DCN
 3.64E−02
1.0821
1.29
70.6

58-81.1



211813_x_at
DCN
0.0364
1.083
1.29
70.6
57.8-81.1


211896_s_at
DCN
0.0364
1.0814
1.29
70.6

58-81.1



213524_s_at
G0S2
0.0383
0.994
1.53
69
56.3-79.8


207173_x_at
CDH11
0.0384
1.0121
1.98
69.4
56.6-80.1


209218_at
SQLE
0.041 
1.0162
2.15
69.4
56.6-80.1


201141_at
GPNMB
0.0623
1.0165
1.52
69.4
56.7-80.1


201859_at
PRG1
0.0634
0.798
1.34
65.5
52.6-76.7


234994_at
KIAA1913
0.1061
0.9579
1.2
68.4
55.7-79.3


223122_s_at
SFRP2
0.1336
0.968
1.24
68.6
55.9-79.4


223235_s_at
SMOC2
0.2175
0.6547
2.06
62.8

50-74.4



200986_at
SERPING1
0.2636
0.7831
1.26
65.2
52.4-76.4


201842_s_at
EFEMP1
 4.91E−01
0.6821
1.27
63.3
50.5-74.8


204122_at
TYROBP
0.4923
0.7066
1.23
63.8
51.1-75.3


202620_s_at
PLOD2
 5.15E−01
0.7784
1.51
65.1
52.3-76.4























TABLE 7





Gene


Signif.


Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
D.val5
FC
Spec
(95)






















ATP8A1
231484_at:792569-
ATP8A1
6.60E−08
2.2854
3.11
87.3
76.9-94



HuGene_st:210192_at:393806-



HuGene_st:743026-HuGene_st:200684-



HuGene_st:1570592_a_at:645563-



HuGene_st:245580-HuGene_st:175799-



HuGene_st:20566-HuGene_st:636204-



HuGene_st:376757-HuGene_st:273140-



HuGene_st:873028-HuGene_st:864954-



HuGene_st:349056-HuGene_st:538894-



HuGene_st:167620-HuGene_st:807498-



HuGene_st


CLCA1
210107_at:426361-HuGene_st:389155-
CLCA1
3.19E−07
2.1536
9.98
85.9
75.1-93.1



HuGene_st:622359-HuGene_st:523802-



HuGene_st:196470-HuGene_st:1078884-



HuGene_st:515258-HuGene_st:638133-



HuGene_st:764167-HuGene_st:921948-



HuGene_st:372283-HuGene_st:252084-



HuGene_st:98798-HuGene_st:1059095-



HuGene_st:441678-HuGene_st:490107-



HuGene_st:284008-HuGene_st:258568-



HuGene_st:602588-HuGene_st:472452-



HuGene_st:640066-HuGene_st


CACNA2D2
805306-HuGene_st:1022165-
CACNA2D2
3.61E−05
1.6587
4.41
79.7
67.8-88.5



HuGene_st:356782-HuGene_st:70395-



HuGene_st:525161-HuGene_st:729314-



HuGene_st:866616-HuGene_st:13978-



HuGene_st:715678-HuGene_st:299289-



HuGene_st:592015-HuGene_st:756393-



HuGene_st:607464-HuGene_st:862691-



HuGene_st:229636_at:885048-



HuGene_st:680228-HuGene_st:393608-



HuGene_st:886897-HuGene_st:413699-



HuGene_st


RETNLB
173654-HuGene_st:223970_at:1094109-
RETNLB
4.40E−05
1.6599
11.64
79.7
67.8-88.5



HuGene_st:708431-HuGene_st:231770-



HuGene_st:1065075-HuGene_st:318917-



HuGene_st:719419-HuGene_st:380366-



HuGene_st:221119-HuGene_st:774168-



HuGene_st:223969_s_at:523432-



HuGene_st:45260-HuGene_st:963420-



HuGene_st:329703-HuGene_st:223761-



HuGene_st:1036667-HuGene_st:143113-



HuGene_st:414008-HuGene_st:232543-



HuGene_st


VSIG2
391438-HuGene_st:228232_s_at:265221-
VSIG2
0.0001
1.5745
2.4
78.4
66.3-87.6



HuGene_st:343187-HuGene_st:223925-



HuGene_st:652010-HuGene_st:1069591-



HuGene_st:265186-HuGene_st:1095607-



HuGene_st:788466-HuGene_st:675062-



HuGene_st:826720-HuGene_st:1093892-



HuGene_st:985113-HuGene_st:637781-



HuGene_st:997596-HuGene_st


LOC253012
1014415-HuGene_st:912640-
LOC253012
0.0001
1.5764
5.28
78.5
66.5-87.7



HuGene_st:463072-HuGene_st:749900-



HuGene_st:381523-HuGene_st:896826-



HuGene_st:804632-HuGene_st:304834-



HuGene_st:39629-HuGene_st:568837-



HuGene_st:1070854-HuGene_st:162938-



HuGene_st:1026726-HuGene_st:441915-



HuGene_st:242601_at:51876-



HuGene_st:199784-HuGene_st:363568-



HuGene_st:50979-HuGene_st:736612-



HuGene_st


FCGBP
203240_at:88809-HuGene_st:1085208-
FCGBP
0.0003
1.4997
3.07
77.3
65.2-86.7



HuGene_st:338164-HuGene_st:71797-



HuGene_st:1079875-HuGene_st:63672-



HuGene_st:997435-HuGene_st:226428-



HuGene_st:948120-HuGene_st:22847-



HuGene_st:36995-HuGene_st:508230-



HuGene_st:16108-HuGene_st:311904-



HuGene_st:426005-HuGene_st:27264-



HuGene_st:516715-HuGene_st:841000-



HuGene_st:708701-HuGene_st:781083-



HuGene_st:634071-HuGene_st:948682-



HuGene_st


PTGER4
204896_s_at:109314-HuGene_st:986807-
PTGER4
0.0006
1.4713
1.55
76.9
64.7-86.4



HuGene_st:446764-HuGene_st:548266-



HuGene_st:919403-HuGene_st:965220-



HuGene_st:192344-HuGene_st:1943-



HuGene_st:252442-HuGene_st:392964-



HuGene_st:23686-



HuGene_st:204897_at:812085-HuGene_st


FAM3D
361373-HuGene_st:963526-
FAM3D
0.001
1.2699
2.15
73.7
61.3-83.8



HuGene_st:227676_at:741172-



HuGene_st:608385-HuGene_st:1074915-



HuGene_st:182670-HuGene_st:24363-



HuGene_st:269456-HuGene_st:833883-



HuGene_st:280625-HuGene_st:187246-



HuGene_st:964986-HuGene_st:66738-



HuGene_st:80884-HuGene_st


CYP3A5
205765_at:67735-
CYP3A5
0.0012
1.5288
1.8
77.8
65.7-87



HuGene_st:214234_s_at:941416-



HuGene_st:238807-HuGene_st:611620-



HuGene_st


CYP3A5P2
205765_at:67735-
CYP3A5
0.0012
1.5297
1.8
77.8
65.6-87



HuGene_st:214234_s_at:941416-



HuGene_st:238807-HuGene_st:611620-



HuGene_st


SLITRK6
936650-HuGene_st:921047-
SLITRK6
0.0016
1.36
5.96
75.2
62.8-85



HuGene_st:371185-HuGene_st:510939-



HuGene_st:356154-HuGene_st:205559-



HuGene_st:386297-HuGene_st:483895-



HuGene_st:227644-HuGene_st:458058-



HuGene_st:232481_s_at:907326-



HuGene_st:255645-HuGene_st:830582-



HuGene_st:615220-HuGene_st:369624-



HuGene_st:78770-HuGene_st:573187-



HuGene_st:1025122-HuGene_st:584646-



HuGene_st


KIAA1324
243349_at:226248_s_at:1052694-
KIAA1324
0.0038
1.3258
2.1
74.6
62.2-84.5



HuGene_st:893707-HuGene_st:597814-



HuGene_st:585604-HuGene_st:240530-



HuGene_st


HMGCS2
616916-HuGene_st:283650-
HMGCS2
0.0052
1.234
3.59
73.1
60.6-83.3



HuGene_st:204607_at:43162-



HuGene_st:371076-HuGene_st:407398-



HuGene_st:900260-HuGene_st:619083-



HuGene_st:729816-HuGene_st:171889-



HuGene_st:253113-HuGene_st:448587-



HuGene_st:593619-HuGene_st:624250-



HuGene_st:865416-HuGene_st:888308-



HuGene_st:397691-HuGene_st:789982-



HuGene_st:658722-HuGene_st


CA12
215867_x_at:210735_s_at:204508_s_at:
CA12
0.0065
1.1823
1.86
72.3
59.7-82.6



203963_at:638145-



HuGene_st:1013062-HuGene_st:280470-



HuGene_st:214164_x_at:875965-



HuGene_st:749017-HuGene_st:1049334-



HuGene_st:439438-HuGene_st:65565-



HuGene_st:1017708-HuGene_st:226479-



HuGene_st:125567-HuGene_st:698714-



HuGene_st:963408-HuGene_st:189118-



HuGene_st:1049350-HuGene_st


ST6GALNAC1
524915-HuGene_st:694442-
ST6GALNAC1
0.0068
1.1407
1.76
71.6
58.9-82



HuGene_st:372293-HuGene_st:247017-



HuGene_st:186959-HuGene_st:149798-



HuGene_st:611157-HuGene_st:887450-



HuGene_st:227725_at:608767-



HuGene_st:891399-HuGene_st:95718-



HuGene_st:780611-HuGene_st:1006431-



HuGene_st:266448-HuGene_st:768462-



HuGene_st:616368-HuGene_st:66760-



HuGene_st:1067993-HuGene_st:69927-



HuGene_st:104705-HuGene_st


CKB
200884_at:435665-HuGene_st:888623-
CKB
0.0073
1.1468
2.25
71.7
59.2-82.1



HuGene_st:480007-HuGene_st:396007-



HuGene_st:963331-HuGene_st:40899-



HuGene_st:373774-HuGene_st:25470-



HuGene_st:16603-HuGene_st:766369-



HuGene_st:405417-HuGene_st:718720-



HuGene_st:1041238-HuGene_st:23457-



HuGene_st:24890-HuGene_st:769422-



HuGene_st:896708-HuGene_st:581051-



HuGene_st:549987-HuGene_st:384128-



HuGene_st


L1TD1
219955_at:842123-HuGene_st:1095330-
L1TD1
0.0077
1.2497
3.27
73.4
60.9-83.5



HuGene_st:1058922-HuGene_st:572495-



HuGene_st:414266-HuGene_st:887612-



HuGene_st:799837-HuGene_st:177635-



HuGene_st:715579-HuGene_st:709222-



HuGene_st:968483-HuGene_st:1030986-



HuGene_st:327643-HuGene_st:540230-



HuGene_st


NR3C2
100953-HuGene_st:239673_at:981978-
NR3C2
0.0129
1.1951
1.63
72.5
59.9-82.7



HuGene_st


MLPH
218211_s_at
MLPH
0.0138
1.2275
1.59
73
60.5-83.2


UGT1A1
208596_s_at:221305_s_at:204532_x_at:
UGT1A3
0.0376
1.0578
1.68
70.2
57.5-80.8



232654_s_at


MUC4
NA
MUC4:TAF5L:LOC650855:
0.0453
1.1986
1.31
72.6
60.1-82.8




LOC645744


KLF4
NA
KLF4
0.0731
1.0018
1.58
69.2
56.5-79.9


CAPN9
NA
CAPN9
0.074
0.9979
1.84
69.1
56.4-79.9


SELENBP1
NA
SELENBP1
0.0902
0.9777
2
68.8
56.1-79.6


ATP8B1
NA
ATP8B1
0.093
1.0347
1.4
69.8
57.2-80.4


WDR51B
NA
WDR51B
0.1284
1.0004
1.28
69.2
56.5-80


PBLD
NA
PBLD
0.1655
0.8731
1.89
66.9
54.1-78


ID1
NA
ID1
0.2342
0.7662
1.66
64.9
52.2-76.2


CTSE
NA
CTSE
0.2809
0.7409
3.23
64.4
51.7-75.8


C6orf105
NA
C6orf105
0.7794
0.7003
1.37
63.7
50.8-75.1























TABLE 8





Gene


Signif.


Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
D.val5
FC
Spec
(95)






















SPARC
677215-HuGene_st:456544-
SPARC
3.0479E−09
2.3799
3.24
88.3
78.1-94.6



HuGene_st:1041514-HuGene_st:868223-



HuGene_st:1053181-HuGene_st:196416-



HuGene_st:1078055-HuGene_st:213861-



HuGene_st:452422-HuGene_st:1078242-



HuGene_st:497056-HuGene_st:1285-



HuGene_st:793848-HuGene_st:455765-



HuGene_st:72235-HuGene_st:568912-



HuGene_st:887159-HuGene_st:255885-



HuGene_st:225477-HuGene_st:162094-



HuGene_st:1026630-



HuGene_st:200665_s_at


COL4A2
540082-HuGene_st:295949-
COL4A2
5.5315E−09
2.4297
2.87
88.8
78.6-95



HuGene_st:1009411-HuGene_st:245530-



HuGene_st:834880-HuGene_st:801333-



HuGene_st:500428-HuGene_st:990355-



HuGene_st:469754-HuGene_st:980150-



HuGene_st:184258-HuGene_st:580118-



HuGene_st:281233-HuGene_st:732269-



HuGene_st:1075712-HuGene_st:643598-



HuGene_st:772366-



HuGene_st:211966_at:512520-



HuGene_st:973004-HuGene_st:839631-



HuGene_st:211964_at:316644-



HuGene_st:1015712-HuGene_st


COL4A1
831741-HuGene_st:634068-
COL4A1
 1.243E−08
2.3004
3.03
87.5

77-94.2




HuGene_st:816476-HuGene_st:1030276-



HuGene_st:144637-HuGene_st:24196-



HuGene_st:272762-HuGene_st:604042-



HuGene_st:392785-HuGene_st:782962-



HuGene_st:381555-HuGene_st:576333-



HuGene_st:310901-HuGene_st:237606-



HuGene_st:719873-HuGene_st:914012-



HuGene_st:30564-HuGene_st:828024-



HuGene_st:687375-



HuGene_st:211981_at:211980_at:812556-



HuGene_st:681655-HuGene_st:233652_at


SPON2
173417-HuGene_st:845288-
SPON2
1.9471E−08
2.3295
3.38
87.8
77.4-94.3



HuGene_st:170898-HuGene_st:6411-



HuGene_st:981126-HuGene_st:1098117-



HuGene_st:1049111-HuGene_st:1018834-



HuGene_st:300655-HuGene_st:45524-



HuGene_st:256565-HuGene_st:533681-



HuGene_st:346131-HuGene_st:251693-



HuGene_st:937110-HuGene_st:347749-



HuGene_st:645379-HuGene_st:107844-



HuGene_st:396405-



HuGene_st:218638_s_at:1569496_s_at


COL5A2
631247-HuGene_st:59739-
COL5A2
5.7658E−08
2.2164
3.31
86.6

76-93.5




HuGene_st:260654-HuGene_st:125943-



HuGene_st:292068-HuGene_st:788391-



HuGene_st:408375-HuGene_st:561511-



HuGene_st:838505-HuGene_st:915389-



HuGene_st:684636-HuGene_st:817279-



HuGene_st:514415-HuGene_st:583557-



HuGene_st:1009654-HuGene_st:416341-



HuGene_st:260479-HuGene_st:292241-



HuGene_st:1034540-HuGene_st:101178-



HuGene_st:221730_at:221729_at


FSTL1
1020674-HuGene_st:291086-
FSTL1
7.8434E−08
2.2277
2.64
86.7
76.1-93.6



HuGene_st:964097-HuGene_st:874354-



HuGene_st:745908-HuGene_st:129330-



HuGene_st:1039443-HuGene_st:855602-



HuGene_st:494940-HuGene_st:666633-



HuGene_st:10001-HuGene_st:654906-



HuGene_st:322189-HuGene_st:891629-



HuGene_st:225280-HuGene_st:67871-



HuGene_st:965246-HuGene_st


BGN
722197-HuGene_st:1090822-
BGN
9.6881E−08
2.2246
2.99
86.7
76.1-93.6



HuGene_st:45294-HuGene_st:381650-



HuGene_st:987820-HuGene_st:978124-



HuGene_st:171694-HuGene_st:643594-



HuGene_st:429977-HuGene_st:1096605-



HuGene_st:861988-HuGene_st:164623-



HuGene_st:201262_s_at:497499-



HuGene_st:422042-HuGene_st:1051954-



HuGene_st:262594-HuGene_st:279145-



HuGene_st:838396-HuGene_st:298959-



HuGene_st:11448-HuGene_st:111675-



HuGene_st:213905_x_at:201261_x_at:



973749-HuGene_st


FAP
58645-HuGene_st:581008-
IFIH1:FAP
 1.358E−07
2.2253
4.88
86.7
76.1-93.6



HuGene_st:284881-HuGene_st:1022038-



HuGene_st:916010-HuGene_st:947725-



HuGene_st:477772-HuGene_st:22772-



HuGene_st:636840-HuGene_st:40379-



HuGene_st:993707-HuGene_st:322964-



HuGene_st:759386-HuGene_st:132558-



HuGene_st:600137-HuGene_st:915847-



HuGene_st:246189-HuGene_st:445095-



HuGene_st:389696-HuGene_st:438119-



HuGene_st:748913-HuGene_st:209955_s_at


COL8A1
333339-HuGene_st:214587_at:586420-
COL8A1
3.6053E−07
2.1439
3.09
85.8
74.9-93



HuGene_st:103513-HuGene_st:651142-



HuGene_st:617293-HuGene_st:107398-



HuGene_st:79621-HuGene_st:806363-



HuGene_st:327074-HuGene_st:41199-



HuGene_st


COL1A1
767019-HuGene_st:654019-
COL1A1
5.4426E−07
2.0142
3.29
84.3
73.1-92



HuGene_st:52480-HuGene_st:975188-



HuGene_st:731985-HuGene_st:849620-



HuGene_st:652845-HuGene_st:1077639-



HuGene_st:149590-HuGene_st:788754-



HuGene_st:1033327-HuGene_st:258815-



HuGene_st:719132-HuGene_st:971026-



HuGene_st:1061961-HuGene_st:435403-



HuGene_st:498576-HuGene_st:1003153-



HuGene_st:1029566-HuGene_st:487433-



HuGene_st:165153-HuGene_st:125258-



HuGene_st:217430_x_at:202310_s_at:1556



499_s_at:202311_s_at


COL6A3
312177-HuGene_st:24239-
COL6A3
5.7026E−07
2.0313
2.73
84.5
73.5-92.1



HuGene_st:337032-HuGene_st:31627-



HuGene_st:72819-HuGene_st:85665-



HuGene_st:51265-HuGene_st:315258-



HuGene_st:423421-HuGene_st:976272-



HuGene_st:627131-HuGene_st:547019-



HuGene_st:482866-HuGene_st:871788-



HuGene_st:273133-HuGene_st:945341-



HuGene_st:223275-HuGene_st:768482-



HuGene_st:618342-HuGene_st:993598-



HuGene_st:716493-HuGene_st:153821-



HuGene_st:201438_at


COL1A2
918394-HuGene_st:75788-
COL1A2:LOC728628
8.8466E−07
2.0613
2.62
84.9
73.9-92.3



HuGene_st:240155-HuGene_st:1079758-



HuGene_st:174439-HuGene_st:133455-



HuGene_st:720682-HuGene_st:723785-



HuGene_st:1076123-HuGene_st:252002-



HuGene_st:733200-HuGene_st:890123-



HuGene_st:1070579-HuGene_st:52384-



HuGene_st:928914-HuGene_st:257376-



HuGene_st:355867-HuGene_st:472073-



HuGene_st:349798-HuGene_st:153814-



HuGene_st:825347-



HuGene_st:202404_s_at:202403_s_at


THY1
149448-HuGene_st:804495-
THY1
1.0326E−06
1.9155
3.34
83.1
71.7-91.1



HuGene_st:287669-HuGene_st:329513-



HuGene_st:432229-HuGene_st:834028-



HuGene_st:462769-HuGene_st:408326-



HuGene_st:603473-HuGene_st:497809-



HuGene_st:301090-HuGene_st:606465-



HuGene_st:208850_s_at:278686-



HuGene_st:804789-HuGene_st:236645-



HuGene_st:257047-HuGene_st:554409-



HuGene_st:108391-



HuGene_st:208851_s_at:213869_x_at:9087



85-HuGene_st:516398-HuGene_st


COL15A1
330621-HuGene_st:910395-
COL15A1
1.0611E−06
2.0128
3.37
84.3
73.2-92



HuGene_st:811192-HuGene_st:294092-



HuGene_st:958891-HuGene_st:407270-



HuGene_st:423090-HuGene_st:1079597-



HuGene_st:95084-HuGene_st:775288-



HuGene_st:813875-HuGene_st:1001637-



HuGene_st:49304-HuGene_st:970691-



HuGene_st:346838-HuGene_st:91483-



HuGene_st:528528-HuGene_st:453998-



HuGene_st:254490-



HuGene_st:203477_at:201064-HuGene_st


CALD1
816439-HuGene_st:318906-
CALD1
1.1059E−06
2.1159
1.7
85.5
74.6-92.8



HuGene_st:558226-HuGene_st:755661-



HuGene_st:519079-HuGene_st:1094139-



HuGene_st:975649-HuGene_st:407536-



HuGene_st:908350-HuGene_st:576686-



HuGene_st:688034-HuGene_st:792918-



HuGene_st:596642-HuGene_st:797317-



HuGene_st:1023569-HuGene_st:450656-



HuGene_st:231881_at:165931-HuGene_st


IGFBP7
363517-HuGene_st:787689-
IGFBP7
1.1574E−06
1.9989
1.91
84.1
72.9-91.8



HuGene_st:86333-HuGene_st:882867-



HuGene_st:620969-HuGene_st:167271-



HuGene_st:192752-HuGene_st:521467-



HuGene_st:699448-HuGene_st:882712-



HuGene_st:211325-HuGene_st:329940-



HuGene_st:980809-HuGene_st:22805-



HuGene_st:288233-HuGene_st:230028-



HuGene_st:551901-HuGene_st:921418-



HuGene_st:232544_at:969620-



HuGene_st:985682-HuGene_st


INHBA
1088123-HuGene_st:151327-
INHBA
1.1943E−06
2.0051
3.38
84.2

73-91.9




HuGene_st:363337-HuGene_st:874496-



HuGene_st:402595-HuGene_st:289422-



HuGene_st:838338-HuGene_st:746887-



HuGene_st:623455-HuGene_st:395552-



HuGene_st:865665-HuGene_st:328796-



HuGene_st:1088331-HuGene_st:751719-



HuGene_st:36929-HuGene_st:548889-



HuGene_st:909672-



HuGene_st:210511_s_at:344276-



HuGene_st:204926_at:112496-HuGene_st


COL12A1
905983-HuGene_st:794749-
TMEM30A:COL12A1
1.2492E−06
2.03
4.16
84.5
73.4-92.1



HuGene_st:1063560-HuGene_st:567963-



HuGene_st:140178-HuGene_st:289954-



HuGene_st:620694-HuGene_st:31736-



HuGene_st:1009559-HuGene_st:435472-



HuGene_st:415220-HuGene_st:447689-



HuGene_st:405565-HuGene_st:180263-



HuGene_st:595404-HuGene_st:759154-



HuGene_st:419264-HuGene_st:319853-



HuGene_st:225664_at:231879_at:874183-



HuGene_st:913204-



HuGene_st:231766_s_at:234951_s_at:



1057284-HuGene_st


COL5A1
64984-HuGene_st:815841-
COL5A1
1.6076E−06
1.9335
2.75
83.3

72-91.3




HuGene_st:299983-HuGene_st:751853-



HuGene_st:33784-HuGene_st:366345-



HuGene_st:63200-HuGene_st:293998-



HuGene_st:544275-HuGene_st:940629-



HuGene_st:383962-HuGene_st:995286-



HuGene_st:640471-HuGene_st:77586-



HuGene_st:212489_at:633141-



HuGene_st:203325_s_at:777727-



HuGene_st:400357-



HuGene_st:212488_at:291267-



HuGene_st:285959-HuGene_st:886716-



HuGene_st


THBS2
789762-HuGene_st:451028-
THBS2
2.3382E−06
1.9035
6.5
82.9
71.6-91



HuGene_st:807449-HuGene_st:895973-



HuGene_st:360384-HuGene_st:885374-



HuGene_st:178235-HuGene_st:241784-



HuGene_st:774957-HuGene_st:565405-



HuGene_st:684979-HuGene_st:890746-



HuGene_st:588267-HuGene_st:1033680-



HuGene_st:387904-HuGene_st:1096131-



HuGene_st:739113-HuGene_st:614690-



HuGene_st:270369-HuGene_st:892858-



HuGene_st


TNC
441837-HuGene_st:278723-
TNC
3.7414E−06
1.9636
2.14
83.7
72.4-91.6



HuGene_st:1030770-HuGene_st:767997-



HuGene_st:514659-HuGene_st:873244-



HuGene_st:837401-HuGene_st:621609-



HuGene_st:888816-HuGene_st:660419-



HuGene_st:889974-HuGene_st:780538-



HuGene_st:157747-HuGene_st:908522-



HuGene_st:263796-HuGene_st:280913-



HuGene_st:201645_at:1016643-



HuGene_st:243540_at:537682-



HuGene_st:859608-HuGene_st:1079032-



HuGene_st:458991-HuGene_st:241272_at


MGP
148839-HuGene_st
MGP:C12orf46
5.8225E−06
1.9994
2.62
84.1

73-91.9



COL3A1
410491-HuGene_st:718613-
COL3A1
9.2906E−06
1.8484
2.32
82.2
70.8-90.5



HuGene_st:1083201-HuGene_st:364429-



HuGene_st:857967-HuGene_st:714343-



HuGene_st:977793-HuGene_st:295757-



HuGene_st:22453-HuGene_st:804687-



HuGene_st:682411-HuGene_st:490951-



HuGene_st:622631-HuGene_st:782663-



HuGene_st:425013-HuGene_st:214723-



HuGene_st:86407-HuGene_st:651938-



HuGene_st:403765-HuGene_st:376736-



HuGene_st:376290-HuGene_st:248520-



HuGene_st


SULF1
740854-HuGene_st:517026-
SULF1
0.000014436
1.7533
2.84
81
69.2-89.6



HuGene_st:933799-HuGene_st:72604-



HuGene_st:1045684-HuGene_st:492122-



HuGene_st:20084-HuGene_st:512275-



HuGene_st:754502-HuGene_st:730003-



HuGene_st:532406-HuGene_st:187508-



HuGene_st:671986-HuGene_st:34752-



HuGene_st:381424-HuGene_st:166879-



HuGene_st:530745-HuGene_st:1018600-



HuGene_st:212344_at:212354_at:482916-



HuGene_st:212353_at


HTRA1
660603-HuGene_st:252436-
HTRA1
0.000017178
1.7312
2.29
80.7
68.9-89.3



HuGene_st:299850-HuGene_st:317595-



HuGene_st:977390-HuGene_st:311841-



HuGene_st:946172-HuGene_st:761215-



HuGene_st:577479-HuGene_st:332527-



HuGene_st:1082067-HuGene_st:981054-



HuGene_st:5171-HuGene_st:1019008-



HuGene_st:757466-HuGene_st:723015-



HuGene_st


LOXL2
937941-HuGene_st:827532-
ENTPD4:LOXL2
0.000019895
1.7774
2.45
81.3
69.6-89.7



HuGene_st:346541-HuGene_st:271051-



HuGene_st:228808_s_at:254550-



HuGene_st:260752-HuGene_st:46172-



HuGene_st:950166-HuGene_st:281266-



HuGene_st:818138-HuGene_st:626390-



HuGene_st:291104-HuGene_st:84360-



HuGene_st:228823-HuGene_st:966956-



HuGene_st:202997_s_at:898787-



HuGene_st:202999_s_at:1074111-



HuGene_st:1064065-



HuGene_st:202998_s_at:328673-



HuGene_st:1562263_at:34062-HuGene_st


SULF2
367910-HuGene_st:661661-
SULF2
0.000020766
1.6803
2.25
80
68.1-88.8



HuGene_st:43751-HuGene_st:395846-



HuGene_st:771921-HuGene_st:550105-



HuGene_st:195771-HuGene_st:435480-



HuGene_st:229718-HuGene_st:826084-



HuGene_st:262732-HuGene_st:848382-



HuGene_st:861858-HuGene_st:907457-



HuGene_st:801956-HuGene_st:54769-



HuGene_st:214147-HuGene_st:1034817-



HuGene_st:929065-



HuGene_st:233555_s_at:430325-HuGene_st


MMP2
650123-HuGene_st:78720-
MMP2
0.000025409
1.7328
3.02
80.7
68.8-89.3



HuGene_st:168982-HuGene_st:598990-



HuGene_st:346729-HuGene_st:356008-



HuGene_st:821467-HuGene_st:905494-



HuGene_st:568028-HuGene_st:711286-



HuGene_st:666575-HuGene_st:208210-



HuGene_st:20913-HuGene_st:382005-



HuGene_st:186287-HuGene_st:355238-



HuGene_st:60728-



HuGene_st:1566677_at:1027926-



HuGene_st:38019-HuGene_st:39088-



HuGene_st


TIMP3
686923-HuGene_st:767021-
TIMP3
0.000026195
1.7785
2.56
81.3
69.6-89.8



HuGene_st:231888_at:201148_s_at:326731-



HuGene_st:72249-HuGene_st:369765-



HuGene_st:711121-HuGene_st:844721-



HuGene_st:856619-HuGene_st:241221-



HuGene_st:515184-HuGene_st:948668-



HuGene_st:410881-HuGene_st


COL6A2
404866-HuGene_st:420794-
COL6A2
0.000029551
1.7418
1.67
80.8

69-89.4




HuGene_st:536399-HuGene_st:813295-



HuGene_st:160736-HuGene_st:501950-



HuGene_st:148827-HuGene_st:501480-



HuGene_st:375216-HuGene_st:143566-



HuGene_st:1086501-HuGene_st:475436-



HuGene_st:794188-HuGene_st:704415-



HuGene_st:213290_at


LOC387763
724781-HuGene_st:816467-HuGene_st
LOC387763
0.00003052
1.8978
1.43
82.9
71.4-90.9


DKK3
573143-HuGene_st:509897-
DKK3
0.000031838
1.7435
1.86
80.8
69.1-89.5



HuGene_st:829432-HuGene_st:425906-



HuGene_st:1076690-HuGene_st:480668-



HuGene_st:302214-HuGene_st:673860-



HuGene_st:584666-HuGene_st:966441-



HuGene_st:138862-HuGene_st:19243-



HuGene_st:600102-HuGene_st:778172-



HuGene_st:387542-



HuGene_st:202196_s_at:230508_at:86457-



HuGene_st


CTSK
592586-HuGene_st:682010-
CTSK
0.000039778
1.7156
2.16
80.4
68.8-89.1



HuGene_st:30909-HuGene_st:235976-



HuGene_st:913861-HuGene_st:25198-



HuGene_st:96515-HuGene_st:221416-



HuGene_st:341005-HuGene_st:371949-



HuGene_st:796154-HuGene_st:555578-



HuGene_st:416489-HuGene_st:123013-



HuGene_st:50644-HuGene_st:636682-



HuGene_st:63600-HuGene_st:356075-



HuGene_st:321593-HuGene_st


LOC541471
19600-HuGene_st:149287-
MGC4677,
0.000041139
1.804
1.45
81.6
69.9-90



HuGene_st:916693-HuGene_st:569637-
MGC4677:LOC541471



HuGene_st:868769-HuGene_st:469295-



HuGene_st:277416-HuGene_st:71551-



HuGene_st:1558836_at:129947-



HuGene_st:644672-HuGene_st:276744-



HuGene_st:873188-HuGene_st:830227-



HuGene_st:101170-HuGene_st:624891-



HuGene_st:85671-HuGene_st:236489-



HuGene_st:709116-HuGene_st:279980-



HuGene_st:812194-HuGene_st


CHI3L1
561691-HuGene_st:116044-
CHI3L1:MYBPH
0.000051515
1.6351
3.06
79.3
67.4-88.3



HuGene_st:261087-HuGene_st:57128-



HuGene_st:970931-HuGene_st:518568-



HuGene_st:362438-HuGene_st:388847-



HuGene_st:738096-



HuGene_st:209396_s_at:171378-



HuGene_st:968794-HuGene_st:477315-



HuGene_st:852388-HuGene_st:90371-



HuGene_st:209395_at:657732-



HuGene_st:1050574-HuGene_st:1074100-



HuGene_st:219902-HuGene_st:744799-



HuGene_st


CD93
392816-HuGene_st:131787-
CD93
0.000051891
1.6662
2.36
79.8
67.8-88.6



HuGene_st:900048-HuGene_st:1024597-



HuGene_st:449159-HuGene_st:937408-



HuGene_st:835153-HuGene_st:231835-



HuGene_st:1084191-HuGene_st:970338-



HuGene_st:835439-HuGene_st:345929-



HuGene_st:310915-HuGene_st:381822-



HuGene_st:627382-HuGene_st:731932-



HuGene_st


COL11A1
372742-HuGene_st:523307-
COL11A1
0.000053391
1.7583
2.55
81
69.3-89.5



HuGene_st:360139-HuGene_st:64257-



HuGene_st:633985-HuGene_st:986684-



HuGene_st:2674-HuGene_st:575064-



HuGene_st:1023506-HuGene_st:198973-



HuGene_st:20543-HuGene_st:254341-



HuGene_st:81512-HuGene_st:549979-



HuGene_st:347332-HuGene_st


LBH
764120-HuGene_st:189486-
LBH
0.000063299
1.6753
1.9
79.9
67.9-88.7



HuGene_st:766856-HuGene_st:1083711-



HuGene_st:541408-HuGene_st:375190-



HuGene_st:938798-HuGene_st:133862-



HuGene_st:956722-HuGene_st:97472-



HuGene_st:19277-HuGene_st


OLFML2B
1085957-HuGene_st:354052-
OLFML2B
0.000066557
1.705
1.97
80.3
68.5-89



HuGene_st:682043-HuGene_st:249054-



HuGene_st:867838-HuGene_st:430882-



HuGene_st:704400-HuGene_st:1065400-



HuGene_st:588559-HuGene_st:827842-



HuGene_st:272527-HuGene_st:134966-



HuGene_st:523921-HuGene_st:895516-



HuGene_st:1022747-HuGene_st:529564-



HuGene_st:539568-HuGene_st:427677-



HuGene_st:122501-HuGene_st


MMP1
524115-HuGene_st:689073-
MMP1
0.000070616
1.6771
3.91
79.9
68.1-88.7



HuGene_st:300572-HuGene_st:914223-



HuGene_st:958445-HuGene_st:61706-



HuGene_st:437171-HuGene_st:422476-



HuGene_st:361198-HuGene_st:693724-



HuGene_st:671620-HuGene_st:673683-



HuGene_st:1020786-HuGene_st:732367-



HuGene_st:710307-HuGene_st:445730-



HuGene_st:622653-HuGene_st:468477-



HuGene_st:1070117-HuGene_st:840324-



HuGene_st:473664-HuGene_st


PALM2-
945487-HuGene_st:454513-
AKAP2:PALM2:PALM2-
0.000074206
1.724
1.58
80.6
68.9-89.2


AKAP2
HuGene_st:799637-HuGene_st:91787-
AKAP2



HuGene_st:448601-HuGene_st:839008-



HuGene_st:1044350-HuGene_st:327679-



HuGene_st:665040-HuGene_st:79769-



HuGene_st:216125-HuGene_st:205232-



HuGene_st:818531-HuGene_st:169199-



HuGene_st:537891-HuGene_st:667958-



HuGene_st:202760_s_at


FBN1
288955-HuGene_st:112593-
FBN1
0.0001
1.5949
1.48
78.7
66.7-87.8



HuGene_st:427611-HuGene_st:921008-



HuGene_st:82155-HuGene_st:828273-



HuGene_st:999573-HuGene_st:192029-



HuGene_st:162818-HuGene_st:794561-



HuGene_st:316216-HuGene_st:971683-



HuGene_st:394963-HuGene_st:600623-



HuGene_st:169932-HuGene_st:941525-



HuGene_st:202765_s_at:1094040-



HuGene_st:192231-HuGene_st:235318_at


MMP3
7912-HuGene_st:438906-
MMP3
0.0001
1.6224
6.68
79.1
67.2-88.1



HuGene_st:483424-HuGene_st:634624-



HuGene_st:191436-HuGene_st:542596-



HuGene_st:664043-HuGene_st:766524-



HuGene_st:134417-HuGene_st:945713-



HuGene_st:149350-HuGene_st:357556-



HuGene_st:206224-HuGene_st:560206-



HuGene_st:822598-HuGene_st:200029-



HuGene_st:701539-HuGene_st:526573-



HuGene_st:35444-HuGene_st


ISLR
1034362-HuGene_st:755902-
ISLR
0.0001
1.6424
1.87
79.4
67.4-88.4



HuGene_st:864958-HuGene_st:599962-



HuGene_st:207191_s_at:256349-



HuGene_st:223953-HuGene_st:172743-



HuGene_st:46312-HuGene_st:11475-



HuGene_st:500169-HuGene_st


COL6A1
138884-HuGene_st:100156-
COL6A1
0.0001
1.7314
1.58
80.7
68.9-89.3



HuGene_st:694215-HuGene_st:133534-



HuGene_st:354247-HuGene_st:737256-



HuGene_st:214200_s_at:212939_at:



216904_at:884210-HuGene_st:57954-



HuGene_st:138366-HuGene_st:175316-



HuGene_st:459478-HuGene_st:190064-



HuGene_st:914102-HuGene_st:392220-



HuGene_st:212937_s_at:125972-



HuGene_st:214513-HuGene_st:528191-



HuGene_st:858575-



HuGene_st:212938_at:212091_s_at:212940_at:



871472-HuGene_st


FNDC1
194684-HuGene_st:358155-
FNDC1
0.0001
1.5241
3.14
77.7
65.6-87



HuGene_st:959100-HuGene_st:187071-



HuGene_st:449250-HuGene_st:879569-



HuGene_st:588958-HuGene_st:162623-



HuGene_st:711103-HuGene_st:30750-



HuGene_st:34787-HuGene_st:260399-



HuGene_st:418036-HuGene_st


AEBP1
479622-HuGene_st:192126-
AEBP1
0.0002
1.4786
2.11
77
64.8-86.4



HuGene_st:209682-HuGene_st:285969-



HuGene_st:1041745-HuGene_st:668627-



HuGene_st:913865-HuGene_st:944753-



HuGene_st:446850-HuGene_st:118310-



HuGene_st:342980-HuGene_st:845095-



HuGene_st:185307-HuGene_st:901268-



HuGene_st:494284-



HuGene_st:201792_at:51739-



HuGene_st:262459-HuGene_st


MMP11
203878_s_at:213602_s_at:203877_at:32492
MMP11
0.0002
1.6993
1.28
80.2
68.3-89



1-HuGene_st:718792-HuGene_st:514533-



HuGene_st:720030-HuGene_st:935371-



HuGene_st:844472-HuGene_st:548687-



HuGene_st:519881-HuGene_st:858774-



HuGene_st:943793 -HuGene_st:671549-



HuGene_st:127919-HuGene_st:670295-



HuGene_st:235908_at:203876_s_at:986917-



HuGene_st:155442-HuGene_st:1036101-



HuGene_st


IGFBP5
532497-HuGene_st:823295-
IGFBP5
0.0002
1.5676
3.96
78.3
66.4-87.5



HuGene_st:323206-HuGene_st:941332-



HuGene_st:723182-HuGene_st:301318-



HuGene_st:1007784-HuGene_st:503864-



HuGene_st:492730-HuGene_st:370183 -



HuGene_st:867094-HuGene_st:965814-



HuGene_st:778210-



HuGene_st:203425_s_at:692986-



HuGene_st:1006982-HuGene_st:807775-



HuGene_st:1035577-HuGene_st:158302-



HuGene_st:73598-



HuGene_st:1555997_s_at:231985-



HuGene_st:203424_s_at:211958_at:



203426_s_at:334486-



HuGene_st:383523-HuGene_st


PLAU
611756-HuGene_st:246040-
PLAU
0.0003
1.4846
2.11
77.1
64.8-86.5



HuGene_st:783863-HuGene_st:1027344-



HuGene_st:186016-HuGene_st:31176-



HuGene_st:692506-HuGene_st:52541-



HuGene_st:205479_s_at:471777-



HuGene_st:156254-HuGene_st:1085903-



HuGene_st:211668_s_at:131855-



HuGene_st:585614-HuGene_st:1076162-



HuGene_st:323438-HuGene_st:410729-



HuGene_st


CTHRC1
647908-HuGene_st:235232-
CTHRC1
0.0003
1.4612
3.41
76.7
64.5-86.2



HuGene_st:86783-HuGene_st:756615-



HuGene_st:779928-HuGene_st:385407-



HuGene_st:978256-HuGene_st:607929-



HuGene_st:426340-HuGene_st


FN1
1002635-HuGene_st:585884-
FN1
0.0003
1.4907
2.87
77.2

65-86.6




HuGene_st:338536-HuGene_st:586400-



HuGene_st:445068-HuGene_st:395670-



HuGene_st:19848-HuGene_st:443264-



HuGene_st:662053-HuGene_st:144815-



HuGene_st:103145-HuGene_st:372804-



HuGene_st:652840-HuGene_st:935697-



HuGene_st:484350-HuGene_st:422572-



HuGene_st:814551-HuGene_st:235724-



HuGene_st:214701_s_at:692191-



HuGene_st:132330-



HuGene_st:210495_x_at:639087-



HuGene_st:216442_x_at:211719_x_at:



214702_at:212464_s_at:1558199_at


RAB31
784521-HuGene_st:805481-
RAB31
0.0003
1.4857
2.08
77.1

65-86.6




HuGene_st:936297-HuGene_st:576193-



HuGene_st:321915-HuGene_st:282618-



HuGene_st:930765-HuGene_st:397177-



HuGene_st:861778-HuGene_st:411822-



HuGene_st:240571_at:816751-



HuGene_st:1028297-HuGene_st:291722-



HuGene_st:722575-HuGene_st:904649-



HuGene_st:991710-HuGene_st:1032281-



HuGene_st:217764_s_at:252384-HuGene_st


LGALS1
540889-HuGene_st:882911-
LGALS1
0.0004
1.4863
1.61
77.1
64.8-86.5



HuGene_st:289133-HuGene_st:775286-



HuGene_st:179375-HuGene_st:877452-



HuGene_st:697650-HuGene_st:1720-



HuGene_st:107624-HuGene_st:810235-



HuGene_st:190535-HuGene_st:529287-



HuGene_st:725969-HuGene_st:976579-



HuGene_st:1075722-HuGene_st:453861-



HuGene_st:216405_at:624673-



HuGene_st:724499-HuGene_st


ELOVL5
559433-HuGene_st:422981-
ELOVL5
0.0004
1.542
1.86
78
65.8-87.2



HuGene_st:211457-HuGene_st:551828-



HuGene_st:412588-HuGene_st:912245-



HuGene_st:287185-HuGene_st:103066-



HuGene_st:399004-HuGene_st:528360-



HuGene_st:938564-HuGene_st:1000247-



HuGene_st:620190-HuGene_st:336885-



HuGene_st:165821-



HuGene_st:214153_at:731356-



HuGene_st:601072-HuGene_st:755480-



HuGene_st:8873-



HuGene_st:1567222_x_at:208788_at:1093316-



HuGene_st


ANTXR1
203217-HuGene_st:501276-
ANTXR1
0.0005
1.5167
2
77.6
65.4-86.9



HuGene_st:799524-HuGene_st:85875-



HuGene_st:12099-HuGene_st:230429-



HuGene_st:368173-HuGene_st:369297-



HuGene_st:227660_at:86683-



HuGene_st:682518-HuGene_st:129277-



HuGene_st:827509-HuGene_st:901442-



HuGene_st:408237-HuGene_st:414321-



HuGene_st:330209-



HuGene_st:234430_at:241549_at:755570-



HuGene_st:220093_at


ACTA2
479447_HuGene_st:183075-
ACTA2
 6.00E−04
1.4242
1.75
76.2
63.8-85.8



HuGene_st:1070983-HuGene_st:548186-



HuGene_st:529704-HuGene_st:530590-



HuGene_st:630797-HuGene_st:404109-



HuGene_st:237159-HuGene_st:90357-



HuGene_st:293590-HuGene_st:1078299-



HuGene_st:120087-HuGene_st:855050-



HuGene_st:757648-HuGene_st:980364-



HuGene_st:785232-HuGene_st:313690-



HuGene_st:670805-HuGene_st


IGFBP3
242422-HuGene_st:1046998-
IGFBP3
0.0006
1.552
1.38
78.1

66-87.3




HuGene_st:585931-HuGene_st:145671-



HuGene_st:71362-HuGene_st:719466-



HuGene_st:412306-HuGene_st:922332-



HuGene_st:491408-HuGene_st:929740-



HuGene_st:276131-HuGene_st:201952-



HuGene_st


VIM
1093618-HuGene_st:398387-
VIM
0.0008
1.4804
1.48
77
64.9-86.5



HuGene_st:837477-HuGene_st:1079757-



HuGene_st:339807-HuGene_st:302722-



HuGene_st:139661-HuGene_st:436158-



HuGene_st:564251-HuGene_st:234475-



HuGene_st:770617-HuGene_st:155888-



HuGene_st:319318-HuGene_st:527110-



HuGene_st:994975-HuGene_st:192324-



HuGene_st


ASPN
720939-HuGene_st:96944-
ASPN
0.0009
1.4011
2.75
75.8
63.5-85.6



HuGene_st:224396_s_at:640448-



HuGene_st:1055545-HuGene_st:447994-



HuGene_st:835521-HuGene_st:567513-



HuGene_st:546047-



HuGene_st:219087_at:673 620-HuGene_st


HNT
291569-HuGene_st:1099035-
HNT
0.001
1.425
2.26
76.2
63.8-85.8



HuGene_st:237480-



HuGene_st:222020_s_at:959054-



HuGene_st:941200-HuGene_st:715332-



HuGene_st:761810-HuGene_st:673027-



HuGene_st:653559-



HuGene_st:241934_at:403764-



HuGene_st:719722-HuGene_st:227566_at


GJA1
210697-HuGene_st:348617-
GJA1
0.0013
1.4083
1.63
75.9
63.7-85.6



HuGene_st:100706-HuGene_st:202715-



HuGene_st:817684-HuGene_st:851453-



HuGene_st:317083-HuGene_st:852817-



HuGene_st:150947-HuGene_st:491742-



HuGene_st:612542-HuGene_st:352375-



HuGene_st:684816-HuGene_st


MSN
77554-HuGene_st:103225-
MSN
 1.40E−03
1.4927
1.36
77.2
65.1-86.7



HuGene_st:1038630-HuGene_st:555838-



HuGene_st:250445-HuGene_st:770842-



HuGene_st:240960_at:905037-



HuGene_st:693942-HuGene_st:788076-



HuGene_st:102934-HuGene_st:686613-



HuGene_st


SFRP4
965138-HuGene_st:512201-
SFRP4
0.0015
1.407
2.2
75.9
63.5-85.5



HuGene_st:321583-HuGene_st:784119-



HuGene_st:4568-HuGene_st:1073348-



HuGene_st:606783-HuGene_st:203475-



HuGene_st:779727-HuGene_st:236875-



HuGene_st:674172-



HuGene_st:204051_s_at:1084814-



HuGene_st


CTGF
418229-HuGene_st:547481-
CTGF
0.0015
1.334
1.78
74.8
62.4-84.6



HuGene_st:661089-HuGene_st:338622-



HuGene_st:353624-HuGene_st:466254-



HuGene_st:691815-HuGene_st:156933-



HuGene_st:1031177-HuGene_st:265466-



HuGene_st:1079612-HuGene_st:1073900-



HuGene_st:1080114-HuGene_st


FCGR3B
p75320-HuGene_st:483078-
FCGR3B
0.0026
1.232
2.14
73.1
60.5-83.3



HuGene_st:897088-HuGene_st:891504-



HuGene_st:288407-HuGene_st:367930-



HuGene_st:512343-HuGene_st:524627-



HuGene_st:290249-



HuGene_st:204007_at:993144-



HuGene_st:1084295-HuGene_st:606544-



HuGene_st:160442-HuGene_st:974942-



HuGene_st:582410-HuGene_st:117174-



HuGene_st


LOXL1
244262-HuGene_st:240421-
LOXL1
0.0027
1.4045
1.33
75.9
63.7-85.5



HuGene_st:999775-HuGene_st


LUM
253522-HuGene_st:646969-
LUM
0.0029
1.3426
2.18
74.9
62.5-84.7



HuGene_st:566007-HuGene_st:629878-



HuGene_st:346266-HuGene_st:749731-



HuGene_st:848594-HuGene_st:781980-



HuGene_st:838285-HuGene_st:594339-



HuGene_st:1095278-HuGene_st:450762-



HuGene_st:205322-HuGene_st:130751-



HuGene_st:183047-HuGene_st:15672-



HuGene_st


SERPINF1
837342-HuGene_st
SERPINF1
0.0031
1.2108
1.76
72.8
60.2-83


MXRA5
319799-HuGene_st:432137-
MXRA5
0.0034
1.2959
1.62
74.1
61.6-84.1



HuGene_st:408065-HuGene_st:291182-



HuGene_st:549236-HuGene_st:217706-



HuGene_st:260019-HuGene_st:1079370-



HuGene_st:216837-HuGene_st:607674-



HuGene_st:829671-HuGene_st:348569-



HuGene_st:357055-HuGene_st:394366-



HuGene_st:192313-HuGene_st:124763-



HuGene_st


POSTN
954838-HuGene_st:153510-
POSTN
0.005
1.301
2.58
74.2
61.7-84.3



HuGene_st:538299-HuGene_st:649547-



HuGene_st:779754-HuGene_st:106590-



HuGene_st:636479-HuGene_st:874100-



HuGene_st:13993-HuGene_st:417058-



HuGene_st:724846-HuGene_st:588010-



HuGene_st:608772-



HuGene_st:210809_s_at:743877-



HuGene_st:713459-HuGene_st:713707-



HuGene_st:753556-HuGene_st:776445-



HuGene_st:388659-HuGene_st


TAGLN
613243-HuGene_st:823959-
TAGLN
0.0051
1.1811
2.19
72.3
59.6-82.6



HuGene_st:898711-HuGene_st:505391-



HuGene_st:26929-HuGene_st:458482-



HuGene_st:66114-HuGene_st:304704-



HuGene_st:543865-



HuGene_st:226523_at:270642-



HuGene_st:179049-HuGene_st:279405-



HuGene_st:902958-HuGene_st:931316-



HuGene_st


NNMT
231559_at:588888-HuGene_st:160284-
NNMT
0.0054
1.2225
1.44
72.9
60.5-83.2



HuGene_st:591616-HuGene_st:968910-



HuGene_st:789017-HuGene_st:218836-



HuGene_st:775762-



HuGene_st:202238_s_at:95357-



HuGene_st:1098599-HuGene_st:793701-



HuGene_st


IL8
471213-HuGene_st:373132-HuGene_st
LOC731467:C6orf142:
0.0062
1.6808
1.33
80
68.1-88.7




CCDC42:IFI6:TRBV21-1:




H2AFZ:RNF20:TRBV5-4:




TRBC1:TRBV3-1:TRBV19:




TRBV7-2:IL23A


GREM1
651822-HuGene_st:546941-
GREM1
0.007
1.3044
1.31
74.3
61.8-84.2



HuGene_st:639839-HuGene_st:326978-



HuGene_st:593695-HuGene_st:127360-



HuGene_st:407017-HuGene_st:1081939-



HuGene_st:345681-HuGene_st:292333-



HuGene_st:864620-HuGene_st:2445-



HuGene_st:556201-HuGene_st:569365-



HuGene_st:411208-HuGene_st:330742-



HuGene_st


CIS
947234-HuGene_st:962144-
C1S
0.0088
1.3551
1.77
75.1
62.8-84.9



HuGene_st:567397-HuGene_st:490300-



HuGene_st:459367-HuGene_st:1059233-



HuGene_st:915378-HuGene_st:682561-



HuGene_st:881984-HuGene_st:332123-



HuGene_st:37033-HuGene_st:433793-



HuGene_st:564959-HuGene_st:240802-



HuGene_st:245571-HuGene_st:156493-



HuGene_st:186313-HuGene_st:866948-



HuGene_st:661278-HuGene_st:665064-



HuGene_st:615340-HuGene_st:981405-



HuGene_st:127169-HuGene_st:224321-



HuGene_st:426716-HuGene_st:905688-



HuGene_st:1009344-HuGene_st:184395-



HuGene_st


TIMP2
310783-HuGene_st:526357-
TIMP2
0.0097
1.1623
1.72
71.9
59.4-82.3



HuGene_st:965142-HuGene_st:463158-



HuGene_st:563754-HuGene_st:914626-



HuGene_st:106688-HuGene_st:1087828-



HuGene_st:740790-HuGene_st:799495-



HuGene_st


SPP1
87046-HuGene_st:904296-
SPP1
0.0109
1.0677
3.91
70.3
57.6-80.9



HuGene_st:809583-HuGene_st:44881-



HuGene_st:1568574_x_at:459132-



HuGene_st:963342-HuGene_st:909306-



HuGene_st:1070547-HuGene_st:31302-



HuGene_st:975259-HuGene_st:743585-



HuGene_st:530424-HuGene_st:709614-



HuGene_st:1022539-HuGene_st:575437-



HuGene_st:809262-HuGene_st:259921-



HuGene_st


SCD
214388-HuGene_st:1054693-
SCD:LOC651109:
 1.27E−02
1.073
2.33
70.4
57.7-81



HuGene_st:433956-HuGene_st:1088784-
LOC645313



HuGene_st:1019041-HuGene_st:698268-



HuGene_st:64902-HuGene_st:749928-



HuGene_st:713000-HuGene_st:562893-



HuGene_st


MYL9
206106-HuGene_st:608837-
MYL9
0.0131
1.1754
1.37
72.2
59.6-82.4



HuGene_st:706186-HuGene_st:874422-



HuGene_st:543240-HuGene_st:676360-



HuGene_st:117460-HuGene_st:404703-



HuGene_st:979054-



HuGene_st:244149_at:467647-



HuGene_st:925187-HuGene_st:173220-



HuGene_st:923797-HuGene_st


CD163
967100-HuGene_st:180883-
CD163
0.0146
1.1667
2.19
72
59.4-82.3



HuGene_st:900552-HuGene_st:662901-



HuGene_st:217692-HuGene_st:74082-



HuGene_st:620892-HuGene_st:899841-



HuGene_st:97726-HuGene_st


S100A8
508168-HuGene_st:306748-
S100A8
0.0148
1.1001
3.17
70.9
58.3-81.3



HuGene_st:473960-HuGene_st:98947-



HuGene_st:777038-HuGene_st:233365-



HuGene_st:671798-HuGene_st:214328-



HuGene_st:214370_at:368299-



HuGene_st:16960-HuGene_st:627642-



HuGene_st:669207-HuGene_st:75346-



HuGene_st:521635-HuGene_st:215650-



HuGene_st:618819-HuGene_st


CYR61
709380-HuGene_st:788428-
CYR61
0.015
1.093
1.69
70.8
58.2-81.3



HuGene_st:385534-HuGene_st:924057-



HuGene_st:951763-HuGene_st:48239-



HuGene_st:462225-HuGene_st:789527-



HuGene_st:673588-HuGene_st:306375-



HuGene_st


MAFB
883249-HuGene_st
MAFB
0.0182
1.1589
1.48
71.9
59.3-82.3


APOE
555956-HuGene_st:99757-HuGene_st
APOE
0.0285
1.1117
1.43
71.1
58.6-81.5


DCN
570449-HuGene_st:1067446-HuGene_st
DCN
0.0364
1.0819
1.29
70.6

58-81.1



G0S2
888942-HuGene_st:346957-
G0S2
0.0383
0.9923
1.53
69
56.3-79.9



HuGene_st:62728-HuGene_st:334340-



HuGene_st:897401-HuGene_st


CDH11
60296-HuGene_st:609892-
CDH11
0.0384
1.01
1.98
69.3
56.7-80



HuGene_st:167614-HuGene_st:184349-



HuGene_st:546348-HuGene_st:960949-



HuGene_st:583244-HuGene_st:599824-



HuGene_st:626011-HuGene_st:96018-



HuGene_st:217538-HuGene_st:180379-



HuGene_st


SQLE
861626-HuGene_st:198540-
SQLE
0.041
1.0133
2.15
69.4
56.7-80.1



HuGene_st:1010566-HuGene_st:895693-



HuGene_st:967759-HuGene_st:894379-



HuGene_st:827097-HuGene_st


GPNMB
NA
GPNMB
0.0623
1.0155
1.52
69.4
56.8-80.1


KIAA1913
NA
KIAA1913
0.1061
0.9593
1.2
68.4
55.7-79.3


SFRP2
NA
SFRP2
0.1336
0.9696
1.24
68.6

56-79.4



SMOC2
NA
SMOC2
0.2175
0.6581
2.06
62.9

50-74.4



SERPING1
NA
SERPING1
 2.64E−01
0.7805
1.26
65.2
52.5-76.5


EFEMP1
NA
EFEMP1
0.4911
0.6831
1.27
63.4
50.5-74.9


TYROBP
NA
TYROBP
0.4923
0.7065
1.23
63.8
51.1-75.2


PLOD2
NA
PLOD2
0.5151
0.7775
1.51
65.1
52.3-76.3


















TABLE 9





SEQ




ID
Probe



NO:
Set ID
Target Sequence







  1
200660
caaggctgggccgggaagggcgtgggttgaggagaggctccagacccgcacgccgcgcgcacagagctctcagc



_at
gccgctcccagccacagcctcccgcgcctcgctcagctccaacatggcaaaaatctccagccctacagagactgagc




ggtgcatcgagtccctgattgctgtcttccagaagtatgctggaaaggatggttataactacactctctccaagacagagtt




cctaagcttcatgaatacagaactagctgccttcacaaagaaccagaaggaccctggtgtccttgaccgcatgatgaaga




aactggacaccaacagtgatggtcagctagatttctcagaatttcttaatctgattggtggcctagctatggcttgccatgac




tccttcctcaaggctgtcccttcccagaagcggacctgaggaccc





  2
200665
gttggttcaaacttttgggagcacggactgtcagttctctgggaagtggtcagcgcatcctgcagggcttctcctcctctgt



_s_at
cttttggagaaccagggctcttctcaggggctctagggactgccaggctgtttcagccaggaaggccaaaatcaagagt




gagatgtagaaagttgtaaaatagaaaaagtggagttggtgaatcggttgttctttcctcacatttggatgattgtcataagg




tttttagcatgttcctccttttcttcaccctcccctttgttcttctattaatcaagagaaacttcaaagttaatgggatggtcggat




ctcacaggctgagaactcgttcacctccaagcatttcatgaaaaagctgcttcttattaatcatacaaactctcaccatgatg




tg





  3
200832
aaaagcgaggtggccatgttatgctggtggttgccagggcctccaaccactgtgccactgacttgctgtgtgaccctggg



_s_at
caagtcacttaactataaggtgcctcagttttccttctgttaaaatggggataataatactgacctacctcaaagggcagtttt




gaggcatgactaatgctttttagaaagcattttgggatccttcagcacaggaattctcaagacctgagtattttttataatagg




aatgtccaccatgaacttgatacgtccgtgtgtcccagatgctgtcattagtctatatggttctccaagaaactgaatgaatc




cattggagaagcggtggataactagccagacaaaatttgagaatacataaacaacgcattgccacggaaacatacaga




ggatgccttttctgtgattgggtgggattttttccctttttatgtgggatatagtagttacttgtgacaagaataattttggaataa




tttctattaatatcaactctgaagctaattgtactaatctgagat





  4
200903
gcagcgggaacagagtaccctcttcaagccccggtcatgatggaggtcccagccacagggaaccatgagctcagtgg



_s_at
tcttggaacagctcactaagtcagtccttccttagcctggaagccagtagtggagtcacaaagcccatgtgttttgccatct




aggccttcacctggtctgtggacttatacctgtgtgcttggtttacaggtccagtggttcttcagcccatgacagatgagaa




ggggctatattgaagggcaaagaggaactgttgtttgaattttcctgagagcctggcttagtgctgggccttctcttaaacc




tcattacaatgaggttagtacttttagtccctgt





  5
201014
agtgttgatgggctctacttctgatcttggtcactgtgaaaaaatcaagaaggcctgtggaaattttggcattccatgtgaac



_s_at
ttcgagtaacatctgcgcataaaggaccagatgaaactctgaggattaaagctgagtatgaaggggatggcattcctact




gtatttgtggcagtggcaggcagaagtaatggtttgggaccagtgatgtctgggaacactgcatatccagttatcagc





  6
201112
agatctgtgcggttggcataaccaacttactaacagaatgtcccccaatgatggacactgagtataccaaactgtggactc



_s_at
cattattacagtctttgattggtctttttgagttacccgaagatgataccattcctgatgaggaacattttattgacatagaagat




acaccaggatatcagactgccttctcacagttggcatttgctgggaaaaaagagcatgatcctgtaggtcaaatggtgaat




aaccccaaaattcacctggcacagtcacttcacatgttgtctaccgcctgtccaggaagggttc





  7
201195
tcagaaggtaggggccgtgtcccgcggtgctgactgaggcctgcttccccctccccctcctgctgtgctggaattccaca



_s_at
gggaccagggccaccgcaggggactgtctcagaagacttgatttttccgtccctttttctccacactccactgacaaacgt




ccccagcggtttccacttgtgggcttcaggtgttttcaagcacaacccaccacaacaagcaagtgcattttcagtcgttgtg




cttttttgttttgtgctaacgtcttactaatttaaagatgctgtcggcaccatgtttatttatttccagtggtcatgctcagccttgc




tgctctgcgtggcgcaggtgccatgcctgctccctgtctgtgtcccagccacgcagggccatccactgtgacgtcggcc




gaccaggctggacaccctctgccgagtaatgacgtgtgtggctgggaccttctttattctgtgttaatggctaacctgttac




actgggctgggttgggtagggtgttctggc





  8
201261
tctctctttctgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtcttgtgcttcctcagacctttctcgcttctgagcttggt



_x_at
ggcctgttccctccatctctccgaacctggcttcgcctgtccctttcactccacaccctctggccttctgccttgagctggga




ctgctttctgtctgtccggcctgcacccagcccctgcccacaaaaccccagggacagcggtctccccagcctgccctgc




tcaggccttgcccccaaacctgtactgtcccggaggaggttgggaggtggaggcccagcatcccgcgcagatgacac




catcaaccgccagagtcccagacaccggttttcctagaagcccctcacccccactggcccactggtggctaggtctccc




cttatccttctggtccagcgcaaggaggggctgcttctgaggtcggtggctgtctttccattaaagaaacacc





  9
201292
tacagatactctactacactcagcctcttatgtgccaagtttttctttaagcaatgagaaattgctcatgttcttcatcttctcaa



_at
atcatcagaggccgaagaaaaacactttggctgtgtctataacttgacacagtcaatagaatgaagaaaattagagtagtt




atgtgattatttcagctcttgacctgtcccctctggctgcctctgagtctgaatctcccaaagagagaaaccaatttctaaga




ggactggattgcagaagactcggggacaacatttgatccaagatcttaaatgttatattgataaccatgctcagcaatgag




ctattagattcattttgggaaatctccataatttcaatttgtaaactttgttaagacctgtctacattgttatatg





 10
201328
agcatcggagccattcattcggagaaaacgttttgatcaaaatggagacttttgtagtcgtttcaaaagagcacctgagtca



_at
tgtgtattcccggcnnnctttataaatgacccggtcaagttggtttcaaagtncgacaggcttgtctgtttactagctgcgtg




gccttggacgggtggctgacatctgtaaagaatcctcctgtgatgaaactgaggaatcgggtggccgggcaagctggg




aagagcaaagccagnagctgcgctgcctcaatacccacaaaagaccattcccagtatacataagcacaggatgtttttct




caagagggatgtatttatcacttggacatctgtttataatataaacagacatgtgactgggaacatcttgctgccaaaagaat




cctaggcagtggctcattgtatgtgaggttgaaccacgtgaaattgccaatattaggctggcttttatctacaaagaaggag




tttcatggggttcagcctaacagttatggaaactacagtccttataaaccattggcatg





 11
201338
gatgtatgtcgctgtccaagagaaggctgtggaagaacctatacaactgtgtttaatctccaaagccatatcctctccttcc



_x_at
atgaggaaagccgcccttttgtgtgtgaacatgctggctgtggcaaaacatttgcaatgaaacaaagtctcactaggcatg




ctgttgtacatgatcctgacaagaagaaaatgaagctcaaagtcaaaaaatctcgtgaaaaacgggagtttggcctctcat




ctcagtggatatatcctcccaaaaggaaacaagggcaaggcttatctttgtgtcaaaacggagagtcacccaactgtgtg




gaagacaagatgctctcgacagttgcagtacttacccttggctaagaactgcactgctttgtttaaaggactgcagaccaa




ggagtcgagctttctctca





 12
201341
ggtctgttcttgaatcctctattaattactgtgtgtgagccagagggagctgtggtaagggttgggcccccagcctgtagg



_at
gaactttctggactcccactctttgaatcgatataggcatttggtctcactacttgaccattctcaccctgtgaaacgtcccac




actttgaagcaaatacaattcacagcacagtacacacaaaaaccaggccttaagacagagaaggttcttcttattttgtggg




ctggttgctgtagaaacatataacaaagggcagccctccacttctggtataattgtgtagccccttttctttgggcttgacac




ctgtcttgaataagagtgattagagctgcataatgtccctctctt





 13
201416
gaggtcagatttggagcttctcattgcacgcggagattattattgcatcgggttccaagccaatgggaagcccggggga



_at
ggggtttggcatgaggaagcgttggttacagcagctgattggctgcagccaagactgtgaaaggataaagaggcgcga




ggcggaattggggtctgctctaagctgcagcaagagaaactgtgtgtgaggggaagaggcctgtttcgctgtcgggtct




ctagttcttgcacgctctttaagagtctgcactggaggaactcctgccattaccagctcccttcttgcagaagggaggggg




aaacatacatttattcatgccagtctgttgcatgcaggctttnnggcttcctaccttgcaacaaaataattgcaccaactcctt




agtgccgattccgcccacagagagtcctggagccacagtcttttttgctttgcattgtaggagagggactaagtgctagag




actatgtcgctttcctgagctaccgagagcgctcgtgaactggaatcaact





 14
201417
gtaaaccacatcttttttgcactttttttataagcaaaaacgtgccgtttaaaccactggatctatctaaatgccgatttgagttc



_at
gcgacactatgtactgcgtttttcattcttgtatttgactatttaatcctttctacttgtcgctaaatataattgttttagtcttatggc




atgatgatagcatatgtgttcaggtttatagctgttgtgtttaaaaattgaaaaaagtggaaaacatctttgtacatttaagtct




gtattataataagcaaaaagattgtgtgtatgtatgtttaatataacatgacaggcactaggacgtctgcctttttaaggcagt




tccgttaagggtttttgtttttaaacttttttttgccatccatcctgtgcaatatgccgtgta





 15
201468
gatgacttaccatgggatggggtccagtcccatgaccttggggtacaattgtaaacctagagttttatcaactttggtgaac



_s_at
agttttggcataatagtcaatttctacactggaagtcatctcattccactgttggtattatataattcaaggagaatatgataaa




acactgccctcttgtggtgcattgaaagaagagatgagaaatgatgaaaaggttgcctgaaaaatgggagacagcctctt




acttgccaagaaaatgaagggattggaccgagctggaaaacctcctttaccagatgctgactggcactggtggtttttgct




ctcgacatatccacaatagctgacggctgggtgtttcagtttgcaaaatattttgttgccttcatcttcactgcaattttgtgta





 16
201479
ttcagacccagtaactgtccgcagctgtctgctagtggttgtcttaacatcgtagtcctagtttgcattttttaaatcccctctgt



_at
ttaaaaggtttgtaaaacaaaaacaaaaaactaagtctgctcagtgaaatgctgtagaaccctaaataagtggtagaaga




gtgtcactgaattttgtctctgaattcagtataactgagttttgtccatgctggtgtctgggttataggcctgatgggcctggta




gttttccatcttgttctggcctagaggtcagtcctttgcacttcctcaaagcttgtgtacagtgctcacctaaatccatctgact




acttgttcctgtgccctcttgttttaggcctcgtttacttttaaaaaatgaaattgttcattgctgggagaagaatgttgtaattttt




acttattaaagtcaacttgttaagttttttatgtattcctgttgggttttcttgttg





 17
201506
acaggaggaatgcaccacggcagctctccgccaatttctctcagatttccacagagactgtttgaatgttttcaaaaccaa



_at
gtatcacactttaatgtacatgggccgcaccataatgagatgtgagccttgtgcatgtgggggaggagggagagagatg




tactttttaaatcatgaccccctaaacatggctgttaacccactgcatgcagaaacttggatgtcactgcctgacattcactt




ccagagaggacctatcccaaatgtggaattgactgcctatgccaagtccctggaaaaggagcttcagtattgtggggctc




ataaaacatgaatcaagcaatccagcctcatgggaagtcctggcacagtttttgtaaagcccttgcacagctggagaaat




ggcatcattataagctatgagttgaaatgttctgtcaaatgtgtctcacatctacacgtggcttggaggcttttatggggccct




gtccaggtagaaaagaaatggtatgtagagcttagatttccctattgtgacagagcc





 18
201563
aggaaactgctacttgtggacctcaccagagaccaggagggtttggttagctcacaggacttcccccaccccagaagat



_at
tagcatcccatactagactcatactcaactcaactaggctcatactcaattgatggttattagacaattccatttctttctggtta




ttataaacagaaaatctttcctcttctcattaccagtaaaggctcttggtatctttctgttggaatgatttctatgaacttgtcttat




tttaatggtgggttttttttctggtaagatttagacctaaatcgcatcatgccaacttgtgactttgagactattcatcaagaatg




aggatatagtagccatgacatagcttgagctatagcctttaattccttactttggctatgggtggagggtgagtttgaagag




gttctgattttcttgtaacctggga





 19
201577
gattccgccttgttggtctgaaattcatgcaagcttccgaagatcttctcaaggaacactacgttgacctgaaggaccgtcc



_at
attctttgccggcctggtgaaatacatgcactcagggccggtagttgccatggtctgggaggggctgaatgtggtgaaga




cgggccgagtcatgctcggggagaccaaccctgcagactccaagcctgggaccatccgtggagacttctgcatacaa




gttggcaggaacattatacatggcagtgattctgtggagagtgcagagaaggagatcggcttgtggtttcaccctgagga




actggtagattacacgagctgtgctcagaactggatctatgaatgacaggagggcagaccacattgcttttcacatccattt




cccctccttcccatgggcagaggaccaggctgtaggaaatctagttatttacaggaacttcatcataatttggagggaagc




tcttggagctgtgagttctccctgtacagtgttaccatc





 20
201601
agaaaaccacacttctcataccttcactcaacacttccttccccaaagccagaagatgcacaaggaggaacatgaggtg



_x_at
gctgtgctgggggcaccccccagcaccatccttccaaggtccaccgtgattaacatccacagcgagacctccgtgccc




gaccatgtcgtctggtccctgttcaacaccctcttcttgaactggtgctgtctgggcttcatagcattcgcctactccgtaaa




gtctagggacaggaagatggttggcgacgtgaccggggcccaggcctatgcctccaccgccaagtgcctgaacatct




gggccctgattctgggcatcctcatgaccattggattcatcctgttactggtattcggctctgtaacagtctaccatattatgtt




acagataatacaggaaaaacggggttactagtagccgcccatagcctgcaacctttgcactccactgtgcaatgctggc




c





 21
201656
gtagtgccactgttgttttggggggggctttttttctttttccggaaaatccttaaaccttaagatactaaggacgttgttttggt



_at
tgtacttggaattcttagtcacaaaatatattttgtttacaaaaatttctgtaaaacaggttataacagtgtttaaagtctcagttt




cttgcttggggaacttgtgtccctaatgtgttagattgctagattgctaaggagctgatacttgacagttttttagacctgtgtt




actaaaaaaaagatgaatgtcggaaaagggtgttgggagggtggtcaacaaagaaacaaagatgttatggtgtttagac




ttatggttgttaaaaatgtcatctcaagtcaagtcactggtctgtttgcatttgatacatttttgtactaactagcattgtaaaatt




atttcatgattagaaattacctgtggatatttgtataaaagtgtgaaataaattttttataaaagtgttcattgtttcgtaacacag




catt





 22
201666
tcagggccaagttcgtggggacaccagaagtcaaccagaccaccttataccagcgttatgagatcaagatgaccaagat



_at
gtataaagggttccaagccttaggggatgccgctgacatccggttcgtctacacccccgccatggagagtgtctgcgga




tacttccacaggtcccacaaccgcagcgaggagtttctcattgctggaaaactgcaggatggactcttgcacatcactac




ctgcagtttcgtggctccctggaacagcctgagcttagctcagcgccggggcttcaccaagacctacactgttggctgtg




aggaatgcacagtgtttccctgtttatccatcccctgcaaactgcagagtggcactcattgcttgtggacggacc





 23
201925
gtgatttttttccacaagtttctgtaatgttatttccacttataaaggaaataaaaaatgaaaaacattatttggatatcaaaagc



_s_at
aaataaaaacccaattcagtctcttctaagcaaaattgctaaagagagatgaaccacattataaagtaatctttggctgtaa




ggcattttcatctttccttcgggaggcaaaatattttaaaggtaaaacatgctggtgaaccaggggtgttgatggtgataag




ggaggaatatagaatgaaagactgaatcttcctttgttgcacaaatagagtttggaaaaagcctgtgaaaggtgtcttcttt




gacttaatgtctttaaaagtatccagagatactacaatattaacataagaaaagattatatattatttctgaatcgagatgtcca




tagtcaaatttgtaa





 24
201926
gagagcactctatttattgtactgtgaataatgatgaaggagagtggagtggcccaccacctgaatgcagaggaaaatct



_s_at
ctaacttccaaggtcccaccaacagttcagaaacctaccacagtaaatgttccaactacagaagtctcaccaacttctcag




aaaaccaccacaaaaaccaccacaccaaatgctcaagcaacacggagtacacctgtttccaggacaaccaagcattttc




atgaaacaaccccaaataaaggaagtggaaccacttcaggtactacccgtcttctatctgggcacacgtgtttcacgttga




caggtttgcttgggacgctagtaaccatgggcttgctgacttagccaaagaagagttaagaagaaaatacacacaagtat




acagactgttcctagtttcttagactta





 25
202286
gtatgacaacccgggatcgtttgcaagtaactgaatccattgcgacattgtgaaggcttaaatgagtttagatgggaaata



_s_at
gcgttgttatcgccttgggtttaaattatttgatgagttccacttgtatcatggcctacccgaggagaagaggagtttgttaac




tgggcctatgtagtagcctcatttaccatcgtttgtattactgaccacatatgcttgtcactgggaaagaagcctgtttcagct




gcctgaacgcagtttggatgtctttgaggacagacattgcccggaaactcagtctatttattcttcagcttgccc





 26
202310
tggcctacatggaccagcagactggcaacctcaagaaggccctgctcctccagggctccaacgagatcgagatccgc



_s_at
gccgagggcaacagccgcttcacctacagcgtcactgtcgatggctgcacgagtcacaccggagcctggggcaaga




cagtgattgaatacaaaaccaccaagacctcccgcctgcccatcatcgatgtggcccccttggacgttggtgccccaga




ccaggaattcggcttcgacgttggccctgtctgcttcctgtaaactccctccatcccaacctggctccctcccacccaacc




aactttccccccaacccggaaacagacaagcaacccaaactgaaccccctcaaaagccaaaaaatgggagacaatttc




acatggactttggaaaatatttttttcctttgcattcatctctcaaacttagtttttatctttgaccaaccgaacatgacca





 27
202311
gctccccatttttataccaaaggtgctacatctatgtgatgggtggggtggggagggaatcactggtgctatagaaattga



_s_at
gatgcccccccaggccagcaaatgttcctttttgttcaaagtctatttttattccttgatattttttntttntttttttttttttttgtgga




tggggacttgtgaatttttctaaaggtgctatttaacatgggaggagagcgtgtgcggctccagcccagcccgctgctca




ctttccaccctctctccacctgcctctggcttctcaggcctctgctctccgacctctctcctctgaaaccctcctccacagct




gcagcccatcctcccggctccctcctagtctgtcctgcgtcctctgtccccgggtttcagagacaacttcccaaagcacaa




agcagtttttncccctaggggtgggaggaagcaaaagactctgtacctattttgt





 28
202403
aacctgaaaacatcccagccaagaactggtataggagctccaaggacaagaaacacgtctggctaggagaaactatca



_s_at
atgctggcagccagtttgaatataatgtagaaggagtgacttccaaggaaatggctacccaacttgccttcatgcgcctgc




tggccaactatgcctctcagaacatcacctaccactgcaagaacagcattgcatacatggatgaggagactggcaacct




gaaaaaggctgtcattctacagggctctaatgatgttgaacttgttgctgagggcaacagcaggttcacttacactgttctt




gtagatggctgctctaaaaagacaaatgaatggggaaagacaatcattgaatacaaaacaaataagccatcacgcctgc




ccttccttgatattgcacctttggacatcggtggtgctgaccaggaattctttgtggacattggcccagtctgtt





 29
202404
actttcccatgagtgtgatccacattgttaggtgctgacctagacagagatgaactgaggtccttgttttgttttgttcataata



_s_at
caaaggtgctaattaatagtatttcagatacttgaagaatgttgatggtgctagaagaatttgagaagaaatactcctgtatt




gagttgtatcgtgtggtgtattttttaaaaaatttgatttagcattcatattttccatcttattcccaattaaaagtatgcagattatt




tgcccaaagttgtcctcttcttcagattcagcatttgttctttgccagtctcattttcatcttcttccatggttccacagaagctttg




tttcttgggca





 30
202431
gcaacaaccgaaaatgcaccagccccaggtcctcggacaccgaggagaatgtcaagaggcgaacacacaacgtctt



_s_at
ggagcgccagaggaggaacgagctaaaacggagcttttttgccctgcgtgaccagatcccggagttggaaaacaatg




aaaaggcccccaaggtagttatccttaaaaaagccacagcatacatcctgtccgtccaagcagaggagcaaaagctcat




ttctgaagaggacttgttgcggaaacgacgagaacagttgaaacacaaacttgaacagctacggaactcttgtgcgtaa




ggaaaagtaaggaaaacgattccttctaacagaaatgtcctgagcaatcacctatgaacttgtttcaaatgcatgatcaaat




gcaacctcacaaccttggctgagtc





 31
202504
ggaaacctctcagtgtcttgacatcaccctacccaggcggtgggtctccaccacagccactttgagtctgtggtccctgg



_at
agggtggcttctcctgactggcaggatgaccttagccaagatattcctctgttccctctgctgagataaagaattcccttaa




catgatataatccacccatgcaaatagctactggcccagctaccatttaccatttgcctacagaatttcattcagtctacactt




tggcattctctctggcgatggagtgtggctgggctgaccgcaaaaggtgccttacacactgcccccaccctcagccgttg




ccccatcagaggctgcctcctccttctgattaccccccatgttgcatatcaggg





 32
202718
atccccaactgtgacaagcatggcctgtacaacctcaaacagtgcaagatgtctctgaacgggcagcgtggggagtgct



_at
ggtgtgtgaaccccaacaccgggaagctgatccagggagcccccaccatccggggggaccccgagtgtcatctcttct




acaatgagcagcaggaggcttgcggggtgcacacccagcggatgcagtagaccgcagccagccggtgcctggcgc




ccctgccccccgcccctctccaaacaccggcagaaaacggagagtgcttgggtggtg





 33
202779
ccgaacgtgggcgccaatggcgagatctgcgtcaacgtgctcaagagggactggacggctgagctgggcatccgac



_s_at
acgtactgctgaccatcaagtgcctgctgatccaccctaaccccgagtctgcactcaacgaggaggcgggccgcctgc




tcttggagaactacgaggagtatgcggctcgggcccgtctgctcacagagatccacgg





 34
202831
ctacccttatgatgacccattttccctcatgaccgatcccaagctcatcatttggagccctgtgcgccgctcagatgtggcc



_at
tggaactttgagaagttcctcatagggccggagggagagcccttccgacgctacagccgcaccttcccaaccatcaaca




ttgagcctgacatcaagcgcctccttaaagttgccatatagatgtgaactgctcaacacacagatctcctactccatccagt




cctgaggagccttaggatgcagcatgccttcaggagacactgctggacctcagcattcccttgatatcagtccccttcact




gcagagccttgcctttcccctctgcctgtttccttttcctctcccaaccctctggttggtgattcaacttgggctccaagacttg




ggtaagctctgggccttcacagaatgatggcaccacctaaaccctcatgggtgg





 35
202833
gaagcgtttaggcatgtttaacatccagcactgtaagaagctgtccagctgggtactgctaatgaaatacctgggcaatgc



_s_at
caccgccatcttcttcctacctgatgaggggaaactacagcacctggaaaatgaactcacccacgatatcatcaccaagt




tcctggaaaatgaagacagaaggtctgccagcttacatttacccaaactgtccattactggaa





 36
202859
gtacccagttaaattttcatttcagataaacaacaaataattttttagtataagtacattattgtttatctgaaagttttaattgaac



_x_at
taacaatcctagtttgatactcccagtcttgtcattgccagctgtgttggtagtgctgtgttgaattacggaataatgagttag




aactattaaaacagccaaaactccacagtcaatattagtaatttcttgctggagaaacttgtttattatgtacaaatagattctt




ataatattatttaaatgactgcatttttaaatacaaggctttattttttttaactttaagatgtttttatgtgctctccaaattttttttact




gtttctgattgtat





 37
202935
gagaggaccaaccagaattccctttggacatttgtgtttttttgtttttttttttttgttttgttttttcttcttcttcttcttccttaaaga



_s_at
catttaagctaaaggcaactcgtacccaaatttccaagacacaaacatgacctatccaagcgcattacccacttgtggcca




atcagtggccaggccaaccttggctaaatggagcagcgaaatcaacgagaaactggactttttaaaccctcttcagagc




aagcgtggaggatgatggagaatcgtgtgatcagtgtgctaaatctctctgcctgtttggactttgtaattatttttttagcagt




aattaaagaaaaaagtcctctgtgaggaatattctctattttaaatatttttagtatgtactgtgtatgattcattaccattttgag




gggatttatacatattttagataaaattaaatgctcttatttttccaacagctaaactactcttagttgaacagtgtgccctagct




tttcttgcaaccagagta





 38
202936
gtagtgtatcactgagtcatttgcagtgttttctgccacagacctttgggctgccttatattgtgtgtgtgtgtgggtgtgtgtg



_s_at
tgttttgacacaaaaacaatgcaagcatgtgtcatccatatttctctacatcttctcttggagtgagggaggctacctggagg




ggatcagcccactgacagaccttaatcttaattactgctgtggctagagagtttgaggattgctttttaaaaaagacagcaa




acttttttttttatttaaaaaaagatatattaacagttttagaagtcagtagaataaaatcttaaagcactcataatatggcatcct




tcaatttctgtataaaagcagatctttttaaaaaagatacttctgtaacttaagaaacctggcatttaaatcatattttgtctttag




gtaaaagctttggtttgtgttcgtgttttgtttgtttcacttgtttccctcccagccccaaaccttttgactctccgtgaaacttac




cttt





 39
202954
gccttccctgaatcagacaaccttttcaaatgggtagggaccatccatggagcagctggaacagtatatgaagacctgag



_at
gtataagctctcgctagagttccccagtggctacccttacaatgcgcccacagtgaagttcctcacgccctgctatcaccc




caacgtggacacccagggtaacatatgcctggacatcctgaaggaaaagtggtctgccctgtatgatgtcaggaccatt




ctgctctccatccagagccttctaggagaacccaacattgatagtcccttgaacacacatgctgccgagctctggaaaaa




ccccacagcttttaagaagtacctgcaagaaacctactcaaagcaggtcaccagccaggagccctgacccaggctgcc




cagcctgtccttgtgtcgtctttttaatttttccttagatggtctgtcctttttgtgattt





 40
202998
gccagtcttgaccgggatgaggcccacagacaggttgtcatcagcttgtcccattcaagccaccgagctcaccacagac



_s_at
acagtggagccgcgctcttctccagtgacacgtggacaaatgcgggctcatcagcccccccagagagggtcaggccg




aaccccatttctcctcctcttaggtcattttcagcaaacttgaatatctagacctctcttccaatgaaaccctccagtctattata




gtcacatagataatggtgccacgtgttttctgatttggtgagctcagacttggtgcttccctctccacaacccccaccccttg




tttttcaagatactattattatattttcacagacttttgaagcacaaatttattggcatttaatattggacatctgggcccttggaa




gtacaaatctaaggaaaaaccaacccactgtgtaagtgactcatcttcctgttgttccaattctgtgggtttttgattcaacgg




tgctataaccagggtcctgggtgacagggcgctcactgagcaccatgtgtcatcacagaca





 41
203083
caggaaatagtcactcatcccactccacataaggggtttagtaagagaagtctgtctgtctgatgatggatagggggcaa



_at
atctttttcccctttctgttaatagtcatcacatttctatgccaaacaggaacgatccataactttagtcttaatgtacacattgca




ttttgataaaattaattttgttgtttcctttgaggttgatcgttgtgttgttttgctgcactttttacttttttgcgtgtggagctgtattc




ccgagacaacgaagcgttgggatacttcattaaatgtagcgactgtcaacagcgtgcaggttttctgtttctgtgttgtggg




gtcaaccgtacaatggtgtgggaatgacgatgatgtgaatatttagaatgtaccatattttttgtaaattatttatgtttttctaaa




caaatttatcgtataggagatgaaacgtcatgtgttttgccaaagactgtaaatatttatttatgtgttcacatggtcaaaatttc




accactgaaaccctgcacttagctagaacct





 42
203124
atggtaacatgtatctttgccctgggtctgggtgggtccagtcagtctcagatttacaagcatttaggagcctaggtaaaag



_s_at
ctgctagtattcttttaaaagttatatttatgacttgcaatgatagaaaactccttccaattaaatggcattttataatattatgtgt




gtacttcacagtgttaaaaataccctcatacgttattgcatttgatatcacagaaagtgcattttaaccagtactctgggtgc




aataaataatatgtagaaatttaagtcctccaattccagcatatccagtgagttttgacagtgtgtttatgtggaatgtttaagg




atatacaattgtactttatataaattggttcttgttcttcttaaatgtgacatgaaataattgtgctgctacattatactggaaatta




acaggggaaaagggaagagctcttggctcccttgaggttctgctagtggtgttaggagtggttacaactgagcttttagta




accatttaaccg





 43
203213
tgctaagttcaagtttcgtaatgctttgaagtatttttatgctctgaatgtttaaatgttctcatcagtttcttgccatgttgttaact



_at
atacaacctggctaaagatgaatatttttctactggtattttaatttttgacctaaatgtttaagcattcggaatgagaaaactat




acagatttgagaaatgatgctaaatttataggagttttcagtaacttaaaaagctaacatgagagcatgccaaaatttgctaa




gtcttacaaagatcaagggctgtccgcaacagggaagaacagttttgaaaatttatgaactatcttatttttaggtaggttttg




aaagctttttgtctaagtgaattcttatgccaggtcagagtaataactgaaggagntgcttatcttggctttcgagtctgagtt




taaaactacacattttgacatagtgtttattagcagccatc





 44
203256
gtggccgtagcaacttggcggagacaggctatgagtctgacgttagagtggttgcttccttagccatcaggatggagga



_at
atgtgggcagtttgacttcagcactgaaaacctctccacctgggccagggttgcctcagaggccaagtttccagaagcct




cttacctgccgtaaaatgctcaaccctgtgtcctgggcctgggcctgctgtgactgacctacagtggactttctctctggaa




tggaaccttcttaggcctcctggtgcaacttaatttttttttttaatgctatcttcaaaacgttagagaaagttcttcaaaagtgc




agcccagagctgctgggcccactggccgtcctgcatttctggtttccagaccccaatgcctcccattcggatggatctctg




cgtttttatactgagtgtgcctaggttgccccttattttttattttccctgttgcgttgctatagatg





 45
203313
agagtggtcttttcaacactcctccccctactccaccggacctcaaccaggacttcagtggatttcagcttctagtggatgtt



_s_at
gcactcaaacgggctgcagagatggagcttcaggcaaaacttacagcttaacccattttcaagcaaaacagttctcagaa




atgtcatgattgccggggtgaaggcaagagatgaattgcattattttatatattttttattaatatttgcacatgggattgctaaa




acagcttcctgttactgagatgtcttcaatggaatacagtcattccaagaactataaacttaaagctactgtagaaacaaag




ggttttcttttttaaatgtttcttggtagattattcataatgtgagatggttcccaatatcatgtgatttttttttttcctccccttccctt




tttttgttattttttcagactgtgcaatacttagagaacctatagcatcttctcattcccatgtggaacaggatgcccacatactg




tctaatta





 46
203510
gaagccaagggttaacccagcaagctacaaagagggtgtgtcacactgaaactcaatagttgagtttggctgttgttgca



_at
ggaaaatgattataactaaaagctctctgatagtgcagagacttaccagaagacacaaggaattgtactgaagagctatta




caatccaaatattgccgtttcataaatgtaataagtaatactaattcacagagtattgtaaatggtggatgacaaaagaaaat




ctgctctgtggaaagaaagaactgtctctaccagggtcaagagcatgaacgcatcaatagaaagaactcggggaaaca




tcccatcaacaggactacacacttgtatatacattcttgagaacactgcaatgtgaaaatcacgtttgctatttataaacttgt




ccttagattaatgtgtctggacagattgtgggagtaagtgattcttctaagaattagatacttgtcactgcctatacctgcagc




tgaactgaatggtacttcgtatg





 47
203860
gaagcaggtggaaacatgagcattcagtttcttggtacagtgtacaaggtgaatatcttaaccagacttgccgcagaattg



_at
aacaaatttatgctggaaaaagtgactgaggacacaagcagtgttctgcgttccccgatgcccggagtggtggtggccg




tctctgtcaagcctggagacgcggtagcagaaggtcaagaaatttgtgtgattgaagccatgaaaatgcagaatagtatg




acagctgggaaaactggcacggtgaaatctgtgcactgtcaagctggagacacagttggagaaggggatctgctcgtg




gagctggaatgaaggatttataacctttcagtcatcacccaatttaattagccatttgcatgatgctttcacacacaattgattc




aagcattatacaggaacacccctgtgcagctacgtttacgtcgtcatttattccacagagtcaagaccaatattctgccaaa




aaatcaccaatggaaattttcatgatataaatacttgtactatagatgtacttctgctgtg





 48
203878
tgccagcgactgtctcagactgggcagggaggctttggcatgacttaagaggaagggcagtcttgggacccgctatgc



_s_at
aggtcctggcaaacctggctgccctgtctcatccctgtccctcagggtagcaccatggcaggactgggggaactggagt




gtccttgctgtatccctgttgtgaggttccttccaggggctggcactgaagcaagggtgctggggccccatggccttcag




ccctggctgagcaactgggctgtagggcagggccacttcctgaggtcaggtcttggtaggtgcctgcatctgtctgcctt




ctggctgacaatcctggaaatctgttctccagaatccaggccaaaaagttcacagtcaaatggggaggggtattcttcatg




caggagaccccaggccctggaggctgcaacatacctcaatcctgtcccaggccggatcctcctgaagcccctttcgcag




cactgctatcctccaaagccattgtaaatgtgtgtacagtgtgtataaaccttcttcttctt





 49
203895
gactaatccatacacagttaacctaatgccaaataaatactggttaaataaatgtatggcacagaatataatttgactatcaa



_at
gacttttagcataatgaaaaaccctctctctatatatatatgtgtatatgaattatgtgggcattcttgatacttcaagttctagttt




gaaaaaaatacataactaatttaattttacacaaaaatatttatgcagattttcagaatttcatatcaggaaatgacccttttatgt




ctgttaaatatcaaaacaatttgctacagtgttaatctgcatggtctttaagcctgctgtagttgagttgcagacagtgcatga




aaaagtattccgctgggaattgagccatgccaccaaagccaagaggagcgcatggaaacccggtagtctagaactaat




cagattactgattttagggcacagcaccagatgaattgttgtatatgcttgtaaaaattgattctgtgtgttcctctgaacaaa




gcgg





 50
203896
gtccagcttgaacatctagaattcctagagaaacagaatgagcaggcgaaggagatgcagcagatggtgaaattggaa



_s_at
gccgagatggaccgcagaccagcaacagtagtatgaaactccaaaatgcaaactgaagcagcaaacccacaaagcat




caaaagactcactcacaaaacactgaacacaaactccatggatgaaagctgtttattttgtttcctttatgtgtaaacaagat




gatatctgaaaccagagagacttggaatgtctgactgacttctatttaacagcttgagtattgcatttccttggccaaacaaa




aatagctacaaatccacaaaaatttactattccagtaaggcagagtccaaccattgataatacaacttaaacatgtttgctat




aaaataccatcacaagtaaatgagcttggtgtgaacaactcttcctttgtgatgccttagg





 51
203961
ggactagagcaacatcgtgctgcccaaaggactaacctatgcaaactagttcacattttagtggatgtcgcagttaatgtgt



_at
aataagacattatttcccctgcataatgtacaacagcattgaaatgacacattaagcctagcatcacattgtatagtacagtc




actcacaaacccttcaaggctaccctaatcattaacattaatatttgtttaaaagcaaatcaccgatttatctattgaaactact




taaatgacggcaaaccaggaatgacagatggctgtgtcagcaatggctttaatgtgttccctgcaagtggtctcctatgan




tagaactgcgttctcaaatgcactctcttcagggtcttaatattctgtgttttctctctgtatttgtaaaacattataacacattaat




ttcctatctctacacatttgg





 52
203962
gtcaaggcattgtatgttgcttctgtggttattattctgtgatgcttagactacttgaacccataaacttggaagaatctttgag



_s_at
caaattttctcagttgtctgtatgacttcagtatattcctgggaatgccataggattttttgtgcttgatacatggtatccagtttg




catagtatcacttctttgtaatccagttgctgttaagaatgatgtactttaaaggaaaagagaaaactgcatcacagtcccatt




ctccagtgtccatgcaatgaattgctgagcatttaggaagcagcaccaagtctattacaggcatggtgtgaaacttgatgtt




tgacctgtgatcaaaattgaaccattgtacagtttggcttctgtttgcttcaaaatatgtagaattgtggttgatgattaatttgc




gagactaactttgagagtgtaacagttttgaagaaaacattgaatgttttacaaatgaaggggcttcacggaatgttacaa





 53
204051
aaccagccagtcccaagaagaacattaaaactaggagtgcccagaagagaacaaacccgaaaagagtgtgagctaac



_s_at
tagtttccaaagcggagacttccgacttccttacaggatgaggctgggcattgcctgggacagcctatgtaaggccatgt




gccccttgccctaacaactcactgcagtgctcttcatagacacatcttgcagcatttttcttaaggctatgcttcagtttttcttt




gtaagccatcacaagccatagtggtaggtttgccctttggtacagaag





 54
204127
ttgtgttttgtcattagctctgccctttttaattaaatattttggttcatggaccaaagggtttacttgacaaatttgtgtgacaga



_at
ctccgaacaattcctttactacgaagtataatttataaaataaaatatacccattttaagggtacagtttgatttttgaccagtga




aactatgatcccaatcaaggtatagatgccgtcaccccaaaaagttccctccatatccctttgcagtcagttcatccctacc




ctggcccagatgatcactgatcttgtcattatagatgagttttgccagttcaagaatttaatggaatcagatattgtaagcatt




cttgtgtaatacttcattctctctcattattgagattcatccatattgttgaatgtttcactagttaatgtttattgttcaatatttttgta




tatacttttaaagcctattcacttgctgatggatctt





 55
204170
cgctctcgtttcattttctgcagcgcgccacgaggatggcccacaagcagatctactactcggacaagtacttcgacgaa



_s_at
cactacgagtaccggcatgttatgttacccagagaactttccaaacaagtacctaaaactcatctgatgtctgaagaggag




tggaggagacttggtgtccaacagagtctaggctgggttcattacatgattcatgagccagaaccacatattcttctctttag




acgacctcttccaaaagatcaacaaaaatgaagtttatctggggatcgtcaaatctttttcaaatttaatgtatatgtgtatata




aggtagtattcagtgaatacttgagaaatgtacaaatattctttccatacctgtgcatgagctgtattcttcacagcaacaga




gctcagttaaatgcaactgcaagtaggttactgtaagatgtttaagataaaagttcttccagtcagtttttctcttaagtgcct





 56
204259
ctcatggggactcctacccatttgatgggccaggaaacacgctggctcatgcctttgcgcctgggacaggtctcggagg



_at
agatgctcacttcgatgaggatgaacgctggacggatggtagcagtctagggattaacttcctgtatgctgcaactcatga




acttggccattctttgggtatgggacattcctctgatcctaatgcagtgatgtatccaacctatggaaatggagatccccaa




aattttaaactttcccaggatgatattaaaggcattcagaaactatatggaaagagaagtaattcaagaaagaaatagaaa




cttcaggcagaacatccattcattcattcattggattgtatatcattgttgcacaatcagaattgataagcactgttcctccact




ccatttagcaattatgtcacccttttttattgcagttggtttttgaatgtctttcactccttttattggttaaactcctttatggtgtga




ctgtgtcttattccatctatgagctttgtcagtgcgcgtagatgt





 57
204320
gaaaatgtaccttggtgccaccaacccattttgtgccacatgcaagttttgaataaggatgtatggaaaacaacgctgcat



_at
atacaggtaccatttaggaaataccgatgcctttgtgggggcagaatcacagacaaaagctttgaaaatcataaagatata




agttggtgtggctaagatggaaacagggctgattcttgattcccaattctcaactctccttttcctatttgaatttctttggtgct




gtagaaaacaaaaaaagaaaaatatatattcataaaaaatatggtgctcattctcatccatccaggatgtactaaaacagtg




tgtttaataaattgtaattattttgtgtacagttctatactgttatctgtgtccatttccaaaacttgcacgtgtccctgaattccgc




tgactctaatttatgaggatgccgaactctgatggcaataatatatgtattatgaaaatgaagttatgatttccgatgacccta




agtcc





 58
204351
gggtctgaatctagcaccatgacggaactagagacagccatgggcatgatcatagacgtcttttcccgatattcgggcag



_at
cgagggcagcacgcagaccctgaccaagggggagctcaaggtgctgatggagaaggagctaccaggcttcctgcag




agtggaaaagacaaggatgccgtggataaattgctcaaggacctggacgccaatggagatgcccaggtggacttcagt




gagttcatcgtgttcgtggctgcaatcacgtctgcctgtcacaagtactttgagaaggcaggactcaaatgatgccctgga




gatgtcacagattcctgcagagccatggtcccaggcttcccaaaagtgtttgttggcaattattcccctaggctgagcctg




ctcatgtacc





 59
204401
gtagctggacccacgaggaggaaccaggctactttccccagtactgaggtggtggacatcgtctctgccactcctgacc



_at
cagccctgaacaaagcacctcaagtgcaaggaccaaagggggccctggcttggagtgggttggcttgctgatggctgc




tggaggggacgctggctaaagtgggtaggccttggcccacctgaggccccaggtgggaacatggtcacccccactct




gcataccctcatcaaaaacactctcactatgctgctatggacgacctccagctctcagttacaagtgcaggcgactggag




gcaggactcctgggtccctgggaaagagggtactaggggcccggatccaggattctgggaggcttcagttaccgctgg




ccgagctgaagaactgggtatgaggctggggcggggctggaggtggcgccccctggtgggacaacaaagaggaca




ccatttttccagagctgc





 60
204404
agaccaagacataccggcagatcaggttaaatgagttattaaaggaacattcaagcacagctaatattattgtcatgagtct



_at
cccagttgcacgaaaaggtgctgtgtctagtgctctctacatggcatggttagaagctctatctaaggacctaccaccaat




cctcctagttcgtgggaatcatcagagtgtccttaccactattcataaatgttctatacagtggacagccctccagaatggt




acttcagtgcctagtgtagtaacctgaaatcttcaatgacacattaacatcacaatggcgaatggtgacttttctttcacgatt




tcattaatttgaaagcacacaggaaagcttgctccattgataacgtgtatggagacttcggttttagtcaattccatatc





 61
204470
tatgattaactctacctgcacactgtcctattatattcattctttttgaaatgtcaaccccaagttagttcaatctggattcatattt



_at
aatttgaaggtagaatgttttcaaatgttctccagtcattatgttaatatttctgaggagcctgcaacatgccagccactgtga




tagaggctggcggatccaagcaaatggccaatgagatcattgtgaaggcaggggaatgtatgtgcacatctgttttgtaa




ctgtttagatgaatgtcagttgttatttattgaaatgatttcacagtgtgtggtcaacatttctcatgttgaaactttaagaactaa




aatgttctaaatatcccttggacattttatgtctttcttgtaaggcatactgccttgtttaatggtagttttacagtgtttctggctta




gaaca





 62
204475
gaagaactgtctattttctcagtcatttttaacctctagagtcactgatacacagaatataatcttatttatacctcagtttgcata



_at
tttttttactatttagaatgtagccctttagtactgatataatttagttccacaaatggtgggtacaaaaagtcaagtttgtggctt




atggattcatataggccagagttgcaaagatcttttccagagtatgcaactctgacgttgatcccagagagcagcttcagt




gacaaacatatcctttcaagacagaaagagacaggagacatgagtctttgccggaggaaaagcagctcaagaacacat




gtgcagtcactggtgtcaccctggataggcaagggataactcttctaacaca





 63
204580
agatgatggaccctggttatcccaaactgattaccaagaacttccaaggaatcgggcctaaaattgatgcagtcttctattc



_at
taaaaacaaatactactatttcttccaaggatctaaccaatttgaatatgacttcctactccaacgtatcaccaaaacactgaa




aagcaatagctggtttggttgttagaaatggtgtaattaatggtttttgttagttcacttcagcttaataagtatttattgcatattt




gctatgtcctcagtgtaccactacttagagatatgtatcataaaaataaaatctgtaaaccataggtaatgattatataaaata




cataatatttttcaattttgaaaactctaattgtccattcttgcttgactctactattaagtttgaaaatagttaccttcaaagcaag




ataattctatttgaagcatgctctgtaagttgcttcctaacatccttggactgagaaattatacttacttctggcataactaaa





 64
204620
tgccgtgctcccaaaacattttaaatgaaagtattggcattcaaaaagacagcagacaaaatgaaagaaaatgagagca



_s_at
gaaagtaagcatttccagcctatctaatttctttagttttctatttgcctccagtgcagtccatttcctaatgtataccagcctact




gtactatttaaaatgctcaatttcagcaccgatggccatgtaaataagatgatttaatgttgattttaatcctgtatataaaataa




aaagtcacaatgagtttgggcatatttaatgatgattatggagccttagaggtctttaatcattggttcggctgcttttatgtag




tttaggctggaaatggtttcacttgctctttgactgtcagcaagactgaagatggcttttcctggacagctagaaaacacaa




aatcttgtaggtcattgcacctatctcagccataggtgcagtttgcttctacatgatgctaaaggctgcgaatgggatcctga




tggaactaaggactccaatgtcgaactcttctttgctgc





 65
204702
tgctctccagtgtacccatgatggaagtatcttgatagtacccaaagaactggtggcctcaggccacaaaaaggaaacc



_s_at
caaaagggaaagagaaagtgagaagaaactgaagatggactctattatgtgaagtagtaatgttcagaaactgattatttg




gatcagaaaccattgaaactgcttcaagaattgtatctttaagtactgctacttgaataactcagttaacgctgttttgaagctt




acatggacaaatgtttaggacttcaagatcacacttgtgggcaatctgggggagccacaacttttcatgaagtgcattgtat




acaaaattcatagttatgtccaaagaataggttaacatgaaaacccagtaagactttccatcttggcagccatcctttttaag




agtaagttggttacttcaaaaagagcaaacactggggatcaaattattttaagaggtatttcagttttaaatgcaaaatagcc




ttattttcatttagtttgttagcactatagtgagcttttcaaacactattttaatc





 66
204855
cttcgttcgcagagcttttcagattgtggaatgttggataaggaattatagacctctagtagctgaaatgcaagaccccaag



_at
aggaagttcagatcttaatataaattcactttcatttttgatagctgtcccatctggtcatgtggttggcactagactggtggca




ggggcttctagctgactcgcacagggattctcacaatagccgatatcagaatttgtgttgaaggaacttgtctcttcatctaa




tatgatagcgggaaaaggagaggaaactactgcctttagaaaatataagtaaagtgattaaagtgctcacgttaccttgac




acatagtttttcagtctatgggtttagttactttagatggcaagcatgtaacttatattaatagtaatttgtaaagttgggtggat




aagctatccctgttgccggttcatggattacactctataaaaaatatatatttaccaaaaaattttgtgacattcatctcccatc




tcttccttgacatgcattgtaaataggttcttcttgttctgag





 67
204885
tttccagaacatgaacgggtccgaatacttcgtgaagatccagtccttcctgggtggggcccccacggaggatttgaag



_s_at
gcgctcagtcagcagaatgtgagcatggacttggccacgttcatgaagctgcggacggatgcggtgctgccgttgactg




tggctgaggt





 68
205174
gtctggcacaccatggatgacaatgaagaaaatttggatgaatcaaccattgacaatctaaacaaaatcctacaagtcttt



_s_at
gtgttggaatatcttcatttgtaatactctgatttagtttaggataattggttctagaattgaattcaaaagtcaaggcatcattta




aaataatctgatttcagacaaatgctgtgtggaaacatctatcctatagatcatcctattcttatgtgtctttggttatcagatca




attacagaataattgtgttgtgatattgtgtcctaaattgctcattaatttttatttacagattgaaaaagaggcaccgtgtaaag




aaaatggcaaaataaatatctttccaaggatcatcatcacgatagctaaacagtacttaaatagcggttggaactaggtag




cctttcgaattttatgattttttcatatgtggaaatctattacatgtaatacaaaacaaacatgtagtttgaaggcggtcagattt




ctttgag





 69
205361
aaggcggctgcagaagatgtcaatgttactttcgaagatcaacaaaagataaacaaatttgcacggaatacaagtagaat



_s_at
cacagagctgaaggaagaaatagaagtaaaaaagaaacaactccaaaacctagaagatgcttgtgatgacatcatgctt




gcagatgatgattgcttaatgataccttatcaaattggtgatgtcttcattagccattctcaagaagaaacgcaagaaatgtt




agaagaagcaaagaaaaatttgcaagaagaaattgacgccttagaatccagagtggaatcaattcagcgagtgttagca




gatttgaaagttcagttgtatgcaaaattcgggagcaacataaaccttgaagctg





 70
205366
cctcagcctgatcaggcttcctggtgagaactgaggagcggactcacttgatgtttcctggaagcagagcaaaagttctc



_s_at
ttgtccctgtcgcgtctcattttgtccatgtcccccgtgcacggttcaatggtagattcgctgtcctcagcgggggccttgaa




gactccctgatcccagacctggtcgtctctcccaccccctccccaaagccactggaaggagcacatactacctagaagt




aagaagaggagcctcagaagaaaacaaagttctattttattaattttctatgtgttgtgtttgtagtcttgtcttagctctggac




g





 71
205470
gccaacatcaccatcattgagcaccagaagtgtgagaacgcctaccccggcaacatcacagacaccatggtgtgtgcc



_s_at
agcgtgcaggaagggggcaaggactcctgccagggtgactccgggggccctctggtctgtaaccagtctcttcaagg




cattatctcctggggccaggatccgtgtgcgatcacccgaaagcctggtgtctacacgaaagtctgcaaatatgtggact




ggatccaggagacgatgaagaacaattagactggacccacccaccacagcccatcaccctccatttccacttggtgtttg




gttcctgttcactctgttaataagaaaccctaagccaagaccctctacgaacattctttgggcctcctggactacaggagat




gctgtcacttaataatcaacctggggttcgaaatcagtgagacctggattcaaattctgccttgaaatattgtgactctggga




atgacaacacctggtttgttctctgttgtatccccagccccaaagacagctcctggccatatatca





 72
205476
ttcacacggcagctggccaatgaaggctgtgacatcaatgctatcatctttcacacaaagaaaaagttgtctgtgtgcgca



_at
aatccaaaacagacttgggtgaaatatattgtgcgtctcctcagtaaaaaagtcaagaacatgtaaaaactgtggcttttct




ggaatggaattggacatagcccaagaacagaaagaaccttgctggggttggaggtttcacttgcacatcatggagggttt




agtgcttatctaatttgtgcctcactggacttgtccaattaatgaagttgattcatattgcatcatagtttgctttgtttaagcatc




acattaaagttaaactgtattttatgttatttatagctgtaggttttctgtgtttagctatttaatactaattttccataagctattttgg




tttagtgcaaagtataaaattatatttgggggggaataagattatatggactttcttgcaagcaacaa





 73
205479
cccgaccggtgggcatttgtgaggcccatggttgagaaatgaataatttcccaattaggaagtgtaagcagctgaggtct



_s_at
cttgagggagcttagccaatgtgggagcagcggtttggggagcagagacactaacgacttcagggcagggctctgata




ttccatgaatgtatcaggaaatatatatgtgtgtgtatgtttgcacacttgttgtgtgggctgtgagtgtaagtgtgagtaaga




gctggtgtctgattgttaagtctaaatatttccttaaactgtgtggactgtgatgccacacagagtggtctttctggagaggtt




ataggtcactcctggggcctcttgggtcccccacgtgacagtgcctgggaatgtacttattctgcagcatgacctgtgacc




agcactgtctcagtttcactttcacatagatgtccctttcttggccagttatcccttccttttagcctagttcatccaatcctcact




gggtgggg





 74
205513
aacaaagactcttcttgcgtctctgcttcttggtaacttcaacatctccgctgatgagcctataactgtgacacctcctgactc



_at
acaatcatatatctccgtcaattactctgtgagaatcaatgaaacatatttcaccaatgtcactgtgctaaatggttctgtcttc




ctcagtgtgatggagaaagcccagaaaatgaatgatactatatttggtttcacaatggaggagcgctcatgggggcccta




tatcacctgtattcagggcctatgtgccaacaataatgacagaacctactgggaacttctgagtggaggcgaaccactga




gccaaggagctggtagttacgttgtccgcaatggagaaaacttggaggttcgctggagcaaatactaataagcccaaac




tttcctcagctgcataaaatccatttgcagtggagttccatgtttattgtccttatgccttct





 75
205713
caaacgtattggcaggcgaaccccttccgtgctgtggccgagcctggcatccaactcaaggctgtgaagtcttccacag



_s_at
gccccggggaacagctgcggaacgctctgtggcatacaggagacacagagtcccaggtgcggctgctgtggaagga




cccgcgaaacgtgggttggaaggacaagaagtcctatcgttggttcctgcagcaccggccccaagtgggctacatcag




ggtgcgattctatgagggccctgagctggtggccgacagcaacgtggtcttggacacaaccatgcggggtggccgcct




gggggtcttctgcttctcccaggagaacatcatctgggccaacctgcgttaccgctgcaatgacaccatcccagaggact




atgagacccatcagctgcggcaagcctagggacc





 76
205765
caccacctacctatgatgccgtggtacagatggagtaccttgacatggtggtgaatgaaacactcagattattcccagttg



_at
ctattagacttgagaggacttgcaagaaagatgttgaaatcaatggggtattcattcccaaagggtcaatggtggtgattcc




aacttatgctcttcaccatgacccaaagtactggacagagcctgaggagttccgccctgaaaggttcagtaagaagaag




gacagcatagatccttacatatacacaccctttggaactggacccagaaactgcattggcatgaggtttgctctcatgaac




atgaaacttgctctaatcagagtccttcagaacttctccttcaaaccttgtaaagaaacacagatccccttgaaattagacac




gcaaggacttcttcaaccagaaaaacccattgttctaaaggtggattcaagagatggaaccctaagtggagaatgagtta




ttctaaggacttctactttggtcttcaagaaagctgtgccccagaacaccagagatttcaacttagtca





 77
205815
tgctatgccttgtttttgtcaccaaaatcctggacagatgcagatctggcctgccagaagcggccctctggaaacctggtg



_at
tctgtgctcagtggggctgagggatccttcgtgtcctccctggtgaagagcattggtaacagctactcatacgtctggattg




ggctccatgaccccacacagggcaccgagcccaatggagaaggttgggagtggagtagcagtgatgtgatgaattact




ttgcatgggagagaaatccctccaccatctcaagccccggccactgtgcgagcctgtcgagaagcacagcatttctgag




gtggaaagattataactgtaatgtgaggttaccctatgtctgcaagttcactgactagtgcaggagggaagtcagcagcct




gtgtttggtgtgcaactcatcatgggcatgagaccagtgtgaggactcaccctggaagagaatattcgcttaattccccca




acctgaccacctcattcttatctttcttctgtttcttcctccccgctgtcatttcagtctcttcattttgtc





 78
205825
tttccattcccaatctagtgctagatgtataaatctttcttttgattcttcctaacaaaatattttctgggttaaaaccccagccaa



_at
ctcattgggttgtagccaaaggttcactctcaagaagctttaatatttaaataaaatcatattgaatgtttccaacctggagtat




aatattcagatataaaacagttttgtcagtctttcttagtgcctgtgtggatttttgtgaaaatgtcaaagagaaaacttatatac




tatttcccttgaaattttaaactatattttctttacaggtatttataatataccaatgcttttatcaaacagaattttaaagagcataa




taaattatattaaagaaccaaaagttttcctgagaataagaaagtttcacccaataaaatatttttgaaaggcatgttcctctgt




caatgaaaaaaagtacatgtatgtgttgtgatattaaaagtgacatttgtctaatagcctaatacaacatgtagctgagtttaa




catgtgtggtcttg





 79
205828
gaaaatcgatgcagccatttctgataaggaaaagaacaaaacatatttctttgtagaggacaaatactggagatttgatga



_at
gaagagaaattccatggagccaggctttcccaagcaaatagctgaagactttccagggattgactcaaagattgatgctg




tttttgaagaatttgggttcttttatttctttactggatcttcacagttggagtttgacccaaatgcaaagaaagtgacacacact




ttgaagagtaacagctggcttaattgttgaaagagatatgtagaaggcacaatatgggcactttaaatgaagctaataattc




ttcacctaagtctctgtgaattgaaatgttcgttttctcctgcctgtgctgtgactcgagtcacactcaagggaacttgagcgt




gaatctgtatcttgccggtcatttttatgttattacagggcattcaaatgggctgctgcttagcttgcaccttgtcacatagagt




gatctttcccaagagaaggggaagcactcgtgtgcaacagac





 80
205886
cacccaggcggagggtgccttcgtggcctcactgattaaggagagtagcactgatgacagcaatgtctggattggcctc



_at
catgacccaaaaaagaaccgccgctggcactggagtagtgggtccctggtctcctacaagtcctgggacactggatcc




ccgagcagtgctaatgctggctactgtgcaagcctgacttcatgctcaggattcaagaaatggaaggatgaatcttgtga




gaagaagttctcctttgtttgcaagttcaaaaactagaggaagctgaaaaatggatgtctagaactggtcctgcaattacta




tgaagtcaaaaattaaactagactatgtctccaactcagttcagaccatctcctccctaatgagtttgcatcgctgatcttcag




taccttc





 81
205890
gatcttaaagccacggagaagcctctcatcttatggcattgacaaagagaagaccatccaccttaccctgaaagtggtga



_s_at
agcccagtgatgaggagctgcccttgtttcttgtggagtcaggtgatgaggcaaagaggcacctcctccaggtgcgaag




gtccagctcagtggcacaagtgaaagcaatgatcgagactaagacgggtataatccctgagacccagattgtgacttgc




aatggaaagagactggaagatgggaagatgatggcagattacggcatcagaaagggcaacttactcttcctggcatctt




attgtattggagggtgaccaccctggggatggggtgttggcaggggtcaaaaagcttatttcttttaatctcttactcaacg




aacacatcttctgatgatttcccaaaattaatgagaatgagatgagtagagtaagatttgggtgggatgggtaggatgaag




tatattgcccaactctatgtttctttga





 82
205910
gactccaaggaagctcagatgcctgcagtcattaggttttagcgtcccatgagccttggtatcaagaggccacaagagtg



_s_at
ggaccccaggggctc





 83
205927
tccacacacggccaggcctgtttatctacactgctgcccactcctctctccagctccacatgctgtacctggatcattctga



_s_at
agcaaattccgagcattacatcattttgtccataaatatttctaacatccttaaatatacaatcggaattcaagcatctcccatt




gtcccacaaatgtttggctgtttttgtagttggattgtttgtattaggattcaagcaaggcccatatattgcatttatttgaaatgt




ctgtaagtctctttccatctacagagtttagcacatttgaacgttgctggttgaaatcccgaggtgtcatttgacatggttctct




gaacttatctttcctataaaatggtagttagatctggaggtctgattttgtggcaaaaatacttcctaggtggtgctgggtactt




cttgttgcatcctgtcaggaggcagataatgctggtgcctctctattggtaatgttaagactgctgggtgggtttggagttctt




ggc





 84
205941
atactatttttcataccacgtgcatgtgaaagggactcatgtttgggtaggcctgtataagaatggcacccctgtaatgtaca



_s_at
cctatgatgaatacaccaaaggctacctggatcaggcttcagggagtgccatcatcgatctcacagaaaatgaccaggt




gtggctccagcttcccaatgccgagtcaaatggcctatactcctctgagtatgtccactcctctttctcaggattcctagtgg




ctccaatgtgagtacaccccacagagctaatctaaatcttgtgctagaaaaagcattctctaactctaccccaccctacaaa




atgcatatggaggtaggctgaaaagaatgtaatttttattttctgaaatacagatttgagctatcagaccaacaaaccttccc




cctgaaaagtgagcagcaacgtaaaaacgtatgtgaagcctctcttgaa





 85
205983
gccgaccatctggatcacatcaaggaggtggcaggagccagagccgtgggttttggtggggactttgatggtgttccaa



_at
gggtccctgaggggctggaggacgtctccaagtatccagacctgatcgctgagctgctcaggaggaactggacggag




gcggaggtcaagggcgcactggctgacaacctgctgagggtcttcgaggctgtggaacaggccagcaacctcacaca




ggctcccgaggaggagcccatcccgctggaccagctgggtggctcctgcaggacccattacggctactcctctgggg




cttccagcctccatcgccactgggggctcctgctggcctccctcgctcccctggtcctctgtctgtctctcctgtgaaacct




gggagaccagagtcccttttagggttcccggagctccgggaagacccgcccatcccaggactccagatgccaggag




ccctgctgcccacatgcaaggaccagcatctcctgagaggacgcctgggcttacctggggggcaggatgcctgggga




cagttcag





 86
206224
ggaggataggataatcccgggtggcatctataacgcagacctcaatgatgagtgggtacagcgtgcccttcacttcgcc



_at
atcagcgagtataacaaggccaccaaagatgactactacagacgtccgctgcgggtactaagagccaggcaacagac




cgttgggggggtgaattacttcttcgacgtagaggtgggccgaaccatatgtaccaagtcccagcccaacttggacacct




gtgccttccatgaacagccagaactgcagaagaaacagttgtgctctttcgagatctacgaagttccctgggagaacaga




aggtccctggtgaaatccaggtgtcaagaatcctagggatctgtgccag





 87
206239
gagacgtggtaagtgcggtgcagttttcaactgacctctggacgcagaacttcagccatgaaggtaacaggcatctttctt



_s_at
ctcagtgccttggccctgttgagtctatctggtaacactggagctgactccctgggaagagaggccaaatgttacaatga




acttaatggatgcaccaagatatatgaccctgtctgtgggactgatggaaatacttatcccaatgaatgcgtgttatgttttg




aaggtcggaaacgccagacttctatcctcattcaaaaatctgggccttgctgagaaccaaggttttgaaatcccatcaggt




caccgc





 88
206286
gtggaccttagaatacagttttgagtagagttgatcaaaatcaattaaaatagtctctttaaaaggaaagaaaacatctttaa



_s_at
ggggaggaaccagagtgctgaaggaatggaagtccatctgcgtgtgtgcagggagactgggtaggaaagaggaagc




aaatagaagagagaggttgaaaaacaaaatgggttacttgattggtgattaggtggtggtagagaagcaagtaaaaagg




ctaaatggaagggcaagtttccatcatctatagaaagctatataagacaagaactcccttttttttcccaaaggcattataaa




aagaatgaagcctccttagaaaaaaaattatacctcaatgtccccaacaagattgcttaataaattgtgtttcctccaagcta




ttcaattcttttaactgttgtagaagacaaaatgttcacaatatatttagttgtaaaccaagtgatcaaactacatattgtaaagc




ccattttt





 89
206976
aagtctgtagtctttatgatcctaaaagggaaaattgccttggtaactttcagattcctgtggaattgtgaattcatactaagct



_s_at
ttctgtgcagtctcaccatttgcatcactgaggatgaaactgacttttgtcttttggagaaaaaaaactgtactgttgttcaag




agggctgtgattaaaatctttaagcatttgttcctgccaaggtagttttcttgcattttgctctccattcagcatgtgtgtgggtg




tggatgtttataaacaagactaagtctgacttcataagggctttctaaaaccatttctgtccaagagaaaatgactttttgcttt




gatattaaaaattcaatgagtaaaacaaaagctagtcaaatgtgttagcagcatgcagaacaaaaactttaaactttctctct




cactatacagtatattgtcaatgtgaaagtgtggaatggaagaaatgtcgatcctgttgtaactga





 90
207158
gcaccctggtgtgactctagtgatctacgtagctcggcttttttggcacatggatcaacaaaatcggcaaggtctcaggga



_at
ccttgttaacagtggagtaactattcagattatgagagcatcagagtattatcactgctggaggaattttgtcaactacccac




ctggggatgaagctcactggccacaatacccacctctgtggatgatgttgtacgcactggagctgcactgcataattctaa




gtcttccaccctgtttaaagatttcaagaagatggcaaaatcatcttacatttttcagacttcatcttcaaaactgccattacca




aacgattccgccacacatcatttagctacagggctgatacatccttctgtggcttggagatgaataggatgattccgtgtgt




gtactgattcaagaacaagcaatgatgacccactaaagagtgaatgccatttagaatctagaaatgttcacaaggtacccc




aaaactctgtagct





 91
207173
gaacatccaagtctttcttcttttttaagttgtcaaagaagcttccacaaaattagaaaggacaacagttctgagctgtaatttc



_x_at
gccttaaactctggacactctatatgtagtgcatttttaaacttgaaatatataatattcagccagcttaaacccatacaatgta




tgtacaatacaatgtacaattatgtctcttgagcatcaatcttgttactgctgattcttgtaaatctttttgcttctactttcatctta




aactaatacgtgccagatataactgtcttgtttcagtgagagacgccctatttctatgtcatttttaatgtatctatttgtacaattt




taaagttcttattttagtatacatataaatatcagtattctgacatgtaagaaaatgttacggcatcacacttatatttta





 92
207457
aaccgaatgcggtgctacaactgtggtggaagccccagcagttcttgcaaagaggccgtgaccacctgtggcgaggg



_s_at
cagaccccagccaggcctggaacagatcaagctacctggaaaccccccagtgaccttgattcaccaacatccagcctg




cgtcgcagcccatcattgcaatcaagtggagacagagtcggtgggagacgtgacttatccagcccacagggactgcta




cctgggagacctgtgcaacagcgccgtggcaagccatgtggcccctgcaggcattttggctgcagcagctaccgccct




gacctgtctcttgccaggactgtggagcggatagggggagtaggagtagagaagggaacaagggagcaagggaac




aagggacatctgaacatct





 93
207850
agaacagcagctttctagggacagctggaaagggacttaatgtgtttgactatttcttacgagggttctacttatttatgtattt



_at
atttttgaaagcttgtattttaatattttacatgctgttatttaaagatgtgagtgtgtttcatcaaacatagctcagtcctgattatt




taattggaatatgatgggttttaaatgtgtcattaaactaatatttagtgggagaccataatgtgtcagccaccttgataaatg




acagggtggggaactggagggtngggggattgaaatgcaagcaattagtggatcactgttagggtaagggaatgtatg




tacacatctattttttatacttttttttttaaaaaagaatgtcagttgttatttattcaaattatctcacattatgtgttcaacatttttat




gctgaagtttcccttagacattttatgtcttgcttgtagggcataatgccttgtttaatgtccattctgcagcgttt





 94
208079
ccctcaatctagaacgctacacaagaaatattttgtttttactcagcaggtgtgccttaacctccctattcagaaagctccac



_sat
atcaataaacatgacactctgaagtgaaagtagccacgagaattgtgctacttatactggaacataatctggaggcaaggt




tcgactgcagtcgaaccttgcctccagattatgaaccagtataagtagcacaattctcgtggctactttcacttcagagtgtc




atgtttattgatgtggagctttctgaatagggaggttaaggcacacctgctgagtaaaacaaatatttcttgtgtagcgttctt




aggaatctggtgtctgtccggccccggtaggcctgttgggtttctagtcctccttaccatcatctccatatgagagtgtgaa




aataggaacacgtgctctacctccatttagggatttgcttgggatacagaagaggccatgtgtctcagagctgttaagggc




ttatttttttaaaacattggagtcatagcatgtgtgtaa





 95
208712
gttttgggtatgtttaatctgttatgtactagtgttctgtttgttattgttttgttaattacaccataatgctaatttaaagagactcc



_at
aaatctcaatgaagccagctcacagtgctgtgtgccccggtcatctagcaagctgccgaaccaaaagaatttgcacccc




gctgcgggcccacgtggttggggccctgccctggcagggtcatcctgtgctcggaggccatctcgggcacaggccca




ccccgccccacccctccagaacacggctcacgcttacctcaaccatcctggctgcggcgtctgtctgaaccacgcggg




ggccttgagggacgcttgtctgtcgtgatggggcaagggcacaagtcctggatgttgtgtgtatcgagaggccaaagg




ctggtggcaagtgcacggggcacagcggagtctgtcctgtgacgcgcaagtctgagggtctgggcggcg





 96
209218
gattccctgcatcaactaagaaaagcctgttttctttatttcaaacttggtggcgaatgtgttgcgggtcctgttgggctgcttt



_at
ctgtattgtctcctaaccctctagttttaattggacacttctttgctgttgcaatctatgccgtgtatttttgctttaagtcagaacc




ttggattacaaaacctcgagcccttctcagtagtggtgctgtattgtacaaagcgtgttctgtaatatttcctctaatttactca




gaaatgaagtatatggttcattaagcttaaaggggaaccatttgtgaatgaatatttggaacttaccaagtcctaagagactt




ttggaagaggatatatatagcatagtaccataccacttata





 97
209309
tgcggaaatacctgaaatacagcaaaaatatcctggaccggcaagatcctccctctgtggtggtcaccagccaccaggc



_at
cccaggagaaaagaagaaactgaagtgcctggcctacgacttctacccagggaaaattgatgtgcactggactcgggc




cggcgaggtgcaggagcctgagttacggggagatgttcttcacaatggaaatggcacttaccagtcctgggtggtggtg




gcagtgcccccgcaggacacagccccctactcctgccacgtgcagcacagcagcctggcccagcccctcgtggtgcc




ctgggaggccagctaggaagcaagggttggaggcaatgtgggatctcagacccagtagctgcccttcctgcctgatgt




gggagctgaaccacagaaatcacagtcaatggatccacaaggcctgaggagcagtgtggggggacagacaggaggt




ggatttggagaccgaagactgggatgcctgtcttgagtagacttggacccaaaaaatcatctcaccttgagccca





 98
209369
gaagacttactgttggccatagttaattgtgtgaggaacacgccggcctttttagccgaaagactgcatcgagccttgaag



_at
ggtattggaactgatgagtttactctgaaccgaataatggtgtccagatcagaaattgaccctttggacattcgaacagagtt




caagaagcattatggctattccctatattcagcaattaaatcggatacttctggagactatgaaatcacactcttaaaaatctg




tggtggagatgactgaaccaagaagataatctccaaaggtccacgatgggcttttccaacagctccaccttacttcttctca




tactatttaagagaacaagcaaatataaacagcaacttgtgttcctaacagg





 99
209752
agagattcattgcagctcagcatggctcagaccagctcatacttcatgctgatctcctgcctgatgtttctgtctcagagcca



_at
aggccaagaggcccagacagagttgccccaggcccggatcagctgcccagaaggcaccaatgcctatcgctcctact




gctactactttaatgaagaccgcgagacctgggttgatgcagatctctattgccagaacatgaattcgggcaacctggtgt




ctgtgctcacccaggccgagggtgcctttgtggcctcactgattaaggagagtggcactgatgacttcaatgtctggattg




gcctccatgaccccaaaaagaaccgccgctggcactggagcagtgggtccctggtctcctacaagtcctggggcattg




gagccccaagcagtgttaatcctggctactgtgtgagcctgacctcaagcacaggattccagaaatggaaggatgtgcc




ttgtgaagacaagttctcct





100
209773
ttttaccttggatgctgacttctaaatgaactgaagatgtgcccttacttggctgattttttttttccatctcataagaaaaatcag



_s_at
ctgaagtgttaccaactagccacaccatgaattgtccgtaatgttcattaacagcatctttaaaactgtgtagctacctcaca




accagtcctgtctgtttatagtgctggtagtatcaccctttgccagaaggcctggctggctgtgacttaccatagcagtgac




aatggcagtcttggctttaaagtgaggggtgaccctttagtgagcttagcacagcgggattaaacagtcctttaaccagca




cagccagttaaaagatgcagcctcactgcttcaacgcagatt





101
209774
agagagacacagctgcagaggccacctggattgcgcctaatgtgtttgagcatcacttaggagaagtcttctatttatttatt



_x_at
tatttatttatttatttgtttgttttagaagattctatgttaatattttatgtgtaaaataaggttatgattgaatctacttgcacactct




cccattatatttattgtttattttaggtcaaacccaagttagttcaatcctgattcatatttaatttgaagatagaaggtttgcagat




attctctagtcatttgttaatatttcttcgtgatgacatatcacatgtcagccactgtgatagaggctgaggaatccaagaaaa




tggccagtaagatcaatgtgacggcagggaaatgtatgtgtgtctattttgtaactgtaaagatgaatgtcagttgttatttatt




gaaatgatttcacagtgtgtggtcaacatttctcatgttgaagctttaagaactaaaatgttctaaatatcccttggacattttat




gtctttcttgtaagatactgccttgtttaatgttaattatgcagtgtttccctc





102
209792
tcctctcgtggggtgtttacccctgtggctctgcccagcatccagctgtctacacccagatctgcaaatacatgtcctggat



_s_at
caataaagtcatacgctccaactgatccagatgctacgctccagctgatccagatgttatgctcctgctgatccagatgcc




cagaggctccatcgtccatcctcttcctccccagtcggctgaactctccccttgtctgcactgttcaaacctctgccgccct




ccacacctctaaacatctcccctctcacctcattcccccacctatccccattctctgcctgtactgaagctgaaatgcagga




agtggtggcaaaggtttattccagagaagccaggaagccggtcatcacccagcctctgagagcagttactggggtcac




ccaacctgacttcctctgccactccccgctgtgtgactttgggcaagccaagtgccctctctgaacctcagtttcctcatct




gcaaaatgggaacaatgacgtgcctacctcttagacatgttgtg





103
209875
gaatggtgcatacaaggccatccccgttgcccaggacctgaacgcgccttctgattgggacagccgtgggaaggaca



_s_at
gttatgaaacgagtcagctggatgaccagagtgctgaaacccacagccacaagcagtccagattatataagcggaaag




ctaatgatgagagcaatgagcattccgatgtgattgatagtcaggaactttccaaagtcagccgtgaattccacagccatg




aatttcacagccatgaagatatgctggttgtagaccccaaaagtaaggaagaagataaacacctgaaatttcgtatttctca




tgaattagatagtgcatcttctgaggtcaattaaaaggagaaaaaatacaatttctcactttgcatttagtcaaaagaaaaaa




tgctttatagcaaaatgaaagagaacatgaaatgcttctttctcagtttattggttgaatgtgtatctatttgagtctggaaataa




ctgatgtgtttgataattagtttagtttgtggcttcatggaa





104
209955
acagctttccaaggtgacaaactcctctatgcagtgtatcgaaagctgggtgtttatgaagttgaagaccagattacagct



_s_at
gtcagaaaattcatagaaatgggtttcattgatgaaaaaagaatagccatatggggctggtcctatggaggatacgtttcat




cactggcccttgcatctggaactggtcttttcaaatgtggtatagcagtggctccagtctccagctgggaatattacgcgtc




tgtctacacagagagattcatgggtctcccaacaaaggatgataatcttgagcactataagaattcaactgtgatggcaag




agcagaatatttcagaaatgtagactatcttctcatccacggaacagcagatgataatgtgcactttcagaactcagcaca




gattgctaaagctctggttaatgcacaagtggatttccaggcaatgtggtactctgaccagaaccacggcttatccggcct




gtccacgaaccacttatacacccacatgacccacttcctaaagcagtg





105
210052
agtcaagtgaccagcctctgactgtgcctgtatctcccaaattctccactcgattccactgctaaactcagctgtgagctgc



_s_at
ggataccgcccggcaatgggacctgctcttaacctcaaacctaggaccgtcttgctttgtcattgggcatggagagaacc




catttctccagacttttacctacccgtgcctgagaaagcatacttgacaactgtggactccagttttgttgagaattgttttctt




acattactaaggctaataatgagatgtaactcatgaatgtctcgattagactccatgtagttacttcctttaaaccatcagccg




gccttttatatgggtcttcactctgactagaatttagtctctgtgtcagcacagtgtaatctctattgctattgcccc





106
210445
gctttcaccggcaagttcgagatggagagtgagaagaattatgatgagttcatgaagctccttgggatctccagcgatgta



_at
atcgaaaaggcccgcaacttcaagatcgtcacggaggtgcagcaggatgggcaggacttcacttggtcccagcactac




tccgggggccacaccatgaccaacaagttcactgttggcaaggaaagcaacatacagacaatggggggcaagacgtt




caaggccactgtgcagatggagggcgggaagctggtggtgaattccccaactatcaccagacctcagagatcgtggg




tgacaagctggtggaggtctccaccatcggaggcgtgacctatgagcgcgtgagca





107
210511
aaaggagcagtcgcacagacctttcctcatgctgcaggcccggcagtctgaagaccaccctcatcgccggcgtcggc



_s_at
ggggcttggagtgtgatggcaaggtcaacatctgctgtaagaaacagttctttgtcagtttcaaggacatcggctggaatg




actggatcattgctccctctggctatcatgccaactactgcgagggtgagtgcccgagccatatagcaggcacgtccgg




gtcctcactgtccttccactcaacagtcatcaaccactaccgcatgcggggccatagcccctttgccaacctcaaatcgtg




ctgtgtgcccaccaagctgagacccatgtccatgttgtactatgatgatggtcaaaacatcatcaaaaaggacattcagaa




catgatcgtggaggagtgtgggtgctcatagagttgcccagc





108
210519
cagaccttgtgatattccagttccccctgcagtggtttggagtccctgccattctgaaaggctggtttgagccttcatagga



_s_at
gagtttgcttacacttacgctgccatgtatgacaaaggacccttccggagtggcattctgcatttctgtggcttccaagtctt




agaacctcaactgacatatagcattgggcacactccagcagacgcccgaattcaaatcctggaaggatggaagaaacg




cctggagaatatttgggatgagacaccactgtattttgctccaagcagcctctttgacctaaacttccaggcaggattcttaa




tgaaaaaagaggtacaggatgaggagaaaaacaagaaatttggcctttctgtgggccatcacttgggcaagtccatccc




aactgac





109
210559
gtaacactctggtacagatctccagaagtattgctggggtcagctcgttactcaactccagttgacatttggagtataggca



_s_at
ccatatttgctgaactagcaactaagaaaccacttttccatggggattcagaaattgatcaactcttcaggattttcagagctt




tgggcactcccaataatgaagtgtggccagaagtggaatctttacaggactataagaatacatttcccaaatggaaacca




ggaagcctagcatcccatgtcaaaaacttggatgaaaatggcttggatttgctctcgaaaatgttaatctatgatccagcca




aacgaatttctggcaaaatggcactgaatcatccatattttaat





110
210766
ggttccatcaatggtgagcaccagcctgaatgcagaagcgctccagtatctccaagggtaccttcaggcagccagtgtg



_s_at
acactgctttaaactgcatttttctnaatgggctaaacccagatggtttcctaggaaatcacaggcttctgagcacagctgc




att





111
211429
tactggaacctatgatctgaagagcgtcctgggtcaactgggcatcactaaggtcttcagcaatggggctgacctctccg



_s_at
gggtcacagaggaggcacccctgaagctctccaaggccgtgcataaggctgtgctgaccatcgacgagaaagggact




gaagctgctggggccatgtttttagaggcc atacccatgtctatcccccccgaggtcaagttcaacaaaccctttgtcttctt




aatgattgaacaaaataccaagtctcccctcttcatgggaaaagtggtgaatcccacccaaaaataactgcctctcgctcc




tcaacccctcccctccatccctggccccctccctggatgacattaaaga





112
211506
gtgtgaaggtgcagttttgccaaggagtgctaaagaacttagatgtcagtgcataaagacatactccaaacctttccaccc



_s_at
caaatttatcaaagaactgagagtgattgagagtggaccacactgcgccaacacagaaattattgtaaagctttctgatgg




aagagagctctgtctggaccccaaggaaaactgggtgcagagggttgtggagaa





113
212063
attgtaaatcttttgtgtctcctgaagacttcccttaaaattagctctgagtgaaaaatcaaaagagacaaaagacatcttcg



_at
aatccatatttcaagcctggtagaattggcttttctagcagaacctttccaaaagttttatattgagattcataacaacaccaa




gaattgattttgtagccaacattcattcaatactgttatatcagaggagtaggagagaggaaacatttgacttatctggaaaa




gcaaaatgtacttaagaataagaataacatggtccattcacctttatgttatagatatgtctttgtgtaaatcatttgttttgagtt




ttcaaagaatagcccattgttcattcttgtgctgtacaatgaccactgttattgttactttgacttttcagagcacaccc





114
212070
tccaaggactgagactgacctcctctggtgacactggcctagngcctgacactctcctaagaggttctctccaagccccc



_at
aaatagctccaggcgccctcggccgcccatcatggttaattctgtccaacaaacacacacgggtagattgctggcctgtt




gtaggtggtagggacacagatgaccgacctggtcactcctcctgccaacattcagtctggtatgtgaggcgtgcgtgaa




gcaagaactcctggagctacagggacagggagccatcattcctgcctgggaatcctggaagacttcctgcaggagtca




gcgttcaatcttgaccttgaagatgggaaggatgttctttttacgtaccaattct





115
212190
cgatgcaagtgtttctgttctgggaggtattggagggaaaaaancaagcaggatggctggaacactgtactgaggaatg



_at
aatagaaaggcttccagatgtctaaaagattctttaaactactgaactgttacctaggttaacaaccctgttgagtatttgctg




tttgtccagttcaggaatttttgttttgttttgtctatatgtgcggcttttcagaagaaatttaatcagtgtgacagaaaaaaaaat




gttttatggtagcttttactttttatgaaaaaaaaattatttgccttttaaattcttttcccccatccccctccaaagtcttgatagc




aagcgttattttgggggtagaaacggtgaaatctctagcctctttgtgtttttgttgttgttgttgttgttgttttatataatgcatgt




attcactaaaataaaatttaaaaaactcctgtcttgctagacaaggttgctgttgtgcagtgtgcctgtcactactggtctgta




ctccttggatttgc





116
212281
tacagccaggcataacatatccactgtgtgcatagagggtctcttcacgttgatgcttggcattccatcagctttctctaagt



_s_at
ctttgctcaagttcaaccttaaaatgatgttag





117
212344
ggaaaacacctcatttgaccttgccagctgaccttcaaaccctgcatttgaaccgaccaacattaagtccagagagtaaa



_at
cttgaatggaataacgacattccagaagttaatcatttgaattctgaacactggagaaaaaccgaaaaatggacggggca




tgaagagactaatcatctggnaaaccgatttcagtggcgatggcatgacagagctagagctcgggcccagccccaggc




tgcagcccattcgcaggcacccgaaagaacttccccagtatggtggtcctggaaaggacatttttgaagatcaactatatc




ttcctgtgcattccgatggaatttcagttcatcagatgttcaccatggccaccgcagaacaccgaagtaattccagcatagc




ggggaagatgttgaccaaggtggagaagaatcacgaaaaggagaagtcacagcacctagaaggcagcgcctcctctt




cactctcctctgattagatgaaactgttaccttacccta





118
212353
aatatccttgttgtgtattaggtttttaaataccagctaaaggattacctcactgagtcatcagtaccctcctattcagctcccc



_at
aagatgatgtgtttttgcttaccctaagagaggttttcttcttatttttagataattcaagtgcttagataaattatgttttctttaagt




gtttatggtaaactcttttaaagaaaatttaatatgttatagctgaatctttttggtaactttaaatctttatcatagactctgtacat




atgttcaaattagctgcttgcctgatgtgtgtatcatcggtgggatgacagaacaaacatatttatgatcatgaataatgtgct




ttgtaaaaagatttcaagttattaggaagcatactctgttttttaatca





119
212354
gtgtgcacacggagactcatcgttataatttactatctgccaagagtagaaagaaaggctggggatatttgggttggcttg



_at
gttttgattttttgcttgtttgtttgttttgtactaaaacagtattatcttttgaatatcgtagggacataagtatatacatgttatcca




atcaagatggctagaatggtgcctttctgagtgtctaaaacttgacacccctggtaaatctttcaacacacttccactgcctg




cgtaatgaagttttgattcatttttaaccactggaatttttcaatgccgtcattttcagttagatgattttgcactttgagattaaaa




tgccatgtctatttgattagtcttatttttttatttttacaggcttatcagtctcactgttggctgtcattgtgacaaagtcaaataaa




cccccaaggacgacacacagtatggatcacatattgtttgacattaagcttttgccagaaaatgttgcatgtgttttacctcg




actt





120
212531
caagagctacaatgtcacctccgtcctgtttaggaaaaagaagtgtgactactggatcaggacttttgttccaggttgcca



_at
gcccggcgagttcacgctgggcaacattaagagttaccctggattaacgagttacctcgtccgagtggtgagcaccaac




tacaaccagcatgctatggtgttcttcaagaaagtttctcaaaacagggagtacttcaagatcaccctctacgggagaacc




aaggagctgacttcggaactaaaggagaacttcatccgcttctccaaatctctgggcctccctgaaaaccacatcgtcttc




cctgtcccaatcgaccagtgtatcgacggctgagtgcacaggtgccgccagntgccgcaccagcccgaacaccattga




ggga





121
212942
ccttcttgtccacggttttgttgagttttcactcttctaatgcaagggtctcacactgtgaaccacttaggatgtgatcactttca



_s_at
ggtggccaggaatgttgaatgtctttggctcagttcatttaaaaaagatatctatttgaaagttctcagagttgtacatatgttt




cacagtacaggatctgtacataaaagtttctttcctaaaccattcaccaagagccaatatctaggcattttcttggtagcaca




aattttcttattgcttagaaaattgtcctccttgttatttctgtttgtaagacttaagtgagttaggtctttaaggaaagcaacgct




cctctgaaatgcttgtcttttttctgagccgaaatagctggtcctttttcgggagttagatgtatagagtgtttgtatgtaaacat




ttcttgtaggcatcaccatg





122
213880
caatatctgacaccactttggactcaagagactcagtaacgtattatcctgtttatttagcttggttttagctgtgttctctctgg



_at
ataacccacttgatgttaggaacattacttctctgcttattccatattaatactgtgttaggtattttaagaagcaagttattaaat




aagaaaagtcaaagtattaattcttaccttctattatcctatattagcttcaatacatccaaaccaaatggctgttaggtagattt




atttttatataagcatgtttattttgatcagatgttttaacttggatttgaaaaaatacatttatgagatgttttataagatgtgtaaa




tatagaactgtatttattactatagtaaaggttcagtaacattaaggaccatgataatgataataaaccttgtacagtggcata




ttctttgatttatattgtgtttctctgcccatt





123
213905
cacaaaaccccagggacagcggtctccccagcctgccctgctcangccttgcccccaaacctgtactgtcccggagga



_x_at
ggttgggaggtggaggcccagcatcccgcgcagatgacaccggttttcctagaagcccctcacccccactggcccact




ggtggctaggtctccccttatccttctggtccagcgcaaggaggggctgcttctgaggtcggtggctgtctttccattaaa




gaaacaccgtg





124
213975
gaaataacccagacttaatcagaatgatncgattatgcccaatattaagtananaatataagaaaaggttatcttaaataga



_s_at
tcaaggcaaaataccagctgatgaaggcatctgatgccttcatctgttcagtcatctccaaaaacagtaaaaataaccact




ttttgttgggcaatatgaaatttttaaaggagtagaataccaaatgatagaaacagactgcctgaattgagaattttgatttntt




aaagtgtgtttctttctaaattgctgttccttaatttgattaatttaattcatgtattatgattaaatctgaggcagatgagcttaca




agtattgaaataattactaattaatcacaaatgtgaagttatgcatgatgtaaaaaatacaaacattctaattaaaggctt





125
214022
tcaacaccctcttcttgaactggtgctgtctgggcttcatagcattcgcctactccgtgaagtctagggacaggaagatggt



_s_at
tggcgacgtgaccggggcccaggcctatgcctccaccgccaagtgcctgaacatctgggccctgattctgggcatcct




catgaccattggattcatcctgttactggtattcggctctgtgacagtctaccatattatgttacagataatacaggaaaaac




ggggttactagtagccgcccatagcctgcaacctttgcactccactgtgcaatgctggccctgcacngctngggctgttg




cccctgcccccttggtcctgcccctagatacagcagtttatacccacacacctgtctacagtgtcattcaata





126
214235
ggtgaggggatgacccctggagatgaagggaagaggtgaagccttagcaaaaatgcctcctcaccactccccaggag



_at
aatttttataaaaagcataatcactgattccttcactgacataatgtaggaagcctctgaggagaaaaacaaagggagaaa




catagagaacggttgctactggcagaagcataagatctttgtacaatattgctggccctggttcacctgtttactgttatcac




aata





127
214651
gtgattcaaacttctgtgtactgggtgatgcacccattgtgattgtggaagatagaattcaatttgaactcaggttgtttatga



_s_at
ggggaaaaaaacagttgcatagagtatagctctgtagtggaatatgtcttctgtataactaggctgttaacctatgattgtaa




agtagctgtaagaatttcccagtgaaataaaaaaaaattttaagtgttctcggggatgcatagattcatcattttctccacctt




aaaaatgcgggcatttaagtctgtccattatctatatagtcctgtcttgtctattgtatatataatctatatgattaaagaaaatat




gcataatcagacaagcgtaatgcataatcagacaagcttgaatattgtttttgcaccagacgaacagtgaggaaattcgga




gctatacatatgtgcag





128
214974
agtcagtgttgtcttaatatccttgataatgctgtaaagtttatttttacaaatatttctgtttaagctatttcacctttgtttggaaat



_x_at
ccttcccttttaaagagaaaatgtgacacttgtgaaaaggcttgtaggaaagctcctccctttttttnctttaaacctttaaatg




acaaacctaggtaattaatggttgtgaatttctatttttgctttgtttttaatgaacatttgtctttcagaataggattctgtgataat




atttaaatggcaaaaacaaaacataattttgtgcaattaacaaagctactgcaagaaaaataaaacatttcttggtaaaaac




gtatgtatttatatattatatatttatatataatatatattatatatttagcattgctgagctttttagatgcctattgtgtatcttttaaa




ggttttgaccattttgttatgagtaattacatatatattacattcactatattaaaattgtacttttttactatgtgnctcattggttca




tagtctttattttgtcctttgaa





129
215091
tatgtcgctgtccaagagaaggctgtggaagaacctatacaactgtgtttaatctccaaagccatatcctctccttccatga



_s_at
ggaaagccgcccttttgtgtgtgaacatgctggctgtggcaaaacatttgcaatgaaacaaagtctcactaggcatgctgt




tgtacatgatcctgacaagaagaaaatgaagctcaaagtcaaaaaatctcgtgaaaaacggagntnggcctctcatctca




gtggatatatccctcccaaaaggaaacaagggcaaggcttatcnttgtgtcaaaacggagagtcacccaactgtgtgga




agacaagatgctctcnacagttgcagtacttacccttggctaagaact





130
217430
agggcctaagggtgacagaggtgatgctggtcccaaaggtgctgatggctctcctggcaaagatggcgtccgtggtct



_x_at
gaccggccccattggtcctcctggccctgctggtgcccctggtgacaagggggaccccattcccgaggagctttatgag





131
217523
gagttattattatctcatagcgtatgttttcttgnacagccttgaataattttgattgacctctgggatgttattaaagcctaacgt



_at
tccttctattctcacaaattttcgttatgacttcagaaggatcattaactctggtatctgtttgtttgcttgtatggcaccaataag




cagatttcttctttctaatctatggattagtatagaccaggagaaggctaatacagagactatgaaacgggaataagttttttt




aacgatatggcaaaattgtgactctgaaagatcattcatgtatattctaaaattaccacagtcataaaaagtcttggactttca




tgaggaaatagcatagctagatatgaaaaaatatagaaaatcttcatcaatggaactattcttggggtagacactaatcata




tgaaaagacaaatgctcattccctaagatagcctga





132
217867
gcttctacgtcatcttcgacagagcccagaagagggtgggcttcgcagcgagcccctgtgcagaaattgcaggtgctgc



_x_at
agtgtctgaaatttccgggcctttctcaacagaggatgtagccagcaactgtgtccccgctcagtctttgagcgagcccat




tttgtggattgtgtcctatgcgctcatgagcgtctgtggagccatcctccttgtcttaatcgtcctgctgctgctgccgttccg




gtgtcagcgtcgcccccgtgaccctgaggtcgtcaatgatgagtcctctctggtcagacatcgctggaaatgaatagcca




ggcctgacctcaagcaaccatgaactcagctattaagaaaatcacatttccagggcagcagccgggatcgatggtggc




gctttctcctgtgcccacccgtcttcaatctctgttctgctcccagatgccttctagattcactgtctt





133
217996
gaagtgggacgagcacatttctattgtcttcacttggatcaaaagcaaaacagtctctccgccccgcaccagatcaagta



_at
gtttggacatcaccctactgaaaacttgcgattcttcttagttttctgcatacttttcatcacgatgcaggaaacgatttcgagt




caagaagacttttatttatgaacctttgaaaggatcgtcttgtatggtgaattttctaggagcgatgatgtactgtaattttatttt




aatgtattttgatttatgattatttattagttttttttaaatgcttgttctaagacatttctgaatgtagaccattttccaaaaaggaaa




ctttattttcaaaaacctaatccgtagtaattcctaatcttggagaataaaaaagggcggtggaggggaaaacattaagaat




ttattcattatttctcgagtactttcagaaagtctgacactttcattgttgtgccagctggtt





134
218086
ggcacagagcgcggagatgtaccactaccagcaccaacggcaacagatgctgtgcctggagcggcataaagagcca



_at
cccaaggagctggacacggcctcctcggatgaggagaatgaggacggagacttcacggtgtacgagtgcccgggcc




tggccccgaccggggaaatggaggtgcgcaaccctctgttcgaccacgccgcactgtccgcgcccctgccggccccc




agctcaccgcctgcactgccatgacctggaggcagacagacgcccacctgctccccgacctcgaggcccccgggga




ggggcagggcctggagcttcccactaaaaacatgttttgatgctgtgtgcttttggctgggcctcgggctccaggccctg




ggaccccttgccagggagacccccgaacctttgtgccaggacacctcctggtcccctgcacctctcctgttcggtttaga




cccccaaactggagggggcatggagaaccgtagagcgcaggaacgggtgggtaatt





135
218211
gccacaccttcgcgaaacctgtggtggcccaccagtcctaacgggacaggacagagagacagagcagccctgcact



_s_at
gttttccctccaccacagccatcctgtccctcattggctctgtgctttccactatacacagtcaccgtcccaatgagaaacaa




gaaggagcaccctccacatggactcccacctgcaagtggacagcgacattcagtcctgcactgctcacctgggtttact




gatgactcctggctgccccaccatcctctctgatctgtgagaaacagctaagctgctgtgacttccctttaggacaatgttg




tgtaaatctttgaaggacacaccgaagacctttatactgtgatcttttacccctttcactcttggctttcttatgttgc





136
218507
tggtgtatgctgtgctttcctcagcagtatggctctgacatctcttagatgtcccaacttcagctgttgggagatggtgatattt



_at
tcaaccctacttcctaaacatctgtctggggttcctttagtcttgaatgtcttatgctcaattatttggtgttgagcctctcttcca




caagagctcctccatgtttggatagcagttgaagaggttgtgtgggtgggctgttgggagtgaggatggagtgttcagtg




cccatttctcattttacattttaaagtcgttcctccaacatagtgtgtattggtctgaagggggtggtgggatgccaaagcctg




ctcaagttatggacattgtggccaccatgtggct





137
218704
gaatttctgctggactttatctgggcagaggaaggatggaatgaaggtagaaaaggcagaattacagctgagcgggga



_at
caacaaagagttcttctctgggaaaagttttgtcttagagcaaggatggaaaatggggacaacaaaggaaaagcaaagt




gtgacccttgggtttggacagcccagaggcccagctccccagtataagccatacaggccagggacccacaggagagt




ggattagagcacaagtctggcctcactgagtggacaagagctgatgggcctcatcagggtgacattcaccccagggca




gcctgaccactcttggcccctcaggcattatcccatttggaatgtgaatgtggtggcaaagtgggcagaggaccccacct




gggaacccttttccctcagttagtggggagactagcacctaggtacccacatgggtatttatatctgaaccagacagacgc




ttgaatcaggcactat





138
218796
gagacagacttggcaagggaccccctggttctgagccagtagctgccatctggaaattcctcttttagcctctccttagag



_at
gtgaatgtgaatgaagcctcccaggcacccgctgaatttctgaggccttgcttaaagctcagaagtggtttaggcatttgg




aaaatctggttcacatcataaagaacttgatttgaaatgttttctatagaaacaagtgctaagtgtaccgtattatacttgatgtt




ggtcatttctcagtcctatttctcagttctattattttagaacctagtcagttctttaagattataactggtcctacattaaaataat




gcttctcgatgtcagattttacctgtttgctgctgagaacatctctgcctaatttaccaaagccagaccttcagttcaacatgc




ttccttagcttttcatagttgtctgacatttccatgaaaacaaaggaaccaactttgttttaaccaaactttgtttggttacagtttt




caggggagcgtttcttccatgaca





139
218872
catgtacgactcggacagcgacggccgcatcactctggaagaatatcgaaatgtaaagtggtcgaggagctgctgtcg



_at
ggaaaccctcacatctagaaggagtccgctcgctccatcgccgacggggccatgatggaggcggccagcgtgtgcat




ggggcagatggagcctgatcaggtgtacgaggggatcaccacgaggacttcctgaagatctggcaggggatcgacat




tgagaccaagatgcacgtccgcttccttaacatggaaaccatggccctctgccactgacccaccgccacctccgcgga




gagactgcactttgcaatggggccgcctccccgcgtagctggagcagcccaggcccggcggacagcctcttcctgca




gcgccggtacatagccaaggctcgtctgcgcaccttgtgtcttgtagggtatggtatgtgggacttcgct





140
218963
gaggaggaactgacgcagctacgccacgaactggagcggcagaacaatgaataccaagtgctgctgggcatcaaaa



_s_at
cccacctggagaaggaaatcaccacgtaccgacggctcctggagggagagagtgaagggacacgggaagaatcaa




agtcgagcatgaaagtgtctgcaactccaaagatcaaggccataacccaggagaccatcaacggaagattagttctttgt




caagtgaatgaaatccaaaagcacgcatgagaccaatgaaagtttccgcctgttgtaaagtctattttcccccaaggaaa




gtccttgcacagacaccagtgagtgagttctaaaagatacccttggaattatcagactcagaaacttttatttttttttttctgta




acagtctcaccagacttctcataatgctcttaatatattgcacttttctaatcaaagtgcgagtttatgagggtaaagctctact




ttcctactg





141
218984
aatcctgcaattctcaatcttgcactgcagcctcgacctcccaggctccagtgactctcccacctcagcctcctaagtagct



_at
gggagtacaggcgcgcaccaccacgcctagctgatttttgtatttttttgtagagacgggggtttggccatgttgccgagg




ctaactcctgggattacaggcatgagctgtgctggccgggtttttttttcttgatgtaaacgtgtacagctgttttattagttaa




ggtctaatttttactctaggtgccttttatgttcagaactctttccactggactggtatttgctcaaaaataaataatggtagaga




agaaaactataaaaatggacaaggctttcttctatcagtagcgtttaccctttgtcaccagtggctttggtatttccatgtctg




gcattgcataaacttctctggtgtgaaaggataaatatgcctttctaaagttgtatatcaaaattgtatcaatttttattttctatga




tttctagaaacaaatgtaataaatatttttaaaatctcctttctactggttatgta





142
219630
ctcgttgcaatcgcctttgcagtcaaccacttctggtgccaggaggagccggagcctgcacacatgatcctgaccgtcg



_at
gaaacaaggcagatggagtcctggtgggaacagatggaaggtactcttcgatggcggccagtttcaggtccagtgagc




atgagaatgcctatgagaatgtgcccgaggaggaaggcaaggtccgcagcaccccgatgtaaccttctctgtggctcc




aaccccaagactcccaggcacatgggatggatgtccagtgctaccacccaagccccctccttctttgtgtggaatctgca




atagtgggctgactccctccagccccatgccggccctacccgcccttgaagtatagccagccaaggttggagctcaga




ccgtgtctaggttggggctcg





143
219682
gagagaaaacaatatagccccctacccttttcccaatcctttgccctcaaatcagtgacccaagggagggggggatttaa



_s_at
agggaaggagtgggcaaaacacataaaatgaatttattatatctaagctctgtagcaggattcatgtcgttctttgacagttc




tttctctttcctgtatatgcaataacaaggttttaaaaaaaaaaaaaaaaagtgagactattagacaaagtatttatgtaattatt




tgataactcagtaaataggtggaatatgaatgatggaaaattaaactttaatttattgacattgtacatagctctgtgtaaata




gaattgcaactgtcaggttttgtgttcttgttttcctttagttgggtttatttccaggtcacagaattgctgttaacactagaaaac




acacttcctgcaccaacaccaataccctttcaaaagagttgtctgcaacatttttgttttcttttttaatgtccaaaagtggggg




aaagtgctatttcctattttcaccaaaattggggaaggagtgccactttccagc





144
219727
ttagcactgaaagtctcttgccccaggaaaccccatcagtcccaggcagattgggacagctggtcaccttacgcaagag



_at
ccaggctgaaacatcccctccatactcagctctttaacttttcttttcctttttcatcgggctctttcctaaaaagctgagctgta




aaatattttacatcgaggtataataaataatcatgtacatgttttaccaccacccaggtcaagacatagaatgtttcaacatttc




catcaccccagaaactccccttgtacccccttccacttcgtctcccctagctcctagaagcaaccactgatgtgatttctac




caaatccagttttggtcctactaaatatactcttttgagactggcctcttttactcaccataatgcctttgtaattc





145
219787
tagctgtttcagagagagtacggtatatttatggtaattttatccactagcaaatcttgatttagtttgatagtgtgtggaatttta



_s_at
ttttgaaggataagaccatgggaaaattgtggtaaagactgtttgtacccttcatgaaataattctgaagttgccatcagtttt




actaatcttctgtgaaatgcatagatatgcgcatgttcaactttttattgtggtcttataattaaatgtaaaattgaaaattcatttg




ctgtttcaaagtgtgatatctttcacaatagcctttttatagtcagtaattcagaataatcaagttcatatggataaatgcattttt




atttcctatttctttagggagtgctacaaatgtttgtcacttaaatttcaagtttctgttttaatagttaactgactatagattgttttc




tatgccatgtatgtgccacttctgagagtagtaaatgactctttgctacatttta





146
219911
gtgtaccagaattcggccatgagccgctacatactcatcatggggctcctgtacaaggtgctgggcgtcctcttctttgcc



_s_at
atagcctgcttcttatacaagcccctgtcggagtcttcagatggcctggaaacttgtctgcccagccagtcctcagcccct




gacagtgccacagatagccagctccagagcagcgtctgaccaccgcccgcgcccacccggccacggcgggcactc




agcatttcctgatgacagaacagtgccgttgggtgatgcaatcacacgggaacttctatttgacctgcaaccttctacttaa




cctgtggtttaaagtcggctgtgacctcctgtccccagagctgtacggccctgcagtgggtgggaggaacttgcataaat




atatatttatggacacacagtttgcatcagaacgtgtttatagaatgtgttttatacccgatcgtgtgtggtgtgcgtgaggac




aaactccgcaggggctgtgaatcccactgggagggcggtgggcctgcagcccgaggaaggcttgtgtgtcctcagtta




a





147
219955
gaagttgcaacattcgtttgataggaattccagaaaaggagagttatgagaatagggcagaggacataattaaagaaata



_at
attgatgaaaactttgcagaactaaagaaaggttcaagtcttgagattgtcagtgcttgtcgagtacctagtaaaattgatga




aaagagactgactcctagacacatcttggtgaaattttggaattctagtgataaagagaaaataataagggcttctagaga




gagaagagaaattacctaccaaggaacaagaatcaggttgacagcagacttatcactggacacactggatgctagaagt




aaatggagcaatgtcttcaaagttctgctggaaaaaggctttaatcctagaatcctatatccagccaaaatggcatttgatttt




aggggcaaaacaaaggtatttcttagtattgaagaatttagagattatgttttgcatatgcccaccttgagagaattactggg




gaataatataccttagcacgccagggtgactaca





148
219956
ttgcttgttccccggaggttgaagctacagtgagccttgattgtgtcactgcactccagcctgggcaacaggtaagactct



_at
gtctcaaaaaaaaaacaaaaaagaagaagaaaagtacttctacagccatgtcctattccttgatcatccaaagcacctgc




agagtccagtgaaatgatatattctggctgggc





149
221577
gacggcgtcaaggtcgtgggacgtgacacgaccgctgcggcgtcagctcagccttgcaagaccccaggcgcccgcg



_x_at
ctgcacctgcgactgtcgccgccgccgtcgcagtcggaccaactgctggcagaatcttcgtccgcacggccccagctg




gagttgcacttgcggccgcaagccgccagggggcgccgcagagcgcgtgcgcgcaacggggaccactgtccgctc




gggcccgggcgttgctgccgtctgcacacggtccgcgcgtcgctggaagacctgggctgggccgattgggtgctgtc




gccacgggaggtgcaagtgaccatgtgcatcggcgcgtgcccgagccagttccgggcggcaaacatgcacgcgcag




atcaagacgagcctgcaccgcctgaagcccgacacggtgccagcgccctgctgcgtgcccgccagctacaatcccat




ggtgctcattcaaaagaccgacaccggggtgtcgctccagacctatgatgacttgttagccaaagactgccactgca





150
221729
tggaattagaccatttggcttttgaactacataggaaaaatgacccaacatttcttagcatgagctacctcatctctagaag



_at
ctgggatggacttactattcttgtttatattttagatactgaaaggtgctatgcttctgttattattccaagactggagataggca




gggctaaaaaggtattattatttttcctttaatgatggtgctaaaattcttcctataaaattccttaaaaataaagatggtttaatc




actaccattgtgaaaacataactgttagacttcccgtttctgaaagaaagagcatcgttccaatgcttgttcactgttcctctg




tcatactgtatctggaatgctttgtaatacttgcatgcttcttagaccagaacatgtaggtccccttgtgtctcaatacttttttttt




cttaattgcatttgttggctctattttaattt





151
221730
tagattccggtatatcgttcttcaagacacttgctctaagcggaatggaaatgtgggcaagactgtctttgaatatagaaca



_at
cagaatgtggcacgcttgcccatcatagatcttgctcctgtggatgttggcggcacagaccaggaattcggcgttgaaatt




gggccagtttgttttgtgtaaagtaagccaagacacatcgacaatgagcaccaccatcaatgaccaccgccattcacaag




aactttgactgtttgaagttgatcctgagactcttgaagtaatggctgatcctgcatcagcattgtatatatggtcttaagtgcc




tggcctccttatccttcagaatatttattttacttacaatcctcaagttttaattgattttaaatatttttcaatacaacagtttaggtt




taagatgaccaatgacaatgaccacctt





152
221731
tacagcaccgatggccatgtaaataagatgatttaatgagatataatcctgtatataaantaaaaagtncncaatgagat



_x_at
ngggcatatttaatgatgattatggagccttagaggtctttaatcattggttcnggctgcttttatgtagtttaggctggaaatg




gtttcacttgctctttgactgtcagcaagactgaagatggcttttcctggacagctagaaaacacaaaatcttgtaggtcatt




gcacctatctcagccataggtgcagtttgcttctacatgatgctaaaggctgcgaatgggatcctgatggaactaaggact




ccaatgtcgaactcttctttgctgcattcctttttcttcacttacaagaaaggcctgaatggaggacttttctgtaaccaggaa




cattttttaggggtcaaagtgctaataattaactcaaccaggtctactttttaatggctttcataacactaactcataaggttac




cgatcaatgcatttcatacggatatagacctagggctctggagggtgggg





153
221922
gtaaatagttaaccacagtagtctattaaggcattaatacttctctggacatgcgcgtttgagggtggaggggtcctgtaag



_at
gtgcttcatcgtctgtgattactgcttgggatgtgttctttggcagcttgtgagattactttacctagtgtttataaagtaggaag




ttaagtgaatcatagattagaatttaatactcttatggaaataattttttaacatcttaattgacaatggcgtttttttataca





154
221923
tagtccatactgagtgtcatcaacaatccagactgaagtcttctattttaatctcaatccccttttctgatttgccacccatgcct



_s_at
cttcaggctggaaacaatctcttggttccctaaagcactttcttctgactgctgtgattcagtgaaccttgccctttgctttctat




tacttgtgcatttgcctcacctgacaatgttttaaatcgcctttgtatctccttagctgctcaataa





155
222449
aatatgtcagtgcttgcttgatggaaacttctcttgtgtctgttgagactttaagggagaaatgtcggaatttcagagtcgcct



_at
gacggcagagggtgagcccccgtggagtctgcagagaggccttggccaggagcggcgggctttcccgaggggcca




ctgtccctgcagagtggatgcttctgcctagtgacaggttatcaccacgttatatattccctaccgaaggagacaccttttcc




cccctgacccagaacagcctttaaatcacaagcaaaataggaaagttaaccacggaggcaccgagttccag





156
222450
ggctgggggagagccgggttcattccctgtcctcattggtcgtccctatgaattgtacgtttcagagaaattttttttcctatgt



_at
gcaacacgaagcttccagaaccataaaatatcccgtcgataaggaaagaaaatgtcgttgttgttgtttttctggaaactgc




ttgaaatcttgctgtactatagagctcagaaggacacagcccgtcctcccctgcctgcctgattccatggctgttgtgctga




ttccaatgctttcacgttggttcctggcgtgggaactgctctcctttgcagccccatttcccaagctctgttcaagttaaactta




tgtaagctttccgtggcatgcggggcgcgcacccacgtccccgctgcgtaagactctgtatttggatgccaatccacagg




cctgaagaaactgcttgttgtg





157
222549
gtgagtatggcccaatgctttctgtggctaaacagatgtaatgggaagaaataaaagcctacgtgttggtaaatccaacag



_at
caagggagatttttgaatcataataactcataaggtgctatctgttcagtgatgccctcagagctcttgctgttagctggcag




ctgacgctgctaggatagttagtttggaaatggtacttcataataaactacacaaggaaagtcagccaccgtgtcttatgag




gaattggacctaataaattttagtgtgccttccaaacctgagaatatatgcttttggaagttaaaatttaaatggcttttgccac




atacatagatcttcatgatgtgtgagtgtaattccatgtggatatcagttaccaaacattacaaaaaaattttatggcccaaaa




tgaccaacgaaattgttacaatagaatttatccaattttgatctttttatattcttctaccacacctggaaacagacc





158
222608
catggtttacatttactcagctactatatatgcagtgtggtgcacattttcacagaattctggcttcattaagatcattatttttgn



_s_at
ctgcgtagcttacagacttagcatattagttttttctactcctacaagtgtaaattgaaaaatctttatattaaaaaagtaaactg




ttatgaagctgctatgtactaataatactttgcttgccaaagtgtttgggttttgttgttgtttgtttgtttgtttgtttttggttcatga




acaacagtgtctagaaacccattttgaaagtggaaaattattaagtcacctatcacctttaaacgcctttttttaaaattataaa




atattgtaaagcagggtctcaacttttaaatacactttgaacttcttctctgaattattaaagttctttatgacctcatttataaaca




ctaaattctgtcacctcctg





159
222696
gccgctgtgctttcgtggaaatgacagttccttgttttttttgtttctgtttttgttttacattagtcattggaccacagccattcag



_at
gaactaccccctgccccacaaagaaatgaacagttgtagggagacccagcagcacctttcctccacacaccttcattttg




angttcgggtttttgtgttaagttaatctgtacattctgtttgccattgttacttgtactatacatctgtatatagtgtacggcaaa




agagtattaatccactatctctagtgcttgactttaaatcagtacagtacctgtacctgcacggtcacccgctccgtgtgtcg




ccctatattgagggctcaagctttcccttgttttttgaaaggggtttatgtataaatatattttatgcctttttattacaagtcttgt





160
223062
ggagtggtttaagagtgccaggcgaagggcaaactgtagatcgatctttatgctgttattacaggagaagtgacatacttt



_s_at
atatatgtttatattagcaaggtctgtttttaataccatatactttatatttctatacatttatatttctaataatacagttatcactgat




atatgtagacacttttagaatttattaaatccttgaccttgtgcattatagcattccattagcaagagttgtaccccctccccag




tcttcgccttcctctttttaagctgttttatgaaaaagacctagaagttcttgattcatttttaccattctttccataggtagaagag




aaagttgattggttggttgtttttcaattatgccattaaactaaacatttctgttaaattaccctatcctttgttctctactgttttcttt




gtaatgtatgactacgagagtgatactttgctgaaaagtctttcccctattgtttatctattgtca





161
223447
ttcctgtgcaagtaccgaccatagagcaagaatcaagattctgctaactcctgcacagccccgtcctcttcctttctgctag



_at
cctggctaaatctgctcattatttcagaggggaaacctagcaaactaagagtgataagggccctactacactggctttttta




ggcttagagacagaaactttagcattggcccagtagtggcttctagctctaaatgtttgccccgccatccctttccacagtat




ccttcttccctcctcccctgtctctggctgtctcgagcagtctagaagagtgcatctccagcctatgaaacagctgggtcttt




ggccataagaagtaaagatttgaagacagaaggaagaaactcaggagtaagcttctagaccccttcagatctacaccct




tctgccctctctccattgcctgcaccccaccccagccactcaactcctgcttgtttttcctttggccatagg





162
223970
ggagctcagagatctaagctgctttccatcttttctcccagccccaggacactgactctgtacaggatggggccgtcctctt



_at
gcctccttctcatcctaatcccccttctccagctgatcaacccggggagtactcagtgttccttagactccgttatggataag




aagatcaaggatgttctcaacagtctagagtacagtccctctcctataagcaagaagctctcgtgtgctagtgtcaaaagc




caaggcagaccgtcctcctgccctgctgggatggctgtcactggctgtgcttgtggctatggctgtggttcgtgggatgtt




cagctggaaaccacctgccactgccagtgcagtgtggtggactggaccactgcccgctgctgccacctgacctgacag




ggaggaggctgagaactcagttttgtgaccatgacagtaatgaaaccagggtcccaaccaagaaatctaactcaaacgt




cccact





163
224428
gcaaagtttatttcagttcacatgtaaggtattgcaaataaattcttggacaattttgtatggaaacttgatattaaaaactagtc



_s_at
tgtggttctttgcagtttcttgtaaatttataaaccaggcacaaggttcaagtttagattttaagcacttttataacaatgataagt




gcctttttggagatgtaacttttagcagtttgttaacctgacatctctgccagtctagtttctgggcaggtttcctgtgtcagtat




tccccctcctctttgcattaatcaaggtatttggtagaggtggaatctaagtgtttgtatgtccaatttacttgcatatgtaaacc




attgctgtgccattcaa





164
224646
agacggccttgagtctcagtacgagtgtgcgtgagtgtgagccaccttggcaagtgcctg



_x_at






165
224915
ggagtgtggtacttctcctagttgcagtcaggcttcatacgctnttgtcctgcccgttagagcagccagcgggtacagaat



_x_at
ggattttggaagagggagtcaccactggacctccaaggaagccacgtgcagacatctacaaccttcgatctcctgacga




gtttattgttggccaaaaccaggctttgattgaaccaggatgaatgcgggtgttggaagtagaatatatatatacatataaaa




ttggttgggagccacgtgtaccagtgtgtgttgatcttggcttgattcagtctgccttgtaacagaaactggcgatggaatat




gagaggagccctctggaaagaaaaggacagaccctgtgctttcatgaaagtgaagatctggctgaaccagttccacaa




ggttactgtatacatagcctgagtttaaaaggctgtgcccacttcaagaatgtcattgttagactttgaaatttctaactgccta




cctgca





166
225295
agggctgtaacagttgctgctagtattagggttccacatcattctaatgtatagtttcaagtcttaatagacaatctgaattcca



_at
ctacatttcttttggctccaacattccttttagcttgaccagtctaatttaaaatgtgtttgttggaggtcattaacgttacttgtac




aatgctgtcactgtgtgacatccatatgaattttggtatatatcaatcaatcaatcaatcannnncattgcattcaatcaatca




gctgtgattgattnnnnatgcttagaaatactatagtaactagatgcagtgtgaattttttccattaacaaacaaacaagtca




gtggcttaaatgtgattatggtcctgcaaggtgattcttgctaaaatatctaaacttttgttttgttttaactgaatcattttttaact




taaaaagctggaaaatatcaaatgctgttttttttttnncattgtcaacagtggtgtgtcattttatgtatgttcctaatgcttatg




gaactcctcca





167
225520
ggaacgatgagcaccatgccaggactgcccacccggccctgatttatgacatagatcttgataccgaaacagaacaag



_at
ttaaaggcttgttctaagtggacaaggctctcacaggacccgatgcagactcctgaaacagactactctttgcctttttgct




gcagttggagaagaaactgaatttgaaaaatgtctgttatgcaatgctggagacatggtgaaataggccaaagatttcttct




tcgttcaagatgaattctgttcacagtggagtatggtgttcggcaaaaggacctccaccaagactgaaagaaactaatttat




ttctgtttctgtggagtttccattatttctactgcttacactttagaatgtttattttatggggactaagggattangagtgtgaac




taaaaggtaacattttccactctcaagttttctactttgtctttgaactgaa





168
225541
gaaacacaaccaagacgcgaggatcnnnnnctntnnnnnnnnnnnnnctngcaagatggcgccgcagaaagac



_at
aggaagcccaagaggtcaacctggaggtttaatttggaccttactcatccagtagaagatggaatttttgattctggaaattt




tgagcaatttctacgggagaaggttaaagtcaatggcaaaactggaaatctcgggaatgttgttcacattgaacgcttcaa




gaataaaatcacagttgtttctgagaaacagttctctaaaaggtatttgaaataccttaccaagaaataccttaagaagaac




aatcttcgtgattggcttcgagtggttgcatctgacaaggagacctacgaacttcgttacttccagattagtcaagatgaag




atgaatcagagtcggaggactaggcaaaggctccccttacagggctttgcttatt





169
225664
ggaacccagagctgctgtgtatttcgagcgggcagtttatcttttgctatacttattttcaattcaattacaccacgattcaaat



_at
aattcccctcctaaaaccaaaaaggagggaaacgtcaactccattgcaattacttatcttcctcttctatctctgttatacgcc




ggggcatagaatgctcgtatacatctctttaacaaccacaaaccttaagccatgtagatgaagttagtgcatcaacgggat




acagttccatattgccttaaacctccttgttttagacacactaacatttataccaaattgcagattattctgcagagagggaatt




gcatgtttgtgttgta





170
225681
aattaatattcatcgcacttcttctgtggaaggactttgtgaaggaattggtgctggattagtggatgttgctatctgggttgg



_at
cacttgttcagattacccaaaaggagatgcttctactggatggaattcagtttctcgcatcattattgaagaactaccaaaat




aaatgctttaattttcatttgctacctctttttttattatgccttggaatggttcacttaaatgacattttaaataagtttatgtatacat




ctgaatgaaaagcaaagctaaatatgtttacagaccaaagtgtgatttcacactgtttttaaatctagcattattcattttgcttc




aatcaaaagtggtttcaatattttttttagttggttagaatactttcttcatagtcacattctctcaacctataatttggaatattgtt




gtggtcttttgttttttctcttagtatagcatttttaaaaaaatataaaagctaccaatctttgtacaatttg





171
225767
ccgtgtgagcgatcgcggtgggttcgggccggtgtgacgcgtgcgccggccggccgccgaggggctgccgttctgc



_at
ctccgaccggtcgtgtgtgggttgacttcggaggcgctctgcctcggaaggaaggaggtgggtggacgggggggcct




ggtggggttgcgcgcacgcgcgcaccggccgggcccccngccctgaacgcgaacgctcgaggtggccgcgcgca




ggtgtttcctcgtaccgcagggccccctcccttccccaggcgtccctcggcgcctctgcgggcccgaggaggagcgg




ctggcgggtggggggagtgtgacccaccctcggtgagaaaagccttctctagcgatctgagaggcgtgccttgggggt




ac





172
225799
aaatgactggatggtcgctgctttttaagtttcaaattgacattccagacaagcggtgcctgagcccgtgcctgtcttcagat



_at
cttcacagcacagttcctgggaaggtggagccaccagcctctccntgaataactgggagatgaaacaggaagctctatg




acacacttgatcgaatatgacagacacngaaaatcacgactcanccccctccagcacctctacctgttgcccgccgatc




acagccggaatgcagctgaaagattccctggggcctggttccaaccgcccactgtggactctgaggcctctgcatttgc




gggtggtctgcctgtgatattttggtcatgggctggtctg





173
225806
tcttctcaggtcacttgtacacttggtttcctagtagaagctcacttgccacctctcaggggggtcccggattgcatccatca



_at
caatcccaaaactngagttggggggaactggagggagcaaaacactgatttgatactagtcagtttgcttgaaactagtt




cacctaaagctagatctcttaaaaccaatttactgaaaacttgtttgcttaaagttaatgacttaatgactaatttgccaaaagc




tcaattcctattttggtgtgtttatatccatttaggtgtcctattcttttttgtcatgctttggatatttcaaggatttatatctattcatc




caagagtacttctgagntattatcagcaacataaatttatcaaatttgcagcactttgtaaatgatgagattgcttcctaccttt




atggatgtcttt





174
225835
aatgcattactttcacttaacactagacaccaggtcgaaaattttcaaggttatagtacttatttcaacaattcttagagatgct



_at
agctagtgttgaagctaaaaatagctttatttatgctgaattgtgatttttttatgccaaantttttttagttctaatcattgatgata




gcttggaaataaataattatgccatggcatttgacagttcattattcctataagaattaaattgagtttagagagaatggtggt




gttgagctgattattaacagttactgaaatcaaatatttatttgaacattattccatttgtattttaggtttccttttacattctttttat




atgcattctgacattacatattttttaagactatggaaataatttaaagatttaagctctggtggatgattatctgctaagtaagt




ctgaaaatgtaatattttgataatactgtaatatacctgtcacacaaatgcttttctaatgttttaaccttgagtattgcagttgct




gctttgtacagaggtt





175
226227
gtacttctcctagttgcagtcaggcttcatacgctattgtcctgcccgttagagcagccagcgggtacagaatggattttgg



_x_at
aagagggagtcaccactggacctccaaggaagccacgtgcagacatctacaaccttcgatctcctgacgagtttattgtt




ggccaaaaccaggctttgattgaaccaggatgaatgcgggtgttggaagtagaatatatatatacatataaaattggttgg




gagccacgtgtaccagtgtgtgttgatcttggcttgattcagtctgccttgtaacagaaactggcgatggaatatgagagg




agccctctggaaagaaaaggacagaccctgtgctttcatgaaagtgaagatctggctgaaccagttccacaaggttactg




tatacatagcctgagtttaaaaggctgtgcccacttcaagaatgtcattgttagactttgaaatttctaactgcctacctgca





176
226237
gaagaggagcaacatctatgccaaatactgtgcattctacaatggtgctaatctcagacctaaatgatactccatttaattta



_at
aaaaagagttttaaataattatctatgtgcctgtatttcccttttgagtgctgcacaacatgttaacatattagtgtaaaagcag




atgaaacaaccacgtgttctaaagtctagggattgtgctataatccctatttagacaaaattaaccagaattcttccatgtga




aatggaccaaactcatattattgttatgtaaatacagagttttaatgcagtatgacatcccacaggggaaaagaatgtctgta




gtgggtgactgttatcaaatattttatagaatacaatgaacggtgaacagactggtaacttgtttgagttcccatgacagattt




gagacttg





177
226311
aaacgacgcaaatctctgagctggggaccacttggagaaccggcttagtaacagtcctgatcttcgcaagccagcttctt



_at
ctgcatctgaggggctcctggcgcccagaggaggcagacagatgtcttctagctgagtttctaaccgcatgatgagact




cagaccttccgctgcactagaaaatctgcaacagtgtccctgagtcacttctccttagtgggcagactcgtgttagatttgt




ggaacccagctctctgatttactccttttggaaaacccatggaatttcatgtataaggctttcatttgtattttaaggtttttctgtt




tgttttgagtatatacatggtgctcaatagcaacatcttagcagatgaagcagtttatgattccactccctcctgtatgacagg




tagccactatactgaatcaaggtgctgaactcaaatcacaaaattctggcttaccgatacaacaaccaatac





178
226360
gtcccactgctcacatacttatgtgctgctagtctctactcgaagttcgtgcaggactaatgcttttaaaatgaggtctaaaa



_at
aataattactagtcgagactattattctttaaacagaactgcctttttctactctttatgtaaactctttctattgtgttggtctaacn




aggcactattttaaaattttttaatttttcccatagcacttaaaagagattttgtaaagaccttgctgtaaagattttgtaataaaa




tggtctaagggctctttttccaacattaccatttttaaaaaatgttttaaaagctagaagacaacttatgtatattctntatatgta




tagcagcacatttcatttatggaaatatgttctcagaatatttatttactaatatatttatcttaagccatgtcttatgttgagagtg




tgacattgttggaataatcattgaaaatgactaacacaagaccctgtaaatacatgataattgcacacagattttacatatttg




cagaccaaaaatgatttaaaacaagttgtagtcttctatggttttg





179
226777
tataaggtaactctttagtcctccatttagcacattttaaatcctccaaagaataagtatcatgtgattattttagctttacaaaaa



_at
aaaagttgaatggcgttttattttcatggcctataagcaggtaccttagtagggcagatataggaaaaacaaattagagcaa




aacaaatcctctacaaatccaaggcaggaaaagtggtggcagagtgactcattctcctgtccctcccatcaggtcaaatc




aggaggctgcagtgaatgcctgttctttgaatgtgtagcagttgttncctgtaactctttaaaacttggctataggctgtttag




cacagtacagattaaagatacagttacgtaaacagcaaagtaattttatagtgcttcatccatttatcatgctttggtttgctaa




ttttttcacatacctttttctatcacagtctgttgcttttgtacacatttctcatattggggttcgaca





180
226835
ggagtgtggtacttctcctagttgcagtcaggcttcatacgctattgtcctgcccgttagagcagccagcgggtacagaat



_s_at
ggattttggaagagggagtcaccactggacctccaaggaagccacgtgcagacatctacaaccttcgatctcctgacga




gtttattgttggccaaaaccaggctttgattgaaccaggatgaatgcgggtgttggaagtag





181
227140
ttaccctctatttaaatgctttgaaaaacagtgcattgacaatgggttgatatttttctttaaaagaaaaatataattatgaaagc



_at
caagataatctgaagcctgttttattttaaaactttttatgttctgtggttgatgttgtttgtttgtttgtttctattttgttggttttttac




tttgttttttgttttgttttgttttgttttgcatactacatgcagttctttaaccaatgtctgtttggctaatgtaattaaagttgttaattt




atatgagtgcatttcaactatgtcaatggtttcttaatatttattgtgtagaagtactggtaatttttttatttacaatatgtttaaag




agataacagtttgatatgttttcatgtgtttatagcagaagttatttatttctatggcattccagcggatattttggtgtttgcgag




gcatgcagtcaatattttgtacagttagtggacagtattcagcaacgcctgatagcttctttggcctt





182
227174
ctggcacaaccctgacattactaagtggaaatgttaggatttttcggcatcgcatgttagaatctctaaaatttaaacattcct



_at
gttaaatgactaaggtttgcttttatcaatatgaattctgaaggccaatatcataccattaactatgaaagcttttaattcctaaa




aatagttttagagatattcaagcaatgctctcctaatatccatacgcaagtgtgtttatgacacaaattcactagtctgtttaaa




aatgaattctttatattgactggtgttccacatatttcagtaatttctgttatgagaggacttgaaatagcaaattgccacacag




ttaactggatagaccangtacgtggtgatcataaccacttggtactacacccagaaactcaaaattgtctttctcctgatga




gatatgggtgtccttttgtacgtctaggcctaggtaaccagtggagtgattatattagcaaatgtgtttgtatccagagtcttc




c





183
227475
ccaggcttcgtcttatttctactgtttttgtcgcaacttccattgatttatgtcccttccctcccccctaagtacatcagggaacc



_at
tttccacactataaatgatatgactactgtttggggtttctgggcccccatccgtgtacgtatgtggcatttccaggtatgact




gagtgtgagagacatgtcagaggctcttcagtgatttcttgctattgaccgatgcttcactgtgccaaaagagaaaaaaaa




tgttgggttttgtaattaaattatttatatatttttgaaacccgaattgaaaatgttgcaggcaacgggctacagctttattagtg




gttctctaactgtggtctccttgggccaagcaatttctttaaaggaaaagttgattatgtatgtggggtgccaggaccactgc




cttgaaagca





184
228303
tagcccaaccctatcattttcatattatgaaactgagtccaggtaagtgaatctgtccaaggtcacccagcaaggtatcagt



_at
agccctgagggtaaggactctgataaggctcgggagggtcctggaaagcctgaggcggcaggaagagtgtgcagag




ttgagcgtgtctggaaggctgatccactgctgggcccacatcaaagcccccatggggagcagacccgactgcacatgg




ctcttttgctggaagaagagcatngctgcgcagaggactaaaatttcatctgggaaggcttcttttgactgtcagtagcag




gatgtcaccagatgagggtgctatgggaccacagctgtctttgttcccattgcaactcaaccctgcnggaggccgcctgc




atccctgagagccttctggagcctacagaggagacattggccagccaaaaggaaaggagtggccagggtacgacct





185
228653
aattatcccttatcattccaaaaatgaaatgctgtgttaaatatctccagggcaaagtggtatgttgactgggacaaacgtta



_at
gaaattgtattgttcattgcacttgttgccctgttccccaagcttgtcaatgtttagagatactattcgggttgctaaagccatta




ttcatagaaaatttctgcccctacagaagtgtgtgcatgggccttggaaaatctacatgtgtatatctgagtagcgaagcac




agattcactctaattgaaagcagcagtttggttttgtaaatgtaattgcaattgacactttcttttccctttcagttattatttttttta




aaggacgttatgagaaggcactatgaaaagcctaattggaatagcattatgaaccatgtaatgcatgcccatgcacactgt




gatttgcaaacatatgtccgctcttcaat





186
228754
ggtgggtgtcactacagacatgttctggcgtgttctccgagggatggagcatcctgttatatatttgacttcaaattgagatg



_at
ttggcttcattttttttttttacccaattaatctcccaatccctagcaactgtgactctgtatttagcacaagagaaagctgagaa




tgtgggtcttgcctccttccagaaatatgtctggctcatcaggacatttttttaaaacttcaaaatatttttaagatattttaaactt




ttataaaaaaaaaatcaaccaacaagagacttttctgaggaggaacatttgtatttgaacaagatccttggtgtgtagttcag




tcttgcagtatacaagcttttgtgtataaatgttttatgatatgattccctgtnttttgcaggggtttttttctcttttgctttttagata




aatatgtatatcaatattttaaattcatctttgctttttttagaggagtttgtaatcaccttataac





187
228915
gaaaaaagctatcagctgtatgttaagagagactcttactaacatgttgtaaatattacaattcatgaaatgttattgtaagtct



_at
gtaacttaattttttccctgttttagttatacaggttggtttggaaatttgtgttttggcataaacaagtaaaatgtgcccattttat




ggtttccatgcttttgtaatcctaaaaatattaatgtctagttgttctatattataaccacatttgcgctctatgcaagcccttgga




acagaacatactcatcttcatgtaggacctatgaaaattgtctatttttatctatatatttaaagttttctaaaaatgataaaaggt




tattacgaattttgttgtacaaaatctgtacaaaaatctgtttttacatcataatgcaagaattggaaatttttctatggtagccta




gttatttgagcctggtttcaatgtgaga





188
229215
gccgcggtggaaacgggcttggagctggccccataangggctngcggcttcctccgacgccgcccctccccacagct



_at
tctcgactgcagtggggcggggggcaccaacacttggagatttttccggaggggagaggattttctaagggcacagag




aatccattttctacacattaacttgagctgctggagggacactgctggcaaacggagacctatttttgtacaaagaaccctt




gacctggggcgtaataaagatgacctggacccctgcccccactatctgnngnnnnnnntgctggccaagatctggac




acgagcagtccctgaggggcggggtccctggcgtgaggcccccgtgacagcccaccctggggtgggtttgtgggca




ctgctgctctgctagggagaagcctgtgtggggcacacctcttcaagggagcgtga





189
229802
gacatgattgtctataatctcgctagccttgtactgtgtgtgcatagcaattacagggaagtaatctagctcctgactattatg



_at
ttgaactatgtcgctgctttttacaaacttgtcttgatccaaagcagtcacaatgataaccctgcatatctgggaatcataagt




caactatgtatctctgtgtgtgtatatatatgtatgtatgtatctattttcaaactgtgatttaatatttaaatattcctactgccattt




ttgtgactgaaaaactacacatgaggaaacgtcttagaattttccaatagaggaaaaataacacttgggcaatctgtcatgt




ttcacaacagttctcatttttctcatgatttgtgtagcgtggaatgtgtttgctcaatgtgaagggttttcattgctcaatttctctg




tgtaa





190
231766
ggttccggctaacacattttctaagtcgccagtgctgcttacagtttgaatacatgaaaatcctgtttctnagatgtttgcgca



_s_at
cgtgcttattaggaaatgagtctgtatggaaatctcaccacagataatggttaacgaaccgggtcgacatcacaaaggag




ggtggagactctttttactaacttgaatgagacaaaagcagtggtgtcagtttataatcctgatgcatttcagtaataatgtag




aaaaacattattttaaaaaagttccaacacacagccatgaggagccnnnnnnnnnntcagttttgaaagaggtgcataa




taaaactactaaccagaggagtctatgccatttt





191
231832
gagtttcaactttaaatgttcactatgtcatttagtgtccanctttacggataggttgactatctaaataggcatttttagtcatta



_at
aaaaaaantctagtcaccaggaggatccctataactcaaaataacttgtttgtaaaagaaaatttgtttacttacccattagta




agttcctgcatattcattataagatggcaaatcaaacttttctaggatgaagacagcttatttttaagttgtatagtcttagttgg




tttagggtctcaattttaattaataaaatacttggtttttatttgcttgtccttttgaattcctgttttaataattttaaaatgagcaca




aagaangttgaagttcagattaatctcttctgaatgatgtttttttcctctgtgatgagttgtttctg





192
231941
caccaagttacgtcaaagtctcaggagcagctccggtctccatagaggctgggtcagcagtgggcaaaacaacttccttt



_s_at
gctgggagctctgcttcctcctacagcccctcggaanncncnctcaagaacttcaccccttcagagacaccgaccatgg




acatcncaaccaaggggnccttccccaccagcanggaccctcttccttctgtccctccgactacaaccaacagcagcc




ganngacgaacagcacntnnnnnaagatcacaacctcagcgaagaccacgatgaagcccc





193
232151
gtacagcatgaaaggcttcctctacaagacactagtcaaagagttgagagctgcggtttctaatctttgtccattactccctt



_at
actccctatgagactgtggacctgtcacttggcctctctggtcttcagttttctcaccagtaaaacaaggaacttgaaccaa




atgacctctagtgttccccttgggtttaaatgtctataaatgttcaatgactagaannnantgcgtttttctttattctttttgcttt




gagaaaagagaatgtgatttaagagtaataatttgaataccaattatccacattaaaattgtgtcctctatgtgtaaggcata




gcacatttagcacacatacataagcacactaagcaccttacaaatatcctcatttattctttacataatcttttgaaatngattat




gtaatacacacngttttnnaacaatnggtgacttccagctgtttaaaacaaactacagtatggtgcttgagtactgacttag




gaggtcagcatnggtttcactaggagcttctcaaagcacgctgcc





194
232176
gggatcactgggagaagccatggcattatcttcaggcaatttagtctgtcccaaataaaataaatccttgcatgtaaatcatt



_at
caagggttatagtaatatttcatatactgaaaagtgtctcataggagtcctcttgcacatctaaaaaggctgaacatttaagta




tcccgaattttcttgaattgctttccctatagattaattacaattggatttcatcatttaaaaaccatacttgtatatgtagttataat




atgtaaggaatacattgtttataaccagtatgtacttcaaaaatgtgtattgtcaaacatacctaactttcttgcaataaatgca




aaagaaactggaacttgacaattataaatagtaatagtgaagaaaaaatagaaaggttgcaattatataggccatgggtg




gctcaaaactttgaa





195
232252
ggacgatgaagccatcattgctgcttggagacgccggcaagaagaaaccaggaccaagctgcagaaaaggaggga



_at
ggactgagctggggaaaatctgagaacactgaaagaaaccactcacgttagcatagggctcagggcacacgttgcca




ccactcatcgcaggatgaggatacagagaggatcttccagaggggcagagccaaaatgagagntaccaagcatnng




ggcannngaggtggagtagggaggaggcaaggagggggagaaccatcaatacgaatacgaggtccgaatgcgga




ccaactgataccattttctgttgctcagcgccctctaagctttggtgtttcacttaatgtatttgacagtgttcatcacaggcta




gagaggtgagcttggaaaagcactgtagtttgtcagagactccagtttacatccagaaaggccatgaacataggacacg




cttctgtctgtagaggcttcatatgagacccagaaagtctatcctatggcaagtctgacctctcctggcaatgctcagttctg




att





196
232481
gaagtccatcctttggtccaaagc atctggaagaggaagaagagaggaatgagaaagaaggaagtgatgcaaaacat



_s_at
ctccaaagaagtcttttggaacaggaaaatcattcaccactcacagggtcaaatatgaaatacaaaaccacgaaccaatc




aacagaatttttatccttccaagatgccagctcattgtacagaaacattttagaaaaagaaagggaacttcagcaactggg




aatcacagaatacctaaggaaaaacattgctcagctccagcctgatatggaggcacattatcctggagcccacgaagag




ctgaagttaatggaaacattaatgtactcacgtccaaggaaggtattagtggaacagacaaaaaatgagtattttgaactta




aagctaatttacatgctgaacctgactatttagaagtcctggagcagcaaacatagatggagagtttgagggctttcgcag




aaatgctgtgattctgttttaagtccataccttgtaaataagtgccttacgtgagtgtgtcatcaatcagaacctaagc





197
234331
accaagatggtgcaagttccctttgcagatggcgtgggcacacttgatttttattatgagtgaatgtaatctttctgtattttac



_s_at
cagagttacagcaattacctgaaaagtttcctaacattttaataatgttagggatttcgttttggttttagttgtcctcaagagac




aacaggttcacagtaatttccatgatgttgggtgtggctaagctggggattggttctgttccccctgctcccgtgtagagaa




aagctatatttatactgcattctttctcaactttcaggtaaaacaaactatgatttaaaaaaagaaaaaagaaaagacaggta




cttttacttcaaagagtgctttgctacatttttatttaaaccaaaaatcaaataaaataaggaggggggctgggtatactttaa




acaaaaccagtcctgaaatgctgttatt





198
235210
ttcttgtccagctgttcacagttttatttttatatagatggtgatataaatatttccaaatgcatttgtaaacattctaaatattctca



_s_at
agtcatgttcaatgtttcctaaaccttcaattttggccaaagtccccaaacacatcattgccacactctgaagtagagaaag




aaaatttaggggccagttctcaaggaacacaggtcctttatttttattttaactaagttgaagacccactcaaaaagctcttgt




ggttttatgttcttgacctttcaactggagtcctctcattcagcaggtggcccgtgagacacagaatac





199
235976
cagtgctgctgtgaactaaagtatgtcatttatgctcaaagtttaattcttcttcttgggatattttaaaaatgctactgagattct



_at
gctgtaaatatgactagagaatatattgggtttgctttatttcataggcttaattctttgtaaatctgaatgaccataatagaaat




acatttcttgtggcaagtaattcacagttgtaaagtaaataggaaaaattattttatttttattgatgtacattgatagatgccata




aatcagtagcaaaaggcacttctaaaggtaagtggtttaagttgcctcaanagagggacaatgtagctttattttacaagaa




ggcatagttagatttctatgaaatatttattctgtacagttttatatanttttggttcacaaaagtaattattcttgggtgcctttca




a





200
236894
aaagtatattgtgctagcttgtctaagaataaacttnnatactgttgggggagggctgcacctgtcaagataacctgtcaat



_at
gtagtaggaaaacaggaggggacagtaacagaaaagcacgggaaaagatggcaaggttagttaaaatagaaaagtg




ctcagttcctcatacctgtaatcccagcagtttagggggccaaggaaggtgggtcacttgagcccaagagttcaaggcc




atcctgggcaatgtggcgaaagtgtctacaaaaaaatacaaaaagaggaagaaatgatatttcacaagtttgtatcatttgt




cat





201
238017
caaaaccacgattgtgtgccccttttttatnaaanctggnatgtttgaangttgtantacangctntncttctntgttgccaat



_at
tctgnnacnnnnntnnnnannngaaaaaatagtagaagctattctacaagaaaaaatgtacttgtatatgccaaagttgt




tatacttcatgatgtttcttaaaagctttttgcccctcaagacaggactgcttatagctgactatttgggcatccttcatgcaat




ggatggctttgttgaccaaaagaagaagctctaaagaccaactctatggctaaggtcatctgatacacagtgttacataat




gcgtacttcaatgaagaaaagtatttttgtctgacagtggaatatatctggagaccacaagtaccactcctattctgttatctg




g





202
238021
agccgttggtctttgaaatttcctgtgatgtgtttcaatctagatgcaaagaacatggaaaaatcaaagtgctcgagtggttt



_s_at
aaatatgttttgggtattcctgtttatagactataatacttttccaattaaaatcctcagttgtcacgcagaagaaggttaagct




gtatttgattgccagttttactgaaaatgcttagtattttacagtatcaccaaatatattttgtttagccaaggtatagga





203
238984
acccaacaagagctgtgcggctccctgattcctcgccagtgttgctaccgcccttggctcttcttgcatggctggctcttga



_at
gacccctggaagctgatggaggcaacgtgagaagcacatggacatccgnccntgagcttgagaggcagaggcctga




gttctagttacagccccagcagtaccagttgtgtggactgggagggaggcnatcacgtacatactccaagcctccaagc




ctgtttccccttctgacacaggatcttttgtggctggtatanagtgggcactcaataaatgctgtctggtcgtctggctggca




tgcctnatgggcctgagaattgaatagaattacagtgatagaagcatgctggtattgtaagtggtttgtaagtgtgaggact




aaattattattaaatagtaatcacatctaatcttggataaattagtaaaagcaagaatgggagcagtaaaaacctaagcaac




ccgaactaaaattttattgaattaattcaatttcttgtcatgtaacacaaccccaga





204
241031
gtttctgtttcagtcacaaattagggttattgtgatgtgtatttatgatgaccnttgaacaaatgtgaagaatactgtgaattcta



_at
tgactttatcaaaatcagccacatccaggagcttgcagttgttgaccaaatgaatgatgacatagagtagttcagatctatc




atgtgctcttctatctaatcagtcaatatttccttggccctcaagccaacattcattttttatgtataaccttcttcatgattttgaa




attttgatagggtaactgctaatgagttcacaaatgtagcactttaaaaggaaaataaatggagagtgaaaacaacttggct




acgtataattgtgggt





205
37892_
caacccattttgtgccacatgcaagttttgaataaggatggtatagaaaacaacgctgcatatacaggtaccatttaggna



at
nnancngatgcctttntgggggcagaatcacatggcaaaagctttgaaaatcataaagatataagttggtgtggctaaga




tggaaacagggctgattcttgattcccaattctcaactctccttttcctatttgaatttctttggtgctgtagaaaacaaaaaaa




gaaaaatatatattcataaaaaatatggtgctcattctcatccatccaggatgtactaaaacagtgtgtttaataaattgtaatt




attttgtgtacagttctatactgttatctgtgtccatttccaaaacttgcacgtgtccctgaattcc





206
60474_
acagacttggcaagggaccccctggttctgagccagtagctgccatctggaaattcctcttttnnnnnnnnnnnnnnn



at
nnnnnnnnnnnnnnnnnctcccaggnacccgctgaatttctgaggccttgcttaaagctcagaagtggtttaggcatt




tggaaaatctggttcacatcataaagaacttgatttgaaatgttttctatagaaacaagtgctaagtgtnaccgtattatacttg




atgttggtcatttctcagtcctatttctcagttctattattttagaacctagtcagttctttaagattataactggtcctacattaaaa




taatgcttctcgangtcagattttacctgtttgctgctgagaacatctctgcctaannnnnnnnnnnnnnnncttcagttc




aacatgcttccttagcttttcatagttgtctgacatttccatgaaa









BIBLIOGRAPHY





    • Affymetrix. GeneChip expression data analysis fundamentals. Affymetrix, Santa Clara, Calif. USA, 2001.

    • Alon et al., Proc. Natl. Acad. Sci. USA: 96, 6745-6750, June 1999

    • Ausubel, F. et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998)

    • Bonner et al (1973) J. Mol. Biol. 81:123

    • DeRisi, et al., Nature Genetics 14:457-460 (1996)

    • Germer et al., Genome Res. 10:258-266 (2000)

    • Guo et al., Nucleic Acids Res. 22:5456-5465 (1994)

    • Heid et al., Genome Res. 6:986-994 (1996)

    • Hubbell E. W., W. M. Liu, and R. Mei. Robust estimators for expression analysis. Bioinformatics, 18:1585-1592, 2002.

    • Irizarry R. W., B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed. Summaries of affymetrix genechip probe level data. Nucleic Acid Research, 31, 2003.

    • Kraus, M. and Aaronson, S., 1991. Methods Enzymol., 200:546-556

    • Maskos and Southern, Nuc. Acids Res. 20:1679-84, 1992

    • Moore et al., BBA, 1402:239-249, 1988

    • Nielsen (1999) Curr. Opin. Biotechnol. 10:71-75

    • Nielsen et al. (1991) Science 254: 1497-1500

    • Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994)

    • Pevzner et al., J. Biomol. Struc. & Dyn. 9:399-410, 1991

    • Schena, et al. Science 270:467-470 (1995)

    • Smith et al., Science 258:1122-1126 (1992)

    • Smyth G. K. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, N.Y., 2005.

    • Smyth G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3, 2004.

    • T. Sano and C. R. Cantor, Bio/Technology 9:1378-81 (1991)

    • Urdea et al., Nucleic Acids Symp. Ser., 24:197-200 (1991)

    • Wedemeyer et al., Clinical Chemistry 48:9 1398-1405, 2002)

    • Weissleder et al., Nature Medicine 6:351-355, 2000




Claims
  • 1. A method of screening for the onset or predisposition to the onset of a large intestine neoplasm or monitoring the progress of a neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from: (i) the gene, genes or transcripts detected by Affymetrix probeset IDs: 205513_at; and/or(ii) TCN1in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.
  • 2. The method according to claim 1 wherein said control level is a non-neoplastic level.
  • 3. The method according to claim 1 wherein said neoplastic cell is an adenoma or an adenocarcinoma.
  • 4. The method according to claim 1 wherein said cell is a colorectal cell.
  • 5. The method according to claim 1 wherein said biological sample is a faecal sample, enema wash, surgical resection, tissue biopsy or blood sample.
  • 6. The method according to claim 1 wherein said level of expression is mRNA expression or protein expression.
  • 7. The method according to claim 1 wherein said biological sample is a fecal sample, enema wash, surgical resection, tissue biopsy or blood sample.
  • 8. The method according to claim 1 wherein said individual is a human.
Provisional Applications (1)
Number Date Country
60982114 Oct 2007 US
Divisions (3)
Number Date Country
Parent 15381895 Dec 2016 US
Child 15809162 US
Parent 14540583 Nov 2014 US
Child 15381895 US
Parent 12739580 Jul 2010 US
Child 14540583 US