METHOD OF DIAGNOSING NEOPLASMS

Abstract
The present invention relates generally to nucleic acid molecules, the RNA and protein expression profiles of which are indicative of the onset, predisposition to the onset and/or progression of a neoplasm. More particularly, the present invention is directed to nucleic acid molecules, the expression profiles of which are indicative of the onset and/or progression of a large intestine neoplasm, such as an adenoma or an adenocarcinoma. The expression profiles of the present invention are useful in a range of applications including, but not limited to, those relating to the diagnosis and/or monitoring of colorectal neoplasms, such as colorectal adenocarcinomas. Accordingly, in a related aspect the present invention is directed to a method of screening a subject for the onset, predisposition to the onset and/or progression of a neoplasm by screening for modulation in the expression profile of one or more nucleic acid molecule markers.
Description
FIELD OF THE INVENTION

The present invention relates generally to nucleic acid molecules, the RNA and protein expression profiles of which are indicative of the onset, predisposition to the onset and/or progression of a neoplasm. More particularly, the present invention is directed to nucleic acid molecules, the expression profiles of which are indicative of the onset and/or progression of a large intestine neoplasm, such as an adenoma or an adenocarcinoma. The expression profiles of the present invention are useful in a range of applications including, but not limited to, those relating to the diagnosis and/or monitoring of colorectal neoplasms, such as colorectal adenocarcinomas. Accordingly, in a related aspect the present invention is directed to a method of screening a subject for the onset, predisposition to the onset and/or progression of a neoplasm by screening for modulation in the expression profile of one or more nucleic acid molecule markers.


BACKGROUND OF THE INVENTION

Bibliographic details of the publications referred to by author in this specification are collected alphabetically at the end of the description.


The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.


Adenomas are benign tumours, or neoplasms, of epithelial origin which are derived from glandular tissue or exhibit clearly defined glandular structures. Some adenomas show recognisable tissue elements, such as fibrous tissue (fibroadenomas) and epithelial structure, while others, such as bronchial adenomas, produce active compounds that might give rise to clinical syndromes.


Adenomas may progress to become an invasive neoplasm and are then termed adenocarcinomas. Accordingly, adenocarcinomas are defined as malignant epithelial tumours arising from glandular structures, which are constituent parts of many organs of the body. The term adenocarcinoma is also applied to tumours showing a glandular growth pattern. These tumours may be sub-classified according to the substances that they produce, for example mucus secreting and serous adenocarcinomas, or to the microscopic arrangement of their cells into patterns, for example papillary and follicular adenocarcinomas. These carcinomas may be solid or cystic (cystadenocarcinomas). Each organ may produce tumours showing a variety of histological types, for example the ovary may produce both mucinous and cystadenocarcinoma.


Adenomas in different organs behave differently. In general, the overall chance of carcinoma being present within an adenoma (i.e. a focus of cancer having developed within a benign lesion) is approximately 5%. However, this is related to size of an adenoma. For instance, in the large bowel (colon and rectum specifically) occurrence of a cancer within an adenoma is rare in adenomas of less than 1 centimetre. Such a development is estimated at 40 to 50% in adenomas which are greater than 4 centimetres and show certain histopathological change such as villous change, or high grade dysplasia. Adenomas with higher degrees of dysplasia have a higher incidence of carcinoma. In any given colorectal adenoma, the predictors of the presence of cancer now or the future occurrence of cancer in the organ include size (especially greater than 9 mm) degree of change from tubular to villous morphology, presence of high grade dysplasia and the morphological change described as “serrated adenoma”. In any given individual, the additional features of increasing age, familial occurrence of colorectal adenoma or cancer, male gender or multiplicity of adenomas, predict a future increased risk for cancer in the organ—so-called risk factors for cancer. Except for the presence of adenomas and its size, none of these is objectively defined and all those other than number and size are subject to observer error and to confusion as to precise definition of the feature in question. Because such factors can be difficult to assess and define, their value as predictors of current or future risk for cancer is imprecise.


Once a sporadic adenoma has developed, the chance of a new adenoma occurring is approximately 30% within 26 months.


Colorectal adenomas represent a class of adenomas which are exhibiting an increasing incidence, particularly in more affluent countries. The causes of adenoma, and of progression to adenocarcinoma, are still the subject of intensive research. To date it has been speculated that in addition to genetic predisposition, environmental factors (such as diet) play a role in the development of this condition. Most studies indicate that the relevant environmental factors relate to high dietary fat, low fibre, low vegetable intake, smoking, obesity, physical inactivity and high refined carbohydrates.


Colonic adenomas are localised areas of dysplastic epithelium which initially involve just one or several crypts and may not protrude from the surface, but with increased growth in size, usually resulting from an imbalance in proliferation and/or apoptosis, they may protrude. Adenomas can be classified in several ways. One is by their gross appearance and the major descriptors include degrees of protrusion: flat sessile (i.e. protruding but without a distinct stalk) or pedunculated (i.e. having a stalk). Other gross descriptors include actual size in the largest dimension and actual number in the colon/rectum. While small adenomas (less than say 5 or 10 millimetres) exhibit a smooth tan surface, pedunculated and especially larger adenomas tend to have a cobblestone or lobulated red-brown surface. Larger sessile adenomas may exhibit a more delicate villous surface. Another set of descriptors include the histopathological classification; the prime descriptors of clinical value include degree of dysplasia (low or high), whether or not a focus of invasive cancer is present, degree of change from tubular gland formation to villous gland formation (hence classification is tubular, villous or tubulovillous), presence of admixed hyperplastic change and of so-called “serrated” adenomas and its subgroups. Adenomas can be situated at any site in the colon and/or rectum although they tend to be more common in the rectum and distal colon. All of these descriptors, with the exception of number and size, are relatively subjective and subject to interobserver disagreement.


The various descriptive features of adenomas are of value not just to ascertain the neoplastic status of any given adenomas when detected, but also to predict a person's future risk of developing colorectal adenomas or cancer. Those features of an adenoma or number of adenomas in an individual that point to an increased future risk for cancer or recurrence of new adenomas include: size of the largest adenoma (especially 10 mm or larger), degree of villous change (especially at least 25% such change and particularly 100% such change), high grade dysplasia, number (3 or more of any size or histological status) or presence of serrated adenoma features. None except size or number is objective and all are relatively subjective and subject to interobserver disagreement. These predictors of risk for future neoplasia (hence “risk”) are vital in practice because they are used to determine the rate and need for and frequency of future colonoscopic surveillance. More accurate risk classification might thus reduce workload of colonoscopy, make it more cost-effective and reduce the risk of complications from unnecessary procedures.


Adenomas are generally asymptomatic, therefore rendering difficult their diagnosis and treatment at a stage prior to when they might develop invasive characteristics and so became cancer. It is technically impossible to predict the presence or absence of carcinoma based on the gross appearance of adenomas, although larger adenomas are more likely to show a region of malignant change than are smaller adenomas. Sessile adenomas exhibit a higher incidence of malignancy than pedunculated adenomas of the same size. Some adenomas result in blood loss which might be observed or detectable in the stools; while sometimes visible by eye, it is often, when it occurs, microscopic or “occult”. Larger adenomas tend to bleed more than smaller adenomas. However, since blood in the stool, whether overt or occult, can also be indicative of non-adenomatous conditions, the accurate diagnosis of adenoma is rendered difficult without the application of highly invasive procedures such as colonoscopy combined with tissue acquisition by either removal (i.e. polypectomy) or biopsy and subsequent histopathological analysis.


Accordingly, there is an on-going need to elucidate the causes of adenoma and to develop more informative diagnostic protocols or aids to diagnosis that enable one to direct colonoscopy at people more likely to have adenomas. These adenomas may be high risk, advanced or neither of these. Furthermore, it can be difficult after colonoscopy to be certain that all adenomas have been removed, especially in a person who has had multiple adenomas. An accurate screening test may minimise the need to undertake an early second colonoscopy to ensure that the colon has been cleared of neoplasms. Accordingly, the identification of molecular markers for adenomas would provide means for understanding the cause of adenomas and cancer, improving diagnosis of adenomas including development of useful screening tests, elucidating the histological stage of an adenoma, characterising a patient's future risk for colorectal neoplasia on the basis of the molecular state of an adenoma and facilitating treatment of adenomas.


To date, research has focused on the identification of gene mutations which lead to the development of colorectal neoplasms. In work leading up to the present invention, however, it has been determined that changes in expression profiles of genes which are also expressed in healthy individuals are indicative of the development of neoplasms of the large intestine, such as adenomas and adenocarcinomas. It has been further determined that in relation to neoplasms of the large intestine, diagnosis can be made based on screening for one or more of a panel of these differentially expressed genes. In a related aspect, it has still further been determined that to the extent that neoplastic tissue has been identified either by the method of the invention or by some other method, the present invention provides still further means of characterising that tissue as an adenoma or a cancer. In yet another aspect, it has been determined that a proportion of these genes are characterised by gene expression which occurs in the context of a neoplastic state but not in the context of a non-neoplastic state, thereby facilitating the development of qualitative analyses which do not require a relative analysis to be performed against a non-neoplastic or normal control reference level. Accordingly, the inventors have identified a panel of genes which facilitate the diagnosis of adenocarcinoma and adenoma development and/or the monitoring of conditions characterised by the development of these types of neoplasms.


SUMMARY OF THE INVENTION

Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.


As used herein, the term “derived from” shall be taken to indicate that a particular integer or group of integers has originated from the species specified, but has not necessarily been obtained directly from the specified source. Further, as used herein the singular forms of “a”, “and” and “the” include plural referents unless the context clearly dictates otherwise.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


The subject specification contains amino acid and nucleotide sequence information prepared using the programme PatentIn Version 3.4, presented herein after the bibliography. Each amino acid and nucleotide sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (eg. <210>1, <210>2, etc). The length, type of sequence (amino acid, DNA, etc.) and source organism for each sequence is indicated by information provided in the numeric indicator fields <211>m<212> and <213>, respectively. Amino acid and nucleotide sequences referred to in the specification are identified by the indicator SEQ ID NO: followed by the sequence identifier (eg. SEQ ID NO:1, SEQ ID NO: 2, etc). The sequence identifier referred to in the specification correlates to the information provided in numeric indicator field <400> in the sequence listing, which is followed by the sequence identifier (eg. <400>1, <400>2, etc). That is SEQ ID NO: 1 as detailed in the specification correlates to the sequence indicated as <400>1 in the sequence listing.


One aspect of the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















201328_at
221577_x_at
205828_at



201341_at
221922_at
205886_at



201416_at
60474_at
205890_s_at



201417_at
222696_at
205910_s_at



201468_s_at
223447_at
205941_s_at



201506_at
223970_at
206224_at



201563_at
225541_at
206976_s_at



201656_at
225835_at
207173_x_at



201925_s_at
226360_at
207457_s_at



201926_s_at
227174_at
208079_s_at



202286_s_at
227475_at
208712_at



202718_at
228303_at
209218_at



202831_at
228653_at
209309_at



202833_s_at
228754_at
209752_at



202935_s_at
228915_at
209773_s_at



202936_s_at
229215_at
209774_x_at



203124_s_at
231832_at
209792_s_at



203256_at
231941_s_at
209875_s_at



203313_s_at
232176_at
209955_s_at



203510_at
232252_at
210052_s_at



203860_at
23248l_s_at
210511_s_at



203895_at
234331_s_at
210559_s_at



203896_s_at
235210_s_at
210766_s_at



203961_at
235976_at
211506_s_at



203962_s_at
236894_at
212281_s_at



204259_at
238017_at
212344_at



204351_at
238021_s_at
212353_at



204401_at
238984_at
212354_at



204404_at
241031_at
213905_x_at



204855_at
200660_at
214022_s_at



204885_s_at
200832_s_at
214974_x_at



205174_s_at
200903_s_at
215091_s_at



205366_s_at
201014_s_at
217430_x_at



205470_s_at
201112_s_at
217996_at



205513_at
201195_s_at
218507_at



205765_at
201261_x_at
218963_s_at



205825_at
201292_at
218984_at



205927_s_at
201338_x_at
219787_s_at



205983_at
201479_at
219911_s_at



206239_s_at
201577_at
221729_at



206286_s_at
201601_x_at
221730_at



207158_at
201666_at
221731_x_at



207850_at
202310_s_at
221923_s_at



209369_at
202311_s_at
37892_at



210445_at
202404_s_at
222449_at



210519_s_at
202431_s_at
222450_at



211429_s_at
202504_at
222549_at



212063_at
202779_s_at
222608_s_at



212070_at
202859_x_at
223062_s_at



212190_at
202954_at
224428_s_at



212531_at
202998_s_at
224646_x_at



212942_s_at
203083_at
224915_x_at



213880_at
203213_at
225295_at



213975_s_at
203878_s_at
225520_at



214235_at
204051_s_at
225664_at



214651_s_at
204127_at
225681_at



217523_at
204170_s_at
225767_at



217867_x_at
204320_at
225799_at



218086_at
204470_at
225806_at



218211_s_at
204475_at
226227_x_at



218704_at
204580_at
226237_at



218796_at
204620_s_at
226311_at



218872_at
204702_s_at
226777_at



219630_at
205361_s_at
226835_s_at



219682_s_at
205476_at
227140_at



219727_at
205479_s_at
229802_at



219955_at
205713_s_at
231766_s_at



219956_at
205815_at
232151_at; and/or



200665_s_at

























FOXQ1
RNF43
CDCA7
LOXL2


MMP1
CCL20
TDGF1
AZGP1


TCN1
CTSE
MTHFD1L
MYC


MMP7
MSLN
ANLN
COMP


WDR72
TIMP1
H19
AURKA


INHBA
PCSK1
FAP
PAICS


COL11A1
CST1
DACH1
PUS7


GDF15
BGN
VCAN
ZNRF3


CTHRC1
AXIN2
SQLE
CCND1


COL1A1
MET
REG3A
CSE1L


LGR5
SOX9
TESC
PFDN4


DUSP27
TMEPAI
UBE2C
C20orf42


SERPINB5
CDH11
TMEM97
SLC11A2


ASCL2
MMP11
TRIM29
NFE2L3


SULF1
CXCL1
KLK11
CEL


SLC6A6
QPCT
LY6G6D
NLF1


TACSTD2
PDZK1IP1
SLC7A5
NPDC1


NEBL
CD55
FABP6
ENC1


PCCA
ECT2
SLITRK6
SERPINE2


FLJ37644
COL12A1
MLPH
UBE2S


KRT23
L1TD1
HOXA9
TOP2A


CXCL3
WDR51B
TBX3
CDC2


MMP3
HOXB6
BACE2
RFC3


SFRP4
FAM84A
GPX2
LILRB1


UBD
COL5A2
TPX2
NPM1


SCD
MMP12
KCNN4
RDHE2


DPEP1
SORD
LOC541471
PLAU


LCN2
PSAT1
CYP3A5
HSPH1


PLCB4
CXCL5
ANXA3
GTF3A


SPINK1
IGFBP2
CYP3A5P2
KLK10


DUOX2
TGIF1
C14orf94
GPSM2


SOX4
CXCL2
RP5-875H10.1
NME1


THBS2
SLCO4A1
RPL22L1
MUC20


CLDN1
CKS2
APOBEC1
RPESP


REG1B
PHLDA1
HIG2
RRM2


CDH3
SERPINA1
COL10A1
DKC1


SPARC
COL1A2
AHCY
CD44




IL8










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 225681_at; 227140_at; and/or
    • (ii) CTHRC1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In yet another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 227475_at
      • 204475_at
      • 202859_x_at
      • 202404_s_at; and/or
    • (ii) FOXQ1, MMP1, IL8, COL1A2


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In still another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 205513_at, 204259_at, 227174_at, 210511_s_at, 37892_at; and/or
    • (ii) TCN1, MMPI, WDR72, INHBA, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In still yet another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















221577_x_at
212942_s_at
202310_s_at



213880_at
232252_at
204855_at



229215_at
212354_at
228754_at



202286_s_at
203962_s_at
203860_at



202935_s_at
218963_s_at
207850_at



205828_at
204051_s_at
205890_s_at



200832_s_at
205983_at
212531_at; and/or












    • (ii)






















LGR5
GDF15
COL1A1



ASCL2
DUSP27
SERPINB5



TACSTD2
SULF1
SLC6A6



FLJ37644
NEBL
PCCA



MMP3
KRT23
CXCL3



SCD
SFRP4
UBD




DPEP1
LCN2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


In a further aspect the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















201328_at
205825_at
219956_at



201468_s_at
205927_s_at
221922_at



201656_at
206239_s_at
223447_at



201925_s_at
207158_at
223970_at



201926_s_at
210445_at
225835_at



202718_at
210519_s_at
226360_at



202831_at
211429_s_at
228303_at



202833_s_at
212063_at
228653_at



203124_s_at
213975_s_at
228915_at



203313_s_at
214235_at
231832_at



203860_at
214651_s_at
231941_s_at



203895_at
217523_at
232176_at



203896_s_at
217867_x_at
232481_s_at



204401_at
218086_at
234331_s_at



204885_s_at
218211_s_at
235210_s_at



205174_s_at
218796_at
235976_at



205366_s_at
219630_at
236894_at



205470_s_at
219682_s_at
238017_at



205513_at
219727_at
238984_at



205765_at
219955_at;
241031_at; and/or












    • (ii)






















APOBEC1
HOXB6
QPCT



BACE2
IGFBP2
RDHE2



C20orf42
ITGA6
REG4



CD44
KCNN4
RETNLB



CD55
KLK11
RP5-875H10.1



CTSE
L1TD1
RPESP



CYP3A5
LILRB1
SERPINA1



CYP3A5P2
MLPH
SLC11A2



DACH1
MSLN
SLC12A2



DUOX2
MUC20
SLITRK6



ETS2
NLF1
SPINK1



FABP6
NPDC1
TBX3



FAM84A
NQO1
TCN1



GALNT6
PCCA
TGIF1



GPSM2
PCSK1
WDR51B



GPX2
PDZK1IP1
ZNRF3



HOXA9
PLCB4











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another further aspect of the present invention there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200660_at
205476_at
217430_x_at



200665_s_at
205479_s_at
217996_at



200832_s_at
205713_s_at
218507_at



200903_s_at
205815_at
218963_s_at



201014_s_at
205828_at
218984_at



201112_s_at
205886_at
219787_s_at



201195_s_at
205890_s_at
219911_s_at



201261_x_at
205910_s_at
221729_at



201292_at
205941_s_at
221730_at



201338_x_at
206224_at
221731_x_at



201479_at
206976_s_at
221923_s_at



201577_at
207173_x_at
37892_at



201601_x_at
207457_s_at
222449_at



201666_at
208079_s_at
222450_at



202310_s_at
208712_at
222549_at



202311_s_at
209218_at
222608_s_at



202403_s_at
209309_at
223062_s_at



202404_s_at
209752_at
224428_s_at



202431_s_at
209773_s_at
224646_x_at



202504_at
209774_x_at
224915_x_at



202779_s_at
209792_s_at
225295_at



202859_x_at
209875_s_at
225520_at



202954_at
209955_s_at
225664_at



202998_s_at
210052_s_at
225681_at



203083_at
210511_s_at
225767_at



203213_at
210559_s_at
225799_at



203878_s_at
210766_s_at
225806_at



204051_s_at
211506_s_at
226227_x_at



204127_at
212281_s_at
226237_at



204170_s_at
212344_at
226311_at



204320_at
212353_at
226777_at



204470_at
212354_at
226835_s_at



204475_at
213905_x_at
227140_at



204580_at
214022_s_at
229802_at



204620_s_at
214974_x_at
231766_s_at



204702_s_at
215091_s_at;
232151_at; and/or



205361_s_at












    • (ii)






















AHCY
DKC1
PSAT1



ANLN
ECT2
PUS7



AURKA
FAP
REG1A



AZGP1
GTF3A
REG1B



BGN
H19
REG3A



C14orf94
HIG2
RFC3



C20orf199
HSPH1
RRM2



CCL20
IFITM1
S100A11



CCND1
IL8
SCD



CDC2
INHBA
SFRP4



CDCA7
KLK10
SLC39A10



CDH11
KRT23
SLC7A5



CEL
LOC541471
SLCO4A1



CKS2
LOXL2
SPARC



CLDN1
LY6G6D
SPP1



COL10A1
MMP1
SQLE



COL11A1
MMP11
SULF1



COL12A1
MMP12
THBS2



COL1A1
MMP3
TIMP1



COL1A2
MTHFD1L
TMEM97



COL5A2
MYC
TMEPAI



COL8A1
NFE2L3
TOP2A



COMP
NME1
TPX2



CSE1L
NPM1
TRIM29



CST1
PAICS
UBD



CTHRC1
PFDN4
UBE2C



CXCL1
PHLDA1
UBE2S



CXCL2
PLAU
VCAN



CXCL5











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


In yet another further aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















202286_s_at
235976_at
209309_at



204259_at
236894_at
211506_s_at



204885_s_at

214974_x_at



205174_s_at
238984_at
219787_s_at



205825_at
241031_at
37892_at



207850_at
202311_s_at
222608_s_at



213880_at
204320_at
223062_s_at



217523_at
204475_at
225806_at



227174_at
204702_s_at
226237_at



228915_at
205910_s_at
227140_at



232252_at
206224_at
229802_at; and/or












    • (ii)






















MMP1
PCSK1
ANLN



MMP7
CST1
DACH1



LGR5
QPCT
COL11A1



WDR72
ECT2
C14orf94



COL11A1
SLITRK6
AZGP1



COL1A1
L1TD1
REG4



DUSP27
KIAA1199
NFE2L3



NLF1
PSAT1
CEL



IL8
CXCL5
CD44



TACSTD2
CXCL3
COL8A1



MSLN











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a neoplastic cell or a cell predisposed to the onset of a neoplastic state.


Yet another aspect of the present invention provides a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















204885_s_at
217523_at
236894_at



205174_s_at
228915_at
238984_at



205825_at
235976_at
241031_at; and/or












    • (ii)






















CD44
MSLN
QPCT



DACH1
NLF1
REG4



L1TD1
PCSK1
SLITRK6











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In yet still another aspect there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:



















202311_s_at
209309_at
223062_s_at



204320_at
211506_s_at
225806_at



204475_at
214974_x_at
226237_at



204702_s_at
219787_s_at
227140_at



205910_s_at
37892_at
229802_at; and/or



206224_at
222608_s_at












    • (ii)






















ANLN
COL1A1
IL8



AZGP1
COL8A1
MMP1



C14orf94
CST1
NFE2L3



CEL
CXCL5
PSAT1



COL11A1
ECT2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


In still yet another aspect of the present invention, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:


















200884_at
214234_s_at
226248_s_at



203240_at
214235_at
226302_at



203963_at
214433_s_at
227676_at



204508_s_at
215125_s_at
227719_at



204607_at
215867_x_at
227725_at



204811_s_at
217109_at
228232_s_at



204895_x_at
217110_s_at
229070_at



204897_at
218211_s_at
231832_at



205259_at
219543_at
232176_at



205765_at
219955_at
232481_s_at



205927_s_at
221841_s_at
235976_at



208063_s_at
221874_at
236894_at



208937_s_at
223969_s_at
237521_x_at



210107_at
223970_at
242601_at



213106_at; and/or











    • (ii)






















CLCA1
CTSE
ATP8B1



FCGBP
C6orf105
CACNA2D2



HMGCS2
CKB
KLF4



RETNLB
ATP8A1
CYP3A5P2



L1TD1
MUC4
CAPN9



SLITRK6
UGT1A1
NR3C2



VSIG2
SELENBP1
PBLD



LOC253012
PTGER4
CA12



ST6GALNAC1
MLPH
WDR51B



ID1
KIAA1324
FAM3D



CYP3A5











in said cell or cellular population wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer cell level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200600_at
204006_s_at
213428_s_at



200665_s_at
204051_s_at
213524_s_at



200832_s_at
204122_at
213869_x_at



200974_at
204320_at
213905_x_at



200986_at
204475_at
214247_s_at



201058_s_at
204620_s_at
215049_x_at



201069_at
205479_s_at
215076_s_at



201105_at
205547_s_at
215646_s_at



201141_at
205828_at
216442_x_at



201147_s_at
207173_x_at
217430_x_at



201150_s_at
207191_s_at
217762_s_at



201162_at
208747_s_at
217763_s_at



201163_s_at
208782_at
217764_s_at



201185_at
208788_at
218468_s_at



201261_x_at
208850_s_at
218469_at



201289_at
208851_s_at
218559_s_at



201426_s_at
209101_at
218638_s_at



201438_at
209156_s_at
219087_at



201616_s_at
209218_at
221011_s_at



201645_at
209395_at
221729_at



201667_at
209396_s_at
221730_at



201744_s_at
209596_at
221731_x_at



201792_at
209875_s_at
37892_at



201842_s_at
209955_s_at
223122_s_at



201852_x_at
210095_s_at
223235_s_at



201859_at
210495_x_at
224560_at



201893_x_at
210511_s_at
224694_at



202237_at
210764_s_at
224724_at



202238_s_at
210809_s_at
225664_at



202283_at
211161_s_at
225681_at



20229l_s_at
211571_s_at
225710_at



202310_s_at
211719_x_at
225799_at



202311_s_at
211813_x_at
226237_at



202403_s_at
211896_s_at
226311_at



202404_s_at
211959_at
226694_at



202450_s_at
211964_at
226777_at



202620_s_at
211966_at
226930_at



202766_s_at
211980_at
227099_s_at



202859_x_at
211981_at
227140_at



202878_s_at
212077_at
227566_at



202917_s_at
212344_at
229218_at



202998_s_at
212353_at
229802_at



203083_at
212354_at
231579_s_at



203325_s_at
212464_s_at
231766_s_at



203382_s_at
212488_at
231879_at



203477_at
212489_at
232458_at



203570_at
212667_at
233555_s_at



203645_s_at
213125_at
234994_at



203878_s_at; and/or












    • (ii)






















COL1A2
LGALS1
SRGN



CTHRC1
ELOVL5
LBH



FN1
MGP
CTGF



POSTN
MMP2
TNC



SPP1
LOXL2
G0S2



MMP1
MYL9
SQLE



SPARC
DCN
EFEMP1



LUM
CALD1
APOE



GREM1
FBN1
MSN



IL8
MMP3
IGFBP3



IGFBP5
IGFBP7
SERPINF1



SFRP2
FSTL1
ISLR



SULF1
COL4A2
HNT



ASPN
VCAN
COL5A1



COL6A3
SMOC2
OLFML2B



COL8A1
HTRA1
KIAA1913



COL12A1
CYR61
PALM2-AKAP2



COL5A2
FAP
SERPING1



CDH11
VIM
TYROBP



THBS2
TIMP2
ACTA2



COL15A1
SCD
COL3A1



COL11A1
TIMP3
PLOD2



S100A8
AEBP1
MMP11



FNDC1
GJA1
CD163



SFRP4
NNMT
FCGR3B



INHBA
COL1A1
PLAU



COL6A2
SULF2
MAFB



ANTXR1
COL6A1
LOC541471



GPNMB
SPON2
LOC387763



BGN
CTSK
CHI3L1



TAGLN
MXRA5
THY1



COL4A1
C1S
LOXL1



RAB31
DKK3
CD93











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal adenoma cell level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In a further aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:
      • 210107_at; and/or
    • (ii) CLCA1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















203240_at
219955_at
242601_at



204607_at
232481_s_at
227725_at



223969_s_at
228232_s_at; and/or












    • (ii)






















FCGBP
L1TD1
LOC253012



HMGCS2
SLITRK6
ST6GALNAC1



RETNLB
VSIG2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


A further aspect of the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 202404_s_at, 210809_s_at, 227140_at, 225681_at, 209875_s_at, 204475_at, 212464_s_at; and/or,
    • (ii) COL1A2, FN1, SPP1, CTHRC1, POSTN, MMP1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In yet another further aspect the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 200665_s_at, 218468_s_at, 211959_at, 201744_s_at, 202859_x_at; and/or,
    • (ii) SPARC, GREM1, IGFBPS, LUM, IL8,


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In still yet another further aspect the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















223122_s_at
207173_x_at
210511_s_at



212353_at
203083_at
209156_s_at



219087_at
203477_at
224694_at



201438_at
37892_at
201141_at



226237_at
202917_s_at
213905_x_at



225664_at
226930_at
205547_s_at



221730_at
204051_s_at;
and/or












    • (ii)






















SFRP2
CDH11
INHBA



SULF1
THBS2
COL6A2



ASPN
COL15A1
ANTXR1



COL6A3
COL11A1
GPNMB



COL8A1
S100A8
BGN



COL12A1
FNDC1
TAGLN



COL5A2
SFRP4











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Yet another aspect of the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:


















235976_at
236894_at; and/or












    • (ii)





















SLITRK6
L1TD1











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In still another aspect the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 202311_s_at, 209396_s_at, 226237_at, 204320_at, 215646_s_at, 227140_at, 204475_at, 37892_at, 229802_at, 209395_at; and/or
    • (ii) COL1A1, VCAN, CHI3L1, MMP1, COL8A1, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background neoplastic cell levels is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


A related aspect of the present invention provides a molecular array, which array comprises a plurality of:

    • (i) nucleic acid molecules comprising a nucleotide sequence corresponding to any one or more of the neoplastic marker genes hereinbefore described or a sequence exhibiting at least 80% identity thereto or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (ii) nucleic acid molecules comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iii) nucleic acid probes or oligonucleotides comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
    • (iv) probes capable of binding to any one or more of the proteins encoded by the nucleic acid molecules of (i) or a derivative, fragment or, homologue thereof


      wherein the level of expression of said marker genes of (i) or proteins of (iv) is indicative of the neoplastic state of a cell or cellular subpopulation derived from the large intestine.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphical representation of nuclear factor (erythroid-derived-2)-like 2. Blk=normal, grn=inflamed, red=adenoma,blue=cancer



FIG. 2 is a graphical representation of SLIT and NTRK-like family, member 6 (left) and LINE1 type transposase domain containing 1 (right).



FIG. 3 is a graphical representation of collagen type XI, alpha 1.



FIG. 4 is an image of the immunohistochemical staining for MSLN in a normal tissue shows mild staining in the cytoplasm of the colonocytes.



FIG. 5 is an image of the immunohistochemical staining for MSLN in a representative cancer tissue shows moderate staining in the cytoplasm of the colonic epithelia.



FIG. 6 is an image of the immunohistochemical staining of MSLN in a moderately differentiated adenoma shows strong staining in the multilayered colonic epithelium.



FIG. 7 is a graphical representation depicting Probeset 205828_at Expression profile across 68 clinical specimens comprising 30 non-disease controls (black), 19 adenomas (red) and 19 adenocarcinoma (green).



FIG. 8 is a graphical representation of the measurement of MMP3 expression in protein extract from 27 clinical stool specimens. Protein extraction was performed on 27 clinical stool specimens comprising 6 non-disease controls (circle), 10 adenoma (triangle) and 11 adenocarcinoma (cross) emulsified using a PBS pH 7.4 solution containing 0.05% Tween-20 and 1x Protease Inhibitor Cocktail (Roche). Proteins were further solubilised by 30 minutes incubation in an ultrasonic water bath. Solubilised proteins were isolated by centrifugation and endogenous levels of MMP3 in the resulting protein extracts were using measured using a commercially available Luminex bead-based suspension immunoassay as recommended by manufacturer (R&D Systems).



FIG. 9 is a graphical representation of Affymetrix probeset ID 205828 at which is known to hybrising to transcripts of the MMP3 gene depicting a gene expression profile in 68 clinical specimens comprising 30 non-disease controls (black), 19 adenomas (red) and 19 cancers (green).



FIG. 10 is a schematic representation of predicted RNA variants derived from hCG1815491. cDNA clones derived from map region 8579310 to 8562303 on human chromosome 16 were used to locate exon sequences. Arrows: Oligo nucleotide primer sets were designed to allow measurement of individual RNA variants by PCR. Primers covering splice junctions are shown as spanning intron sequences which is not included in the actual oligonucleotide primer sequence.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is predicated, in part, on the elucidation of gene expression profiles which characterise large intestine cellular populations in terms of their neoplastic state and, more particularly, whether they are malignant or pre-malignant. This finding has now facilitated the development of routine means of screening for the onset or predisposition to the onset of a large intestine neoplasm or characterising cellular populations derived from the large intestine based on screening for upregulation of the expression of these molecules, relative to control expression patterns and levels. To this end, in addition to assessing expression levels of the subject genes relative to normal or non-neoplastic levels, it has been determined that a proportion of these genes are expressed only in the diseased state, thereby facilitating the development of a simple qualitative test based on requiring assessment only relative to test background levels.


In accordance with the present invention, it has been determined that the genes detailed above are modulated, in terms of differential changes to their levels of expression, depending on whether the cell expressing that gene is neoplastic or not. It should be understood that reference to a gene “expression product” or “expression of a gene” is a reference to either a transcription product (such as primary RNA or mRNA) or a translation product such as protein. These genes and their expression products, whether they be RNA transcripts or encoded proteins, are collectively referred to as “neoplastic markers”.


Accordingly, one aspect of the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















201328_at
221577_x_at
205828_at



201341_at
221922_at
205886_at



201416_at
60474_at
205890_s_at



201417_at
222696_at
205910_s_at



201468_s_at
223447_at
205941_s_at



201506_at
223970_at
206224_at



201563_at
225541_at
206976_s_at



201656_at
225835_at
207173_x_at



201925_s_at
226360_at
207457_s_at



201926_s_at
227174_at
208079_s_at



202286_s_at
227475_at
208712_at



202718_at
228303_at
209218_at



202831_at
228653_at
209309_at



202833_s_at
228754_at
209752_at



202935_s_at
228915_at
209773_s_at



202936_s_at
229215_at
209774_x_at



203124_s_at
231832_at
209792_s_at



203256_at
231941_s_at
209875_s_at



203313_s_at
232176_at
209955_s_at



203510_at
232252_at
210052_s_at



203860_at
232481_s_at
210511_s_at



203895_at
234331_s_at
210559_s_at



203896_s_at
235210_s_at
210766_s_at



203961_at
235976_at
211506_s_at



203962_s_at
236894_at
212281_s_at



204259_at
238017_at
212344_at



204351_at
238021_s_at
212353_at



204401_at
238984_at
212354_at



204404_at
241031_at
213905_x_at



204855_at
200660_at
214022_s_at



204885_s_at
200832_s_at
214974_x_at



205174_s_at
200903_s_at
215091_s_at



205366_s_at
201014_s_at
217430_x_at



205470_s_at
201112_s_at
217996_at



205513_at
201195_s_at
218507_at



205765_at
201261_x_at
218963_s_at



205825_at
201292_at
218984_at



205927_s_at
201338_x_at
219787_s_at



205983_at
201479_at
219911_s_at



206239_s_at
201577_at
221729_at



206286_s_at
201601_x_at
221730_at



207158_at
201666_at
221731_x_at



207850_at
202310_s_at
221923_s_at



209369_at
202311_s_at
37892_at



210445_at
202404_s_at
222449_at



210519_s_at
202431_s_at
222450_at



211429_s_at
202504_at
222549_at



212063_at
202779_s_at
222608_s_at



212070_at
202859_x_at
223062_s_at



212190_at
202954_at
224428_s_at



212531_at
202998_s_at
224646_x_at



212942_s_at
203083_at
224915_x_at



213880_at
203213_at
225295_at



213975_s_at
203878_s_at
225520_at



214235_at
204051_s_at
225664_at



214651_s_at
204127_at
225681_at



217523_at
204170_s_at
225767_at



217867_x_at
204320_at
225799_at



218086_at
204470_at
225806_at



218211_s_at
204475_at
226227_x_at



218704_at
204580_at
226237_at



218796_at
204620_s_at
226311_at



218872_at
204702_s_at
226777_at



219630_at
205361_s_at
226835_s_at



219682_s_at
205476_at
227140_at



219727_at
205479_s_at
229802_at



219955_at
205713_s_at
231766_s_at



219956_at
205815_at
232151_at; and/or



200665_s_at












    • (ii)




















CTHRC1

CDCA7
LOXL2


FOXQ1
RNF43
TDGF1
AZGP1


MMP1
CCL20
MTHFD1L
MYC


TCN1
CTSE
ANLN
COMP


MMP7
MSLN
H19
AURKA


WDR72
TIMP1
FAP
PAICS


INHBA
PCSK1
DACH1
PUS7


COL11A1
CST1
VCAN
ZNRF3


GDF15
BGN
SQLE
CCND1


COL1A1
AXIN2
REG3A
CSE1L


LGR5
MET
TESC
PFDN4


DUSP27
SOX9
UBE2C
C20orf42


SERPINB5
TMEPAI
TMEM97
SLC11A2


ASCL2
CDH11
TRIM29
NFE2L3


SULF1
MMP11
KLK11
CEL


SLC6A6
CXCL1
LY6G6D
NLF1


TACSTD2
QPCT
SLC7A5
NPDC1


NEBL
PDZK1IP1
FABP6
ENC1


PCCA
CD55
SLITRK6
SERPINE2


FLJ37644
ECT2
MLPH
UBE2S


KRT23
COL12A1
HOXA9
TOP2A


CXCL3
L1TD1
TBX3
CDC2


MMP3
WDR51B
BACE2
RFC3


SFRP4
HOXB6
GPX2
LILRB1


UBD
FAM84A
TPX2
NPM1


SCD
COL5A2
KCNN4
RDHE2


DPEP1
MMP12
LOC541471
PLAU


LCN2
SORD
CYP3A5
HSPH1


PLCB4
PSAT1
ANXA3
GTF3A


SPINK1
CXCL5
CYP3A5P2
KLK10


DUOX2
IGFBP2
C14orf94
GPSM2


SOX4
TGIF1
RP5-875H10.1
NME1


THBS2
CXCL2
RPL22L1
MUC20


CLDN1
SLCO4A1
APOBEC1
RPESP


REG1B
CKS2
HIG2
RRM2


CDH3
PHLDA1
COL10A1
DKC1


SPARC
SERPINA1
AHCY
CD44



COL1A2
IL8










in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Reference to “large intestine” should be understood as a reference to a cell derived from one of the six anatomical regions of the large intestine, which regions commence after the terminal region of the ileum, these being:

    • (i) the cecum;
    • (ii) the ascending colon;
    • (iii) the transverse colon;
    • (iv) the descending colon;
    • (v) the sigmoid colon; and
    • (vi) the rectum.


Reference to “neoplasm” should be understood as a reference to a lesion, tumour or other encapsulated or unencapsulated mass or other form of growth which comprises neoplastic cells. A “neoplastic cell” should be understood as a reference to a cell exhibiting abnormal growth. The term “growth” should be understood in its broadest sense and includes reference to proliferation. In this regard, an example of abnormal cell growth is the uncontrolled proliferation of a cell. Another example is failed apoptosis in a cell, thus prolonging its usual life span. The neoplastic cell may be a benign cell or a malignant cell. In a preferred embodiment, the subject neoplasm is an adenoma or an adenocarcinoma. Without limiting the present invention to any one theory or mode of action, an adenoma is generally a benign tumour of epithelial origin which is either derived from epithelial tissue or exhibits clearly defined epithelial structures. These structures may take on a glandular appearance. It can comprise a malignant cell population within the adenoma, such as occurs with the progression of a benign adenoma to a malignant adenocarcinoma.


Preferably, said neoplastic cell is an adenoma or adenocarcinoma and even more preferably a colorectal adenoma or adenocarcinoma.


Each of the genes and transcripts detailed in sub-paragraphs (i) and (ii), above, would be well known to the person of skill in the art, as would their encoded proteins. The identification of the expression products of these genes and transcripts as markers of neoplasia occurred by virtue of differential expression analysis using Affymetrix HGU133A or HGU133B gene chips. To this end, each gene chip is characterised by approximately 45,000 probe sets which detect the RNA transcribed from the genome. On average, approximately 11 probe pairs detect overlapping or consecutive regions of the RNA transcript. In general, the genes from which the RNA transcripts described herein are identified by the Affymetrix probesets are well known and characterised genes. However, to the extent that some of the probesets detect RNA transcripts which are not yet defined, these transcripts are indicated as “the gene, genes or transcripts detected by Affymetrix probe x”. In some cases a number of genes and/or transcripts may be detectable by a single probeset. It should be understood, however, that this is not intended as a limitation as to how the expression level of the subject gene or transcript can be detected. In the first instance, it would be understood that the subject gene transcript is also detectable by other probesets which would be present on the Affymetrix gene chip. The reference to a single probesets is merely included as an identifier of the gene transcript of interest. In terms of actually screening for the transcript, however, one may utilise a probe or probeset directed to any region of the transcript and not just to the 3′ terminal 600 bp transcript region to which the Affymetrix probesets are often directed.


Reference to each of the genes and transcripts detailed above and their transcribed and translated expression products should therefore be understood as a reference to all forms of these molecules and to fragments or variants thereof. As would be appreciated by the person of skill in the art, some genes are known to exhibit allelic variation between individuals. Accordingly, the present invention should be understood to extend to such variants which, in terms of the present diagnostic applications, achieve the same outcome despite the fact that minor genetic variants between the actual nucleic acid sequences may exist between individuals or that within one individual there may exist two or more splice variants of one subject gene. The present invention should therefore be understood to extend to all forms of RNA (eg mRNA, primary RNA transcript, miRNA, etc), cDNA and peptide isoforms which arise from alternative splicing or any other mutation, polymorphic or allelic variation. It should also be understood to include reference to any subunit polypeptides such as precursor forms which may be generated, whether existing as a monomer, multimer, fusion protein or other complex.


For example, in one embodiment of the invention, the subject gene is CDH3. Analysis of the AceView Database reveals that there exist 12 CDH3 alternative mRNA transcripts. Nine are generated by alternative splicing while three are unspliced forms. In terms of the genes encompassed by the present invention, means for determining the existence of such variants and characterising same, are described in Example 6. To the extent that the genes of the present invention are described by reference to an Affymetrix probeset, Table 9 provides details of the nucleic acid sequence to which each probeset is directed. Based on this information, the skilled person could, as a matter of routine procedure, identify the gene in respect of which that sequence forms part. A typical protocol for doing this is also outlined in Example 6.


It should be understood that the “individual” who is the subject of testing may be any human or non-human mammal. Examples of non-human mammals includes primates, livestock animals (e.g. horses, cattle, sheep, pigs, donkeys), laboratory test animals (e.g. mice, rats, rabbits, guinea pigs), companion animals (e.g. dogs, cats) and captive wild animals (e.g. deer, foxes). Preferably the mammal is a human.


The method of the present invention is predicated on the comparison of the level of the neoplastic markers of a biological sample with the control levels of these markers. The “control level” may be either a “normal level”, which is the level of marker expressed by a corresponding large intestine cell or cellular population which is not neoplastic, or the background level which is detectable in a negative control sample.


The normal (or “non-neoplastic”) level may be determined using tissues derived from the same individual who is the subject of testing. However, it would be appreciated that this may be quite invasive for the individual concerned and it is therefore likely to be more convenient to analyse the test results relative to a standard result which reflects individual or collective results obtained from individuals other than the patient in issue. This latter form of analysis is in fact the preferred method of analysis since it enables the design of kits which require the collection and analysis of a single biological sample, being a test sample of interest. The standard results which provide the normal level may be calculated by any suitable means which would be well known to the person of skill in the art. For example, a population of normal tissues can be assessed in terms of the level of the neoplastic markers of the present invention, thereby providing a standard value or range of values against which all future test samples are analysed. It should also be understood that the normal level may be determined from the subjects of a specific cohort and for use with respect to test samples derived from that cohort. Accordingly, there may be determined a number of standard values or ranges which correspond to cohorts which differ in respect of characteristics such as age, gender, ethnicity or health status. Said “normal level” may be a discrete level or a range of levels. An increase in the expression level of the subject genes relative to normal levels is indicative of the tissue being neoplastic.


Without limiting the present invention to any one theory or mode of action, although each of the genes hereinbefore described is differentially expressed, either singly or in combination, as between neoplastic versus non-neoplastic cells of the large intestine, and is therefore diagnostic of the existence of a large intestine neoplasm, the expression of some of these genes was found to exhibit particularly significant levels of sensitivity, specificity and positive and negative predictive value. Accordingly, in a preferred embodiment one would screen for and assess the expression level of one or more of these genes. To this end, and without limiting the present invention to any one theory or mode of action, the following markers were determined to be expressed in neoplastic tissue at a level of 3, 4, 5 or 7 fold greater than non-neoplastic tissue when assessed by virtue of the method exemplified herein.















Gene, genes or transcripts detected



Fold Increase
by Affymetrix Probe No:
Gene







7
225681_at
CTHRC1



227140_at



5
227475_at
FOXQ1



204475_at
MMP1



202859_x_at
IL8



202404_s_at
COL1A2


4
205513_at
TCN1



204259_at
MMP7



227174_at
WDR72



210511_s_at
INHBA



37892_at
COL11A1


3
221577_x_at
GDF15



202310_s_at
COL1A1



213880_at
LGR5



232252_at
DUSP27



204855_at
SERPINB5



229215_at
ASCL2



212354_at
SULF1



228754_at
SLC6A6



202286_s_at
TACSTD2



203962_s_at
NEBL



203860_at
PCCA



202935_s_at
FLJ37644



218963_s_at
KRT23



207850_at
CXCL3



205828_at
MMP3



204051_s_at
SFRP4



205890_s_at
UBD



200832_s_at
SCD



205983_at
DPEP1



212531_at
LCN2









There is therefore more particularly provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 225681_at; 227140_at; and/or
    • (ii) CTHRC1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In another embodiment, there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 227475_at, 204475_at, 202859_x_at, 202404_s_at; and/or
    • (ii) FOXQ1, MMP1, IL8, COL1A2


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In yet another embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:
      • 205513_at, 204259_at, 227174_at, 210511_s_at, 37892_at; and/or
    • (ii) TCN1, MMPI, WDR72, INHBA, COL11A1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


In still yet another preferred embodiment, there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















221577_x_at
232252_at
202310_s_at



213880_at
212354_at
204855_at



229215_at
203962_s_at
228754_at



202286_s_at
218963_s_at
203860_at



202935_s_at
204051_s_at
207850_at



205828_at
205983_at
205890_s_at



200832_s_at

212531_at; and/or












    • (ii)






















LGR5
GDF15
COL1A1



ASCL2
DUSP27
SERPINB5



TACSTD2
SULF1
SLC6A6



FLJ37644
NEBL
PCCA



MMP3
KRT23
CXCL3



SCD
SFRP4
UBD




DPEP1
LCN2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state.


Preferably, said control level is a non-neoplastic level.


According to these aspects of the present invention, said large intestine tissue is preferably colorectal tissue.


The detection method of the present invention can be performed on any suitable biological sample. To this end, reference to a “biological sample” should be understood as a reference to any sample of biological material derived from an animal such as, but not limited to, cellular material, biofluids (eg. blood), faeces, tissue biopsy specimens, surgical specimens or fluid which has been introduced into the body of an animal and subsequently removed (such as, for example, the solution retrieved from an enema wash). The biological sample which is tested according to the method of the present invention may be tested directly or may require some form of treatment prior to testing. For example, a biopsy or surgical sample may require homogenisation prior to testing or it may require sectioning for in situ testing of the qualitative expression levels of individual genes. Alternatively, a cell sample may require permeabilisation prior to testing. Further, to the extent that the biological sample is not in liquid form, (if such form is required for testing) it may require the addition of a reagent, such as a buffer, to mobilise the sample.


To the extent that the neoplastic marker gene expression product is present in a biological sample, the biological sample may be directly tested or else all or some of the nucleic acid or protein material present in the biological sample may be isolated prior to testing. In yet another example, the sample may be partially purified or otherwise enriched prior to analysis. For example, to the extent that a biological sample comprises a very diverse cell population, it may be desirable to enrich for a sub-population of particular interest. It is within the scope of the present invention for the target cell population or molecules derived therefrom to be treated prior to testing, for example, inactivation of live virus or being run on a gel. It should also be understood that the biological sample may be freshly harvested or it may have been stored (for example by freezing) prior to testing or otherwise treated prior to testing (such as by undergoing culturing).


The choice of what type of sample is most suitable for testing in accordance with the method disclosed herein will be dependent on the nature of the situation. Preferably, said sample is a faecal (stool) sample, enema wash, surgical resection, tissue biopsy or blood sample.


In a related aspect, it has been determined that certain of the markers hereinbefore defined are more indicative of adenoma development versus cancer development or vice versa. This is an extremely valuable finding since it enables one to more specifically characterise the likely nature of a neoplasm which is detected by virtue of the method of the present invention.


Accordingly, in a related aspect the present invention is directed to a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















201328_at
205825_at
219956_at



201468_s_at
205927_s_at
221922_at



201656_at
206239_s_at
223447_at



201925_s_at
207158_at
223970_at



201926_s_at
210445_at
225835_at



202718_at
210519_s_at
226360_at



202831_at
211429_s_at
228303_at



202833_s_at
212063_at
228653_at



203124_s_at
213975_s_at
228915_at



203313_s_at
214235_at
231832_at



203860_at
214651_s_at
231941_s_at



203895_at
217523_at
232176_at



203896_s_at
217867_x_at
232481_s_at



204401_at
218086_at
234331_s_at



204885_s_at
218211_s_at
235210_s_at



205174_s_at
218796_at
235976_at



205366_s_at
219630_at
236894_at



205470_s_at
219682_s_at
238017_at



205513_at
219727_at
238984_at



205765_at
219955_at;
241031_at; and/or












    • (ii)






















APOBEC1
HOXB6
QPCT



BACE2
IGFBP2
RDHE2



C20orf42
ITGA6
REG4



CD44
KCNN4
RETNLB



CD55
KLK11
RP5-875H10.1



CTSE
L1TD1
RPESP



CYP3A5
LILRB1
SERPINA1



CYP3A5P2
MLPH
SLC11A2



DACH1
MSLN
SLC12A2



DUOX2
MUC20
SLITRK6



ETS2
NLF1
SPINK1



FABP6
NPDC1
TBX3



FAM84A
NQO1
TCN1



GALNT6
PCCA
TGIF1



GPSM2
PCSK1
WDR51B



GPX2
PDZK1IP1
ZNRF3



HOXA9
PLCB4











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another preferred embodiment of this aspect of the present invention there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200660_at
205476_at
217430_x_at



200665_s_at
205479_s_at
217996_at



200832_s_at
205713_s_at
218507_at



200903_s_at
205815_at
218963_s_at



201014_s_at
205828_at
218984_at



201112_s_at
205886_at
219787_s_at



201195_s_at
205890_s_at
219911_s_at



201261_x_at
205910_s_at
221729_at



201292_at
205941_s_at
221730_at



201338_x_at
206224_at
221731_x_at



201479_at
206976_s_at
221923_s_at



201577_at
207173_x_at
37892_at



201601_x_at
207457_s_at
222449_at



201666_at
208079_s_at
222450_at



202310_s_at
208712_at
222549_at



202311_s_at
209218_at
222608_s_at



202403_s_at
209309_at
223062_s_at



202404_s_at
209752_at
224428_s_at



202431_s_at
209773_s_at
224646_x_at



202504_at
209774_x_at
224915_x_at



202779_s_at
209792_s_at
225295_at



202859_x_at
209875_s_at
225520_at



202954_at
209955_s_at
225664_at



202998_s_at
210052_s_at
225681_at



203083_at
210511_s_at
225767_at



203213_at
210559_s_at
225799_at



203878_s_at
210766_s_at
225806_at



204051_s_at
211506_s_at
226227_x_at



204127_at
212281_s_at
226237_at



204170_s_at
212344_at
226311_at



204320_at
212353_at
226777_at



204470_at
212354_at
226835_s_at



204475_at
213905_x_at
227140_at



204580_at
214022_s_at
229802_at



204620_s_at
214974_x_at
231766_s_at



204702_s_at
215091_s_at;
232151_at; and/or



205361_s_at












    • (ii)






















AHCY
DKC1
PSAT1



ANLN
ECT2
PUS7



AURKA
FAP
REG1A



AZGP1
GTF3A
REG1B



BGN
H19
REG3A



C14orf94
HIG2
RFC3



C20orf199
HSPH1
RRM2



CCL20
IFITM1
S100A11



CCND1
IL8
SCD



CDC2
INHBA
SFRP4



CDCA7
KLK10
SLC39A10



CDH11
KRT23
SLC7A5



CEL
LOC541471
SLCO4A1



CKS2
LOXL2
SPARC



CLDN1
LY6G6D
SPP1



COL10A1
MMP1
SQLE



COL11A1
MMP11
SULF1



COL12A1
MMP12
THBS2



COL1A1
MMP3
TIMP1



COL1A2
MTHFD1L
TMEM97



COL5A2
MYC
TMEPAI



COL8A1
NFE2L3
TOP2A



COMP
NME1
TPX2



CSE1L
NPM1
TRIM29



CST1
PAICS
UBD



CTHRC1
PFDN4
UBE2C



CXCL1
PHLDA1
UBE2S



CXCL2
PLAU
VCAN



CXCL5











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to control levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


According to these aspects, said control levels are preferably non-neoplastic levels and said large intestine tissue is colorectal tissue. Even more preferably, said biological sample is a stool sample or blood sample.


In a related aspect, it has been determined that a subpopulation of the markers of the present invention are not only expressed at levels higher than normal levels, their expression pattern is uniquely characterised by the fact that expression levels above that of background control levels are not detectable in non-neoplastic tissue. This determination has therefore enabled the development of qualitative screening systems which are simply designed to detect marker expression relative to a control background level. In accordance with this aspect of the present invention, said “control level” is therefore the “background level”. Preferably, said background level is of the chosen testing methodology.


According to this aspect, there is therefore provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















202286_s_at
235976_at
209309_at



204259_at
236894_at
211506_s_at



204885_s_at

214974_x_at



205174_s_at
238984_at
219787_s_at



205825_at
241031_at
37892_at



207850_at
202311_s_at
222608_s_at



213880_at
204320_at
223062_s_at



217523_at
204475_at
225806_at



227174_at
204702_s_at
226237_at



228915_at
205910_s_at
227140_at



232252_at
206224_at
229802_at; and/or












    • (ii)






















MMP1
PCSK1
ANLN



MMP7
CST1
DACH1



LGR5
QPCT
COL11A1



WDR72
ECT2
C14orf94



COL11A1
SLITRK6
AZGP1



COL1A1
L1TD1
REG4



DUSP27
KIAA1199
NFE2L3



NLF1
PSAT1
CEL



IL8
CXCL5
CD44



TACSTD2
CXCL3
COL8A1



MSLN











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a neoplastic cell or a cell predisposed to the onset of a neoplastic state.


In a most preferred embodiment, said genes or transcripts are selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















227140_at
227174_at
241031_at



204475_at
37892_at
211506_s_at



204259_at
202311_s_at
202286_s_at



213880_at
232252_at
226237_at; and/or












    • (ii)






















MMP1
COL11A1
IL8



MMP7
COL1A1
TACSTD2



LGR5
DUSP27
COL8A1



WDR72
NLF1










Preferably, said neoplasm is an adenoma or an adenocarcinoma and said gastrointestinal tissue is colorectal tissue.


In yet another embodiment, it has been determined that a further subpopulation of these markers are more characteristic of adenoma development, while others are more characteristic of cancer development. Accordingly, there is provided a convenient means of qualitatively obtaining indicative information in relation to the characteristics of the subject neoplasm.


According to this embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















204885_s_at
217523_at
236894_at



205174_s_at
228915_at
238984_at



205825_at
235976_at
241031_at; and/or












    • (ii)






















CD44
MSLN
QPCT



DACH1
NLF1
REG4



L1TD1
PCSK1
SLITRK6











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In yet still another preferred embodiment there is provided a method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:



















202311_s_at
209309_at
223062_s_at



204320_at
211506_s_at
225806_at



204475_at
214974_x_at
226237_at



204702_s_at
219787_s_at
227140_at



205910_s_at
37892_at
229802_at; and/or



206224_at
222608_s_at












    • (ii)






















ANLN
COL1A1
IL8



AZGP1
COL8A1
MMP1



C14orf94
CST1
NFE2L3



CEL
CXCL5
PSAT1



COL11A1
ECT2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to background levels is indicative of a cancer cell or a cell predisposed to the onset of a cancerous state.


Preferably, said large intestine tissue is colorectal tissue.


More preferably, said biological sample is a blood sample or stool sample.


As detailed hereinbefore, the present invention is designed to screen for a neoplastic cell or cellular population, which is located in the large intestine. Accordingly, reference to “cell or cellular population” should be understood as a reference to an individual cell or a group of cells.


Said group of cells may be a diffuse population of cells, a cell suspension, an encapsulated population of cells or a population of cells which take the form of tissue.


Reference to “expression” should be understood as a reference to the transcription and/or translation of a nucleic acid molecule. In this regard, the present invention is exemplified with respect to screening for neoplastic marker expression products taking the form of RNA transcripts (eg primary RNA or mRNA). Reference to “RNA” should be understood to encompass reference to any form of RNA, such as primary RNA or mRNA. Without limiting the present invention in any way, the modulation of gene transcription leading to increased or decreased RNA synthesis will also correlate with the translation of some of these RNA transcripts (such as mRNA) to produce a protein product. Accordingly, the present invention also extends to detection methodology which is directed to screening for modulated levels or patterns of the neoplastic marker protein products as an indicator of the neoplastic state of a cell or cellular population. Although one method is to screen for mRNA transcripts and/or the corresponding protein product, it should be understood that the present invention is not limited in this regard and extends to screening for any other form of neoplastic marker expression product such as, for example, a primary RNA transcript. It is well within the skill of the person of skill in the art to determine the most appropriate screening target for any given situation. To this end, the genes which are known to encode an expression product which is either secreted by the cell or membrane bound is detailed in the table, below. It would be appreciated that screening for neoplastic markers which are secreted or membrane bound may provide particular advantages in terms of the design of a diagnostic screening product.












The gene or genes detected by Affymetrix probe Nos:




















200600_at
20396_at
212077_at
224724_at



200832_s_at
203962_s_at
212281_s_at
224915_x_at



200903_s_at
204006_s_at
212344_at
225295_at



200974_at
204122_at
212353_at
225520_at



201058_s_at
204127_at
212354_at
225541_at



201069_at
204170_s_at
212942_s_at
225664_at



201105_at
204320_at
213125_at
225710_at



201112_s_at
204351_at
213524_s_at
225767_at



201195_s_at
204401_at
213869_x_at
225799_at



201328_at
204404_at
213880_at
225806_at



201341_at
204702_s_at
214022_s_at
225835_at



201416_at
204885_s_at
214235_at
226227_x_at



201417_at
205361_s_at
214651_s_at
226311_at



201426_s_at
205366_s_at
215049_x_at
226360_at



201468_s_at
205547_s_at
217523_at
226694_at



201479_at
205765_at
217762_s_at
226777_at



201563_at
205825_at
217763_s_at
226835_s_at



201601_x_at
205890_s_at
217764_s_at
227099_s_at



201616_s_at
205927_s_at
217867_x_at
227140_at



201656_at
205941_s_at
217996_at
227174_at



201667_at
205983_at
218086_at
227475_at



201925_s_at
206286_s_at
218211_s_at
227566_at



201926_s_at
206976_s_at
218559_s_at
228303_at



202237_at
207158_at
218704_at
228653_at



202238_s_at
207173_x_at
218796_at
228754_at



202286_s_at
207191_s_at
218872_at
228915_at



202431_s_at
208079_s_at
218963_s_at
229215_at



202450_s_at
208712_at
218984_at
229802_at



202504_at
208782_at
219630_at
231766_s_at



202620_s_at
208788_at
219682_s_at
231832_at



202779_s_at
208850_s_at
219727_at
231879_at



202831_at
208851_s_at
219787_s_at
232151_at



202878_s_at
209156_s_at
219911_s_at
232176_at



202917_s_at
209218_at
219955_at
232252_at



202935_s_at
209369_at
219956_at
232481_s_at



202936_s_at
209596_at
221011_s_at
233555_s_at



202954_at
209773_s_at
221922_at
234331_s_at



203124_s_at
209955_s_at
221923_s_at
234994_at



203213_at
210052_s_at
222449_at
235210_s_at



203256_at
210445_at
222450_at
235976_at



203313_s_at
210519_s_at
222549_at
236894_at



203382_s_at
210559_s_at
222608_s_at
238017_at



203645_s_at
210766_s_at
223062_s_at




203860_at
211964_at
223235_s_at
241031_at



203878_s_at
211966_at
224428_s_at
37892_at



203895_at
212063_at
224646_x_at
60474_at



203896_s_at
212070_at
224694_at




ACTA2
DUOX2
LOC541471
S100A11



AHCY
DUSP27
MAFB
S100A8



ANLN
ECT2
MLPH
S100P



ANTXR1
ELOVL5
MMP11
SCD



ANXA3
ENC1
MMP2
SLC11A2



APOBEC1
ETS2
MSLN
SLC12A2



APOE
FABP6
MSN
SLC39A10



ASCL2
FAM84A
MTHFD1L
SLC6A6



AURKA
FAP
MXRA5
SLC7A5



BACE2
FCGR3B
MYC
SLCO4A1



C14orf94
FLJ37644
MYL9
SLITRK6



C20orf199
FOXQ1
NEBL
SMOC2



C20orf42
FSTL1
NFE2L3
SORD



CALD1
GOS2
NLF1
SOX4



CCND1
GALNT6
NNMT
SOX9



CD163
GJA1
NPDC1
SQLE



CD44
GPR56
NPM1
SULF1



CD55
GPSM2
NQO1
SULF2



CD93
GPX2
OLFML2B
TACSTD2



CDC2
H19
PALM2-
TAGLN



CDCA7

AKAP2
TBX3



CDH11
HNT
PCCA
TDGF1



CDH3
HOXA9
PCSK1
TESC



CKS2
HOXB6
PDZK1IP1
TGIF1



CLDN1
HSPH1
PFDN4
THY1



COL10A1
IFITM1
PHLDA1
TMEM97



COL11A1
ISLR
PLCB4
TMEPAI



COL12A1
ITGA6
PLOD2
TPX2



COL4A2
KCNN4
PSAT1
TRIM29



COL6A2
KIAA1199
PUS7
TYROBP



CSE1L
KIAA1913
RAB31
UBD



CTSE
KRT23
RDHE2
UBE2C



CTSK
L1TD1
RFC3
UBE2S



CYP3A5
LBH
RNF43
VIM



CYP3A5P2
LGALS1
RP5-875H10.1
WDR51B



DACH1
LGR5
RPESP
WDR72



DKC1
LOC387763
RPL22L1
ZNRF3



DPEP1

RRM2










Reference to “nucleic acid molecule” should be understood as a reference to both deoxyribonucleic acid molecules and ribonucleic acid molecules and fragments thereof. The present invention therefore extends to both directly screening for mRNA levels in a biological sample or screening for the complementary cDNA which has been reverse-transcribed from an mRNA population of interest. It is well within the skill of the person of skill in the art to design methodology directed to screening for either DNA or RNA. As detailed above, the method of the present invention also extends to screening for the protein product translated from the subject mRNA.


Preferably, the level of gene expression is measured by reference to genes which encode a protein product and, more particularly, said level of expression is measured at the protein level. Accordingly, to the extent that the present invention is directed to screening for markers which are detailed in the preceding table, said screening is preferably directed to the encoded protein.


As detailed hereinbefore, it should be understood that although the present invention is exemplified with respect to the detection of expressed nucleic acid molecules (e.g. mRNA), it also encompasses methods of detection based on screening for the protein product of the subject genes. The present invention should also be understood to encompass methods of detection based on identifying both proteins and/or nucleic acid molecules in one or more biological samples. This may be of particular significance to the extent that some of the neoplastic markers of interest may correspond to genes or gene fragments which do not encode a protein product. Accordingly, to the extent that this occurs it would not be possible to test for a protein and the subject marker would have to be assessed on the basis of transcription expression profiles.


In terms of screening for the upregulation of expression of a marker it would also be well known to the person of skill in the art that changes which are detectable at the DNA level are indicative of changes to gene expression activity and therefore changes to expression product levels. Such changes include but are not limited to, changes to DNA methylation. Accordingly, reference herein to “screening the level of expression” and comparison of these “levels of expression” to control “levels of expression” should be understood as a reference to assessing DNA factors which are related to transcription, such as gene/DNA methylation patterns.


The term “protein” should be understood to encompass peptides, polypeptides and proteins (including protein fragments). The protein may be glycosylated or unglycosylated and/or may contain a range of other molecules fused, linked, bound or otherwise associated to the protein such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins. Reference herein to a “protein” includes a protein comprising a sequence of amino acids as well as a protein associated with other molecules such as amino acids, lipids, carbohydrates or other peptides, polypeptides or proteins.


The proteins encoded by the neoplastic markers of the present invention may be in multimeric form meaning that two or more molecules are associated together. Where the same protein molecules are associated together, the complex is a homomultimer. An example of a homomultimer is a homodimer. Where at least one marker protein is associated with at least one non-marker protein, then the complex is a heteromultimer such as a heterodimer.


Reference to a “fragment” should be understood as a reference to a portion of the subject nucleic acid molecule or protein. This is particularly relevant with respect to screening for modulated RNA levels in stool samples since the subject RNA is likely to have been degraded or otherwise fragmented due to the environment of the gut. One may therefore actually be detecting fragments of the subject RNA molecule, which fragments are identified by virtue of the use of a suitably specific probe.


Reference to the “onset” of a neoplasm, such as adenoma or adenocarcinoma, should be understood as a reference to one or more cells of that individual exhibiting dysplasia. In this regard, the adenoma or adenocarcinoma may be well developed in that a mass of dysplastic cells has developed. Alternatively, the adenoma or adenocarcinoma may be at a very early stage in that only relatively few abnormal cell divisions have occurred at the time of diagnosis. The present invention also extends to the assessment of an individual's predisposition to the development of a neoplasm, such as an adenoma or adenocarcinoma. Without limiting the present invention in any way, changed levels of the neoplastic markers may be indicative of that individual's predisposition to developing a neoplasia, such as the future development of an adenoma or adenocarcinoma or another adenoma or adenocarcinoma.


In yet another related aspect of the present invention, markers have been identified which enable the characterisation of neoplastic tissue of the large intestine in terms of whether it is an adenoma or a cancer. This development now provides a simple yet accurate means of characterising tissue using means other than the traditional methods which are currently utilised.


According to this aspect of the present invention, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200884_at
214234_s_at
226248_s_at



203240_at
214235_at
226302_at



203963_at
214433_s_at
227676_at



204508_s_at
215125_s_at
227719_at



204607_at
215867_x_at
227725_at



204811_s_at
217109_at
228232_s_at



204895_x_at
217110_s_at
229070_at



204897_at
218211_s_at
231832_at



205259_at
219543_at
232176_at



205765_at
219955_at
232481_s_at



205927_s_at
221841_s_at
235976_at



208063_s_at
221874_at
236894_at



208937_s_at
223969_s_at
237521_x_at



210107_at
223970_at
242601_at



213106_at; and/or












    • (ii)






















CLCA1
CTSE
ATP8B1



FCGBP
C6orf105
CACNA2D2



HMGCS2
CKB
KLF4



RETNLB
ATP8A1
CYP3A5P2



L1TD1
MUC4
CAPN9



SLITRK6
UGT1A1
NR3C2



VSIG2
SELENBP1
PBLD



LOC253012
PTGER4
CA12



ST6GALNAC1
MLPH
WDR51B



ID1
KIAA1324
FAM3D



CYP3A5











in said cell or cellular population wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer cell level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200600_at
204006_s_at
213428_s_at



200665_s_at
204051_s_at
213524_s_at



200832_s_at
204122_at
213869_x_at



200974_at
204320_at
213905_x_at



200986_at
204475_at
214247_s_at



201058_s_at
204620_s_at
215049_x_at



201069_at
205479_s_at
215076_s_at



201105_at
205547_s_at
215646_s_at



201141_at
205828_at
216442_x_at



201147_s_at
207173_x_at
217430_x_at



201150_s_at
207191_s_at
217762_s_at



201162_at
208747_s_at
217763_s_at



201163_s_at
208782_at
217764_s_at



201185_at
208788_at
218468_s_at



201261_x_at
208850_s_at
218469_at



201289_at
208851_s_at
218559_s_at



201426_s_at
209101_at
218638_s_at



201438_at
209156_s_at
219087_at



201616_s_at
209218_at
221011_s_at



201645_at
209395_at
221729_at



201667_at
209396_s_at
221730_at



201744_s_at
209596_at
221731_x_at



201792_at
209875_s_at
37892_at



201842_s_at
209955_s_at
223122_s_at



201852_x_at
210095_s_at
223235_s_at



201859_at
210495_x_at
224560_at



201893_x_at
210511_s_at
224694_at



202237_at
210764_s_at
224724_at



202238_s_at
210809_s_at
225664_at



202283_at
211161_s_at
225681_at



202291_s_at
211571_s_at
225710_at



202310_s_at
211719_x_at
225799_at



202311_s_at
211813_x_at
226237_at



202403_s_at
211896_s_at
226311_at



202404_s_at
211959_at
226694_at



202450_s_at
211964_at
226777_at



202620_s_at
211966_at
226930_at



202766_s_at
211980_at
227099_s_at



202859_x_at
211981_at
227140_at



202878_s_at
212077_at
227566_at



202917_s_at
212344_at
229218_at



202998_s_at
212353_at
229802_at



203083_at
212354_at
231579_s_at



203325_s_at
212464_s_at
231766_s_at



203382_s_at
212488_at
231879_at



203477_at
212489_at
232458_at



203570_at
212667_at
233555_s_at



203645_s_at
213125_at
234994_at



203878_s_at; and/or












    • (ii)






















COL1A2
LGALS1
SRGN



CTHRC1
ELOVL5
LBH



FN1
MGP
CTGF



POSTN
MMP2
TNC



SPP1
LOXL2
G0S2



MMP1
MYL9
SQLE



SPARC
DCN
EFEMP1



LUM
CALD1
APOE



GREM1
FBN1
MSN



IL8
MMP3
IGFBP3



IGFBP5
IGFBP7
SERPINF1



SFRP2
FSTL1
ISLR



SULF1
COL4A2
HNT



ASPN
VCAN
COL5A1



COL6A3
SMOC2
OLFML2B



COL8A1
HTRA1
KIAA1913



COL12A1
CYR61
PALM2-AKAP2



COL5A2
FAP
SERPING1



CDH11
VIM
TYROBP



THBS2
TIMP2
ACTA2



COL15A1
SCD
COL3A1



COL11A1
TIMP3
PLOD2



S100A8
AEBP1
MMP11



FNDC1
GJA1
CD163



SFRP4
NNMT
FCGR3B



INHBA
COL1A1
PLAU



COL6A2
SULF2
MAFB



ANTXR1
COL6A1
LOC541471



GPNMB
SPON2
LOC387763



BGN
CTSK
CHI3L1



TAGLN
MXRA5
THY1



COL4A1
C1S
LOXL1



RAB31
DKK3
CD93











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal adenoma cell level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Reference to an “adenoma control level” or “cancer control level” should be understood as a reference to the level of said gene expression in a population of adenoma or cancer gastrointestinal cells, respectively. As discussed hereinbefore in relation to “normal levels”, the subject level may be a discrete level or a range of levels. Accordingly, the definition of “adenoma control level” or “cancer control level” should be understood to have a corresponding definition to “normal level”, albeit in the context of the expression of genes by a neoplastic population of large intestine cells.


In terms of this aspect of the present invention, the subject analysis is performed on a population of neoplastic cells. These cells may be derived in any manner, such as sloughed of neoplastic cells which have been collected via an enema wash or from a gastrointestinal sample, such as a stool sample. Alternatively, the subject cells may have been obtained via a biopsy or other surgical technique.


Without limiting this aspect of the invention in any way, several of the markers of this aspect of the present invention have been determined to be expressed at particularly significant levels above those of neoplastic cells. For example, increased expression levels of 3- and 5-fold have been observed in respect of the following markers, when assessed by the method exemplified herein, which are indicative of gastrointestinal adenomas.















Gene or genes detected by



Fold Increase
Affymetrix Probe No:
Gene







5
210107_at
CLCA1


3
203240_at
FCGBP



204607_at
HMGCS2



223969_s_at
RETNLB



219955_at
L1TD1



232481_s_at
SLITRK6



228232_s_at
VSIG2



242601_at
LOC253012



227725_at
ST6GALNAC1









In another example, increased expression levels of between 3- and 9-fold have been observed in respect of the following markers which are indicative of gastrointestinal cancers, when assessed by the method herein exemplified:


















Gene or genes detected by




Fold Increase
Affymetrix Probe No:
Gene









9
202404_s_at
COL1A2



8
225681_at
CTHRC1



7
212464_s_at
FN1




210809_s_at
POSTN



6
209875_s_at
SPP1



5
227140_st
MMP1




204475_at




4
200665_s_at
SPARC




201744_s_at
LUM




218468_s_at
GREM1




202859_x_at
IL8




211959_at
IGFBP5



3
223122_s_at
SFRP2




212353_at
SULF1




219087_at
ASPN




201438_at
COL6A3




226237_at
COL8A1




225664_at
COL12A1




221730_at
COL5A2




207173_x_at
CDH11




203083_at
THBS2




203477_at
COL15A1




37892_at
COL11A1




202917_s_at
S100A8




226930_at
FNDC1




204051_s_at
SFRP4




210511_s_at
INHBA




209156_s_at
COL6A2




224694_at
ANTXR1




201141_at
GPNMB




213905_x_at
BGN




205547_s_at
TAGLN










According to this embodiment, there is therefore provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene or genes detected by Affymetrix probeset IDs:
      • 210107_at; and/or
    • (ii) CLCA1


      in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another embodiment, there is provided a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















203240_at
219955_at
242601_at



204607_at
232481_s_at
227725_at



223969_s_at
228232_s_at; and/or












    • (ii)






















FCGBP
L1TD1
LOC253012



HMGCS2
SLITRK6
ST6GALNAC1



RETNLB
VSIG2











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or group (ii) relative to a gastrointestinal cancer control level is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Still more preferably, said biological sample is a tissue sample.


In another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















202404_s_at
210809_s_at
227140_at



225681_at
209875_s_at
204475_at



212464_s_at;
and/or












    • (ii)






















COL1A2
FN1
SPP1



CTHRC1
POSTN
MMP1











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In yet another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















200665_s_at
218468_s_at
211959_at



201744_s_at
202859_x_at; and/or












    • (ii)






















SPARC
GREM1
IGFBP5



LUM
IL8











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


In still yet another preferred embodiment the present invention is directed to a method of characterising a cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















223122_s_at
207173_x_at
210511_s_at



212353_at
203083_at
209156_s_at



219087_at
203477_at
224694_at



201438_at
37892_at
201141_at



226237_at
202917_s_at
213905_x_at



225664_at
226930_at
205547_s_at



221730_at
204051_s_at;
and/or












    • (ii)






















SFRP2
CDH11
INHBA



SULF1
THBS2
COL6A2



ASPN
COL15A1
ANTXR1



COL6A3
COL11A1
GPNMB



COL8A1
S100A8
BGN



COL12A1
FNDC1
TAGLN



COL5A2
SFRP4











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to a gastrointestinal adenoma control level is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Even more preferably, said biological sample is a tissue sample.


In still another related aspect it has been determined that a subset of the markers of this aspect of the present invention are useful as qualitative markers of neoplastic tissue characterisation in that these markers, if detectable above background levels in neoplastic tissue are indicative of either adenoma or cancerous tissue.


According to this aspect, the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:


















235976_at
236894_at; and/or












    • (ii)





















SLITRK6
L1TD1











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background levels is indicative of an adenoma cell or a cell predisposed to the onset of an adenoma state.


In another aspect the present invention provides a method of characterising a neoplastic cell or cellular population, which cell or cellular population is derived from the large intestine of an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from:

    • (i) the gene, genes or transcripts detected by Affymetrix probeset IDs:



















202311_s_at
209396_s_at
226237_at



204320_at
215646_s_at
227140_at



204475_at
37892_at
229802_at



209395_at; and/or












    • (ii)






















COL1A1
VCAN
CHI3L1



MMP1
COL8A1
COL11A1











in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) and/or (ii) relative to neoplastic tissue background neoplastic cell levels is indicative of a cancer or a cell predisposed to the onset of a cancerous state.


Preferably, said gastrointestinal tissue is colorectal tissue.


Still more preferably, said biological sample is a tissue sample.


In a most preferred embodiment, the methods of the present invention are preferably directed to screening for proteins encoded by the markers of the present invention.


Although the preferred method is to detect the expression products of the neoplastic markers for the purpose of diagnosing neoplasia development or predisposition thereto, the detection of converse changes in the levels of said markers may be desired under certain circumstances, for example, to monitor the effectiveness of therapeutic or prophylactic treatment directed to modulating a neoplastic condition, such as adenoma or adenocarcinoma development. For example, where elevated levels of the subject markers indicate that an individual has developed a condition characterised by adenoma or adenocarcinoma development, for example, screening for a decrease in the levels of these markers subsequently to the onset of a therapeutic regime may be utilised to indicate reversal or other form of improvement of the subject individual's condition.


The method of the present invention is therefore useful as a one-time test or as an on-going monitor of those individuals thought to be at risk of neoplasia development or as a monitor of the effectiveness of therapeutic or prophylactic treatment regimes directed to inhibiting or otherwise slowing neoplasia development. In these situations, mapping the modulation of neoplastic marker expression levels in any one or more classes of biological samples is a valuable indicator of the status of an individual or the effectiveness of a therapeutic or prophylactic regime which is currently in use. Accordingly, the method of the present invention should be understood to extend to monitoring for increases or decreases in marker expression levels in an individual relative to their normal level (as hereinbefore defined), background control levels, cancer levels, adenoma levels or relative to one or more earlier marker expression levels determined from a biological sample of said individual.


Means of testing for the subject expressed neoplasm markers in a biological sample can be achieved by any suitable method, which would be well known to the person of skill in the art, such as but not limited to:

  • (i) In vivo detection.
    • Molecular Imaging may be used following administration of imaging probes or reagents capable of disclosing altered expression of the markers in the intestinal tissues.
    • Molecular imaging (Moore et al., BBA, 1402:239-249, 1988; Weissleder et al., Nature Medicine 6:351-355, 2000) is the in vivo imaging of molecular expression that correlates with the macro-features currently visualized using “classical” diagnostic imaging techniques such as X-Ray, computed tomography (CT), MRI, Positron Emission Tomography (PET) or endoscopy.
  • (ii) Detection of up-regulation of RNA expression in the cells by Fluorescent In Situ Hybridization (FISH), or in extracts from the cells by technologies such as Quantitative Reverse Transcriptase Polymerase Chain Reaction (QRTPCR) or Flow cytometric qualification of competitive RT-PCR products (Wedemeyer et al., Clinical Chemistry 48:9 1398-1405, 2002).
  • (iii) Assessment of expression profiles of RNA, for example by array technologies (Alon et al., Proc. Natl. Acad. Sci. USA: 96, 6745-6750, June 1999).
    • A “microarray” is a linear or multi-dimensional array of preferably discrete regions, each having a defined area, formed on the surface of a solid support. The density of the discrete regions on a microarray is determined by the total numbers of target polynucleotides to be detected on the surface of a single solid phase support. As used herein, a DNA microarray is an array of oligonucleotide probes placed onto a chip or other surfaces used to detect complementary oligonucleotides from a complex nucleic acid mixture. Since the position of each particular group of probes in the array is known, the identities of the target polynucleotides can be determined based on their binding to a particular position in the microarray.
    • Recent developments in DNA microarray technology make it possible to conduct a large scale assay of a plurality of target nucleic acid molecules on a single solid phase support. U.S. Pat. No. 5,837,832 (Chee et al.) and related patent applications describe immobilizing an array of oligonucleotide probes for hybridization and detection of specific nucleic acid sequences in a sample. Target polynucleotides of interest isolated from a tissue of interest are hybridized to the DNA chip and the specific sequences detected based on the target polynucleotides' preference and degree of hybridization at discrete probe locations. One important use of arrays is in the analysis of differential gene expression, where the profile of expression of genes in different cells or tissues, often a tissue of interest and a control tissue, is compared and any differences in gene expression among the respective tissues are identified. Such information is useful for the identification of the types of genes expressed in a particular tissue type and diagnosis of conditions based on the expression profile.
    • In one example, RNA from the sample of interest is subjected to reverse transcription to obtain labelled cDNA. See U.S. Pat. No. 6,410,229 (Lockhart et al.) The cDNA is then hybridized to oligonucleotides or cDNAs of known sequence arrayed on a chip or other surface in a known order. In another example, the RNA is isolated from a biological sample and hybridised to a chip on which are anchored cDNA probes. The location of the oligonucleotide to which the labelled cDNA hybridizes provides sequence information on the cDNA, while the amount of labelled hybridized RNA or cDNA provides an estimate of the relative representation of the RNA or cDNA of interest. See Schena, et al. Science 270:467-470 (1995). For example, use of a cDNA microarray to analyze gene expression patterns in human cancer is described by DeRisi, et al. (Nature Genetics 14:457-460 (1996)).
    • In a preferred embodiment, nucleic acid probes corresponding to the subject nucleic acids are made. The nucleic acid probes attached to the microarray are designed to be substantially complementary to the nucleic acids of the biological sample such that specific hybridization of the target sequence and the probes of the present invention occurs. This complementarity need not be perfect, in that there may be any number of base pair mismatches that will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. It is expected that the overall homology of the genes at the nucleotide level probably will be about 40% or greater, probably about 60% or greater, and even more probably about 80% or greater; and in addition that there will be corresponding contiguous sequences of about 8-12 nucleotides or longer. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by “substantially complementary” herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions.
    • A nucleic acid probe is generally single stranded but can be partly single and partly double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the oligonucleotide probes range from about 6, 8, 10, 12, 15, 20, 30 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 15 to about 40 bases being particularly preferred. That is, generally entire genes are rarely used as probes. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases. The probes are sufficiently specific to hybridize to a complementary template sequence under conditions known by those of skill in the art. The number of mismatches between the probe's sequences and their complementary template (target) sequences to which they hybridize during hybridization generally do not exceed 15%, usually do not exceed 10% and preferably do not exceed 5%, as-determined by BLAST (default settings).
    • Oligonucleotide probes can include the naturally-occurring heterocyclic bases normally found in nucleic acids (uracil, cytosine, thymine, adenine and guanine), as well as modified bases and base analogues. Any modified base or base analogue compatible with hybridization of the probe to a target sequence is useful in the practice of the invention. The sugar or glycoside portion of the probe can comprise deoxyribose, ribose, and/or modified forms of these sugars, such as, for example, 2′-O-alkyl ribose. In a preferred embodiment, the sugar moiety is 2′-deoxyribose; however, any sugar moiety that is compatible with the ability of the probe to hybridize to a target sequence can be used.
    • In one embodiment, the nucleoside units of the probe are linked by a phosphodiester backbone, as is well known in the art. In additional embodiments, internucleotide linkages can include any linkage known to one of skill in the art that is compatible with specific hybridization of the probe including, but not limited to phosphorothioate, methylphosphonate, sulfamate (e.g., U.S. Pat. No. 5,470,967) and polyamide (i.e., peptide nucleic acids). Peptide nucleic acids are described in Nielsen et al. (1991) Science 254: 1497-1500, U.S. Pat. No. 5,714,331, and Nielsen (1999) Curr. Opin. Biotechnol. 10:71-75.
    • In certain embodiments, the probe can be a chimeric molecule; i.e., can comprise more than one type of base or sugar subunit, and/or the linkages can be of more than one type within the same primer. The probe can comprise a moiety to facilitate hybridization to its target sequence, as are known in the art, for example, intercalators and/or minor groove binders. Variations of the bases, sugars, and internucleoside backbone, as well as the presence of any pendant group on the probe, will be compatible with the ability of the probe to bind, in a sequence-specific fashion, with its target sequence. A large number of structural modifications, are possible within these bounds. Advantageously, the probes according to the present invention may have structural characteristics such that they allow the signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al. (Nucleic Acids Symp. Ser., 24:197-200 (1991)) or in the European Patent No. EP-0225,807. Moreover, synthetic methods for preparing the various heterocyclic bases, sugars, nucleosides and nucleotides that form the probe, and preparation of oligonucleotides of specific predetermined sequence, are well-developed and known in the art. A preferred method for oligonucleotide synthesis incorporates the teaching of U.S. Pat. No. 5,419,966.
    • Multiple probes may be designed for a particular target nucleic acid to account for polymorphism and/or secondary structure in the target nucleic acid, redundancy of data and the like. In some embodiments, where more than one probe per sequence is used, either overlapping probes or probes to different sections of a single target gene are used. That is, two, three, four or more probes, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e. have some sequence in common), or are specific for distinct sequences of a gene. When multiple target polynucleotides are to be detected according to the present invention, each probe or probe group corresponding to a particular target polynucleotide is situated in a discrete area of the microarray.
    • Probes may be in solution, such as in wells or on the surface of a micro-array, or attached to a solid support. Examples of solid support materials that can be used include a plastic, a ceramic, a metal, a resin, a gel and a membrane. Useful types of solid supports include plates, beads, magnetic material, microbeads, hybridization chips, membranes, crystals, ceramics and self-assembling monolayers. One example comprises a two-dimensional or three-dimensional matrix, such as a gel or hybridization chip with multiple probe binding sites (Pevzner et al., J. Biomol. Struc. & Dyn. 9:399-410, 1991; Maskos and Southern, Nuc. Acids Res. 20:1679-84, 1992). Hybridization chips can be used to construct very large probe arrays that are subsequently hybridized with a target nucleic acid. Analysis of the hybridization pattern of the chip can assist in the identification of the target nucleotide sequence. Patterns can be manually or computer analyzed, but it is clear that positional sequencing by hybridization lends itself to computer analysis and automation. In another example, one may use an Affymetrix chip on a solid phase structural support in combination with a fluorescent bead based approach. In yet another example, one may utilise a cDNA microarray. In this regard, the oligonucleotides described by Lockkart et al. (i.e. Affymetrix synthesis probes in situ on the solid phase) are particularly preferred, that is, photolithography.
    • As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By “immobilized” herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal. The binding can be covalent or non-covalent. By “non-covalent binding” and grammatical equivalents herein is meant one or more of either electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as streptavidin, to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By “covalent binding” and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.
    • Nucleic acid probes may be attached to the solid support by covalent binding such as by conjugation with a coupling agent or by covalent or non-covalent binding such as electrostatic interactions, hydrogen bonds or antibody-antigen coupling, or by combinations thereof. Typical coupling agents include biotin/avidin, biotin/streptavidin, Staphylococcus aureus protein A/IgG antibody Fc fragment, and streptavidin/protein A chimeras (T. Sano and C. R. Cantor, Bio/Technology 9:1378-81 (1991)), or derivatives or combinations of these agents. Nucleic acids may be attached to the solid support by a photocleavable bond, an electrostatic bond, a disulfide bond, a peptide bond, a diester bond or a combination of these sorts of bonds. The array may also be attached to the solid support by a selectively releasable bond such as 4,4′-dimethoxytrityl or its derivative. Derivatives which have been found to be useful include 3 or 4 [bis-(4-methoxyphenyl)]-methyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-methyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-hydroxymethyl-benzoic acid, N-succinimidyl-3 or 4 [bis-(4-methoxyphenyl)]-chloromethyl-benzoic acid, and salts of these acids.
    • In general, the probes are attached to the microarray in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the microarray, or can be directly synthesized on the microarray.
    • The microarray comprises a suitable solid substrate. By “substrate” or “solid support” or other grammatical equivalents herein is meant any material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. The solid phase support of the present invention can be of any solid materials and structures suitable for supporting nucleotide hybridization and synthesis. Preferably, the solid phase support comprises at least one substantially rigid surface on which the primers can be immobilized and the reverse transcriptase reaction performed. The substrates with which the polynucleotide microarray elements are stably associated and may be fabricated from a variety of materials, including plastics, ceramics, metals, acrylamide, cellulose, nitrocellulose, glass, polystyrene, polyethylene vinyl acetate, polypropylene, polymethacrylate, polyethylene, polyethylene oxide, polysilicates, polycarbonates, Teflon, fluorocarbons, nylon, silicon rubber, polyanhydrides, polyglycolic acid, polylactic acid, polyorthoesters, polypropylfumerate, collagen, glycosaminoglycans, and polyamino acids. Substrates may be two-dimensional or three-dimensional in form, such as gels, membranes, thin films, glasses, plates, cylinders, beads, magnetic beads, optical fibers, woven fibers, etc. A preferred form of array is a three-dimensional array. A preferred three-dimensional array is a collection of tagged beads. Each tagged bead has different primers attached to it. Tags are detectable by signalling means such as color (Luminex, Illumina) and electromagnetic field (Pharmaseq) and signals on tagged beads can even be remotely detected (e.g., using optical fibers). The size of the solid support can be any of the standard microarray sizes, useful for DNA microarray technology, and the size may be tailored to fit the particular machine being used to conduct a reaction of the invention. In general, the substrates allow optical detection and do not appreciably fluoresce.
    • In one embodiment, the surface of the microarray and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, for example, the microarray is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, for example using linkers as are known in the art; for example, homo- or hetero-bifunctional linkers as are well known. In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.
    • In this embodiment, the oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5′ or 3′ terminus may be attached to the solid support, or attachment may be via an internal nucleoside. In an additional embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.
    • The arrays may be produced according to any convenient methodology, such as preforming the polynucleotide microarray elements and then stably associating them with the surface. Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. A number of different array configurations and methods for their production are known to those of skill in the art and disclosed in WO 95/25116 and WO 95/35505 (photolithographic techniques), U.S. Pat. No. 5,445,934 (in situ synthesis by photolithography), U.S. Pat. No. 5,384,261 (in situ synthesis by mechanically directed flow paths); and U.S. Pat. No. 5,700,637 (synthesis by spotting, printing or coupling); the disclosure of which are herein incorporated in their entirety by reference. Another method for coupling DNA to beads uses specific ligands attached to the end of the DNA to link to ligand-binding molecules attached to a bead. Possible ligand-binding partner pairs include biotin-avidin/streptavidin, or various antibody/antigen pairs such as digoxygenin-antidigoxygenin antibody (Smith et al., Science 258:1122-1126 (1992)). Covalent chemical attachment of DNA to the support can be accomplished by using standard coupling agents to link the 5′-phosphate on the DNA to coated microspheres through a phosphoamidate bond. Methods for immobilization of oligonucleotides to solid-state substrates are well established. See Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994). A preferred method of attaching oligonucleotides to solid-state substrates is described by Guo et al., Nucleic Acids Res. 22:5456-5465 (1994). Immobilization can be accomplished either by in situ DNA synthesis (Maskos and Southern, supra) or by covalent attachment of chemically synthesized oligonucleotides (Guo et al., supra) in combination with robotic arraying technologies.
    • In addition to the solid-phase technology represented by microarray arrays, gene expression can also be quantified using liquid-phase assays. One such system is kinetic polymerase chain reaction (PCR). Kinetic PCR allows for the simultaneous amplification and quantification of specific nucleic acid sequences. The specificity is derived from synthetic oligonucleotide primers designed to preferentially adhere to single-stranded nucleic acid sequences bracketing the target site. This pair of oligonucleotide primers form specific, non-covalently bound complexes on each strand of the target sequence. These complexes facilitate in vitro transcription of double-stranded DNA in opposite orientations. Temperature cycling of the reaction mixture creates a continuous cycle of primer binding, transcription, and re-melting of the nucleic acid to individual strands. The result is an exponential increase of the target dsDNA product. This product can be quantified in real time either through the use of an intercalating dye or a sequence specific probe. SYBR(r) Green 1, is an example of an intercalating dye, that preferentially binds to dsDNA resulting in a concomitant increase in the fluorescent signal. Sequence specific probes, such as used with TaqMan technology, consist of a fluorochrome and a quenching molecule covalently bound to opposite ends of an oligonucleotide. The probe is designed to selectively bind the target DNA sequence between the two primers. When the DNA strands are synthesized during the PCR reaction, the fluorochrome is cleaved from the probe by the exonuclease activity of the polymerase resulting in signal dequenching. The probe signalling method can be more specific than the intercalating dye method, but in each case, signal strength is proportional to the dsDNA product produced. Each type of quantification method can be used in multi-well liquid phase arrays with each well representing primers and/or probes specific to nucleic acid sequences of interest. When used with messenger RNA preparations of tissues or cell lines, an array of probe/primer reactions can simultaneously quantify the expression of multiple gene products of interest. See Germer et al., Genome Res. 10:258-266 (2000); Heid et al., Genome Res. 6:986-994 (1996).
  • (iv) Measurement of altered neoplastic marker protein levels in cell extracts, for example by immunoassay.
    • Testing for proteinaceous neoplastic marker expression product in a biological sample can be performed by any one of a number of suitable methods which are well known to those skilled in the art. Examples of suitable methods include, but are not limited to, antibody screening of tissue sections, biopsy specimens or bodily fluid samples.
    • To the extent that antibody based methods of diagnosis are used, the presence of the marker protein may be determined in a number of ways such as by Western blotting, ELISA or flow cytometry procedures. These, of course, include both single-site and two-site or “sandwich” assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.
    • Sandwich assays are among the most useful and commonly used assays. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibody-antigen-labelled antibody. Any unreacted material is washed away, and the presence of the antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled in the art, including any minor variations as will be readily apparent.
    • In the typical forward sandwich assay, a first antibody having specificity for the marker or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking, covalently binding or physically adsorbing, the polymer-antibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes) and under suitable conditions (e.g. 25° C.) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the antigen. The second antibody is linked to a reporter molecule which is used to indicate the binding of the second antibody to the antigen.
    • An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody. Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.
    • By “reporter molecule” as used in the present specification, is meant a molecule which, by its chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionuclide containing molecules (i.e. radioisotopes) and chemiluminescent molecules.
    • In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, beta-galactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable color change. Examples of suitable enzymes include alkaline phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of antigen which was present in the sample. “Reporter molecule” also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.
    • Alternately, fluorescent compounds, such as fluorecein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic color visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescence and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.
  • (v) Without limiting the present invention to any one theory or mode of action, during development gene expression is regulated by processes that alter the availability of genes for expression in different cell lineages without any alteration in gene sequence, and these states can be inherited through a cell division—a process called epigenetic inheritance. Epigenetic inheritance is determined by a combination of DNA methylation (modification of cytosine to give 5-methyl cytosine, 5 meC) and by modifications of the histone chromosomal proteins that package DNA. Thus methylation of DNA at CpG sites and modifications such as deacetylation of histone H3 on lysine 9, and methylation on lysine 9 or 27 are associated with inactive chromatin, while the converse state of a lack of DNA methylation, acetylation of lysine 9 of histone H3 is associated with open chromatin and active gene expression. In cancer, this epigenetic regulation of gene expression is frequently found to be disrupted (Esteller & Herman, 2000; Jones & Baylin, 2002). Genes such as tumour suppressor or metastasis suppressor genes are often found to be silenced by DNA methylation, while other genes may be hypomethylated and inappropriately expressed. Thus, among genes that elevated or inappropriate expression in cancer, this in some instances is characterised by a loss of methylation of the promoter or regulatory region of the gene.
    • A variety of methods are available for detection of aberrantly methylated DNA of a specific gene, even in the presence of a large excess of normal DNA (Clark 2007). Thus, elevated expression of certain genes may be detected through detection of the presence of hypomethylated sequences in tissue, bodily fluid or other patient samples.
    • Epigenetic alterations and chromatin changes in cancer are also evident in the altered association of modified histones with specific genes (Esteller, 2007); for example activated genes are often found associated with histone H3 that is acetylated on lysine 9 and methylated on lysine 4. The use of antibodies targeted to altered histones allows for the isolation of DNA associated with particular chromatin states and has potential use in cancer diagnosis.
  • (vi) Determining altered expression of protein neoplastic markers on the cell surface, for example by immunohistochemistry.
  • (vii) Determining altered protein expression based on any suitable functional test, enzymatic test or immunological test in addition to those detailed in points (iv) and (v) above.


A person of ordinary skill in the art could determine, as a matter of routine procedure, the appropriateness of applying a given method to a particular type of biological sample.


Without limiting the present invention in any way, and as detailed above, gene expression levels can be measured by a variety of methods known in the art. For example, gene transcription or translation products can be measured. Gene transcription products, i.e., RNA, can be measured, for example, by hybridization assays, run-off assays., Northern blots, or other methods known in the art.


Hybridization assays generally involve the use of oligonucleotide probes that hybridize to the single-stranded RNA transcription products. Thus, the oligonucleotide probes are complementary to the transcribed RNA expression product. Typically, a sequence-specific probe can be directed to hybridize to RNA or cDNA. A “nucleic acid probe”, as used herein, can be a DNA probe or an RNA probe that hybridizes to a complementary sequence. One of skill in the art would know how to design such a probe such that sequence specific hybridization will occur. One of skill in the art will further know how to quantify the amount of sequence specific hybridization as a measure of the amount of gene expression for the gene was transcribed to produce the specific RNA.


The hybridization sample is maintained under conditions that are sufficient to allow specific hybridization of the nucleic acid probe to a specific gene expression product. “Specific hybridization”, as used herein, indicates near exact hybridization (e.g., with few if any mismatches). Specific hybridization can be performed under high stringency conditions or moderate stringency conditions. In one embodiment, the hybridization conditions for specific hybridization are high stringency. For example, certain high stringency conditions can be used to distinguish perfectly complementary nucleic acids from those of less complementarity. “High stringency conditions”, “moderate stringency conditions” and “low stringency conditions” for nucleic acid hybridizations are explained on pages 2.10.1-2.10.16 and pages 6.3.1-6.3.6 in Current Protocols in Molecular Biology (Ausubel, F. et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998), the entire teachings of which are incorporated by reference herein). The exact conditions that determine the stringency of hybridization depend not only on ionic strength (e.g., 0.2.times.SSC, 0.1.times.SSC), temperature (e.g., room temperature, 42° C., 68° C.) and the concentration of destabilizing agents such as formamide or denaturing agents such as SDS, but also on factors such as the length of the nucleic acid sequence, base composition, percent mismatch between hybridizing sequences and the frequency of occurrence of subsets of that sequence within other non-identical sequences. Thus, equivalent conditions can be determined by varying one or more of these parameters while maintaining a similar degree of identity or similarity between the two nucleic acid molecules. Typically, conditions are used such that sequences at least about 60%, at least about 70%, at least about 80%, at least about 90% or at least about 95% or more identical to each other remain hybridized to one another. By varying hybridization conditions from a level of stringency at which no hybridization occurs to a level at which hybridization is first observed, conditions that will allow a given sequence to hybridize (e.g., selectively) with the most complementary sequences in the sample can be determined.


Exemplary conditions that describe the determination of wash conditions for moderate or low stringency conditions are described in Kraus, M. and Aaronson, S., 1991. Methods Enzymol., 200:546-556; and in, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, (1998). Washing is the step in which conditions are usually set so as to determine a minimum level of complementarity of the hybrids. Generally, starting from the lowest temperature at which only homologous hybridization occurs, each ° C. by which the final wash temperature is reduced (holding SSC concentration constant) allows an increase by 1% in the maximum mismatch percentage among the sequences that hybridize. Generally, doubling the concentration of SSC results in an increase in Tm of about 17° C. Using these guidelines, the wash temperature can be determined empirically for high, moderate or low stringency, depending on the level of mismatch sought. For example, a low stringency wash can comprise washing in a solution containing 0.2.times.SSC/0.1% SDS for 10 minutes at room temperature; a moderate stringency wash can comprise washing in a pre-warmed solution (42° C.) solution containing 0.2.times.SSC/0.1% SDS for 15 minutes at 42° C.; and a high stringency wash can comprise washing in pre-warmed (68° C.) solution containing 0.1.times.SSC/0.1% SDS for 15 minutes at 68° C. Furthermore, washes can be performed repeatedly or sequentially to obtain a desired result as known in the art. Equivalent conditions can be determined by varying one or more of the parameters given as an example, as known in the art, while maintaining a similar degree of complementarity between the target nucleic acid molecule and the primer or probe used (e.g., the sequence to be hybridized).


A related aspect of the present invention provides a molecular array, which array comprises a plurality of:

  • (i) nucleic acid molecules comprising a nucleotide sequence corresponding to any one or more of the neoplastic marker genes hereinbefore described or a sequence exhibiting at least 80% identity thereto or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
  • (ii) nucleic acid molecules comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
  • (iii) nucleic acid probes or oligonucleotides comprising a nucleotide sequence capable of hybridising to any one or more of the sequences of (i) under medium stringency conditions or a functional derivative, fragment, variant or homologue of said nucleic acid molecule; or
  • (iv) probes capable of binding to any one or more of the proteins encoded by the nucleic acid molecules of (i) or a derivative, fragment or, homologue thereof


    wherein the level of expression of said marker genes of (i) or proteins of (iv) is indicative of the neoplastic state of a cell or cellular subpopulation derived from the large intestine.


Preferably, said percent identity is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%.


Low stringency includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for washing conditions. In general, washing is carried out at Tm=69.3+0.41 (G+C) % [19]=−12° C. However, the Tm of a duplex DNA decreases by 1° C. with every increase of 1% in the number of mismatched based pairs (Bonner et al (1973) J. Mol. Biol. 81:123).


Preferably, the subject probes are designed to bind to the nucleic acid or protein to which they are directed with a level of specificity which minimises the incidence of non-specific reactivity. However, it would be appreciated that it may not be possible to eliminate all potential cross-reactivity or non-specific reactivity, this being an inherent limitation of any probe based system.


In terms of the probes which are used to detect the subject proteins, they may take any suitable form including antibodies and aptamers.


A library or array of nucleic acid or protein probes provides rich and highly valuable information. Further, two or more arrays or profiles (information obtained from use of an array) of such sequences are useful tools for comparing a test set of results with a reference, such as another sample or stored calibrator. In using an array, individual probes typically are immobilized at separate locations and allowed to react for binding reactions. Primers associated with assembled sets of markers are useful for either preparing libraries of sequences or directly detecting markers from other biological samples.


A library (or array, when referring to physically separated nucleic acids corresponding to at least some sequences in a library) of gene markers exhibits highly desirable properties. These properties are associated with specific conditions, and may be characterized as regulatory profiles. A profile, as termed here refers to a set of members that provides diagnostic information of the tissue from which the markers were originally derived. A profile in many instances comprises a series of spots on an array made from deposited sequences.


A characteristic patient profile is generally prepared by use of an array. An array profile may be compared with one or more other array profiles or other reference profiles. The comparative results can provide rich information pertaining to disease states, developmental state, receptiveness to therapy and other information about the patient.


Another aspect of the present invention provides a diagnostic kit for assaying biological samples comprising an agent for detecting one or more neoplastic markers and reagents useful for facilitating the detection by said agent. Further means may also be included, for example, to receive a biological sample. The agent may be any suitable detecting molecule.


The present invention is further described by the following non-limiting examples:


Example 1
Methods and Materials

Affymetrix GeneChip data


Gene expression profiling data and accompanying clinical data was purchased from GeneLogic Inc (Gaithersburg, Md. USA). For each tissue analyzed, oligonucleotide microarray data for 44,928 probesets (Affymetrix HGU133A & HGU133B, combined), experimental and clinical descriptors, and digitally archived microscopy images of histological preparations were received. A quality control analysis was performed to remove arrays not meeting essential quality control measures as defined by the manufacturer.


Transcript expression levels were calculated by both Microarray Suite (MAS) 5.0 (Affymetrix) and the Robust Multichip Average (RMA) normalization techniques (Affymetrix. GeneChip expression data analysis fundamentals. Affymetrix, Santa Clara, Calif. USA, 2001; Hubbell et al. Bioinformatics, 18:1585-1592, 2002; Irizarry et al. Nucleic Acid Research, 31, 2003) MAS normalized data was used for performing standard quality control routines and the final data set was normalized with RMA for all subsequent analyses.


Univariate Differential Expression

Differentially expressed gene transcripts were identified using a moderated t-test implemented in the limma library downloaded from the Bioconductor repository for R. (G. K. Smyth. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3, 2004; G K Smyth. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, 2005). Significance estimates (p-values) were corrected to adjust for multiple hypothesis testing using the Bonferonni correction.


Tissue Specific Expression Patterns

To construct a filter for hypothetically ‘turned on’ gene expression the mean expression level for all 44,928 probesets across the full range of 454 tissues was first estimated. To estimate an expression on/off threshold, the 44,928 mean values were ranked and the expression value equivalent to the 30th percentile across the dataset calculated. This arbitrary threshold was chosen because it was theorized that the majority of transcripts (and presumably more than 30%) in a given specimen should be transcriptionally silenced. Thus this threshold represents a conservative upper bound for what is estimated as non-specific, or background, signal.


Gene Symbol Annotations

To map Affymetrix probeset names to official gene symbols the annotation metadata available from Bioconductor was used. hgu133plus2 library version 1.16.0, which was assembled using Entrez Gene data downloaded on 15 Mar. 2007, was used.


Estimates of Performance Characteristics

Diagnostic utility for each table of markers shown herein was estimated including: sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratio positive, likelihood ratio negative. These estimates were calculated in the same data used to discover the markers and will therefore potentially overestimate the performance characteristics in future tissue samples. To improve the generalisabilty of the estimates a modified jackknife resampling technique was used to calculate a less biased value for each characteristic.


Results

A range of univariate statistical tests were applied on Affymetrix oligonucleotide microarray data to reveal human genes that could be used to discriminate colorectal neoplastic tissues from non-neoplastic tissues. There were further identified a number of gene transcripts that appear to be useful for differentiating colorectal adenomas from colorectal carcinoma. Also identified were a subset of these transcripts that may have particular diagnostic utility because due to the protein products being either secreted or displayed on the cell surface of epithelial cells. Finally, there were identified a further subset of transcripts expressed specifically in neoplastic tissues and at low- or near-background levels in non-neoplastic tissues.


Genes Differentially Expressed in Neoplastic Tissues

From a total GeneChip set of 44,928 probesets it was determined that over 11,000 probesets were differentially expressed by moderated t-test using the limma package in BioConductor (G. K. Smyth, 2004 supra) employing conservative (Bonferroni) multiple test correction. When this list was further filtered to include only those probesets demonstrating a 2-fold or greater mean expression change between the neoplastic and non-neoplastic tissues, 206 probesets were found to be expressed higher in neoplasias relative to normals.


These 205 probesets were annotated using the most recent metadata and annotation packages available for the chips. The 205 overexpressed probesets were mapped to 174 gene symbols.

















Δ-expression
ProbeSet ID
Gene Symbol Maps









UP
205
157










Hypothetical Markers Specific for Colorectal Neoplasia

While differential gene expression patterns are useful for diagnostic purposes, this project also seeks to identify diagnostic proteins shed into the lumen of the gut by neoplastic colorectal epithelia. To discover candidate proteins the list of differentially expressed transcripts were filtered with a selection criteria aimed at identifying markers specifically expressed in colorectal neoplasia tissues. This filter criteria is based on a theoretical assumption that most genes on the GeneChip will be turned ‘off’ and that any microarray signals for such ‘off’ transcripts will reflect technical assay background and non-specific oligonucleotide binding. Accordingly, to select genes specifically expressed in neoplastic tumours (i.e. ‘on’) the non-neoplastic signals were compared with a hypothetical background signal threshold from across all genes on the chip. By design, all transcripts in the candidate pool from which the ‘on’ transcripts are chosen are at least two fold overexpressed in the diseased tissues. Combined, it is hypothesized that these criteria yield the subset of differentially expressed genes that are specifically expressed in neoplasia. The expression profile for a representative ‘on’ transcript is shown in FIG. 1.


Genes Differentially Expressed Between Adenomas and Cancer Tissues

There were 33 transcripts observed that were differentially expressed at least two-fold higher in adenoma tissues relative to cancer tissues. In particular, there were identified several transcripts that exhibit an expression pattern specific for adenomas, including SLITRK6 and L1TD1, shown in FIG. 2.


Further, there were also identified cancer specific transcripts. The expression profile of one such transcript, COL11A1 is shown in FIG. 3.


Example 2
Probesets Elevated in Neoplasia

Differential expression analysis was applied to Affymetrix gene chip data measuring RNA concentration in 454 colorectal tissues including 161 adenocarcinoma specimens, 29 adenoma specimens, 42 colitis specimens and 222 non-diseased tissues. Using conservative corrections for multiple hypothesis testing, it was determined that over 25% of the 44,928 probesets measured in each tissue experiment were differentially expressed between the 190 neoplasia specimens and 264 non-neoplasia controls. To identify robust biomarkers for colorectal neoplasia the list of putative probeset biomarkers were further filtered to include only those probesets shown to be expressed at least 2-fold higher in neoplastic vs. non-neoplastic tissues.


205 probesets hybridising to approximately 157 putative genes were observed to be expressed at a statistically significant higher level in neoplastic tissues relative to non-neoplastic controls.


Validation/Hypothesis Testing

To validate these discovery results the hybridisation of 199 candidate probesets were measured against RNA extracts from 68 clinical specimens comprising 19 adenomas, 19 adenocarcinomas, and 30 non-diseased controls using a custom-designed ‘Adenoma Gene Chip’. Six (6) probesets were not tested as they were not included on the custom design. It was confirmed that 186/199 (88%) of the target probesets or probesets which also hybridise to the target locus were likewise differentially expressed (P<0.05) in these independently-derived tissues. The results of testing these probesets in 68 independently collected clinical specimens is shown in Table 1.


We further tested the 142 of the 157 unique gene loci to which the 205 probesets are understood to hybridise. We note the remaining 15 gene symbols were not represented in the validation data. We observed that 133 of 142 gene symbols were represented in the validation data by at least one differentially expressed probeset and many symbols included multiple probesets against regions across the putative locus. A complete list of probesets that bind to target loci is shown in Table 2.


Conclusion

The candidate probesets shown in Tables 1 and 2 are differentially expressed in neoplastic colorectal tissues compared to non-neoplastic controls.


Example 3
Probesets Demonstrating a Neoplasia-Specific Profile

During analysis of the data, a novel expression profile was observed between neoplastic and non-neoplastic phenotypes. It was hypothesized that a subset of quantitatively differentially expressed probesets are furthermore qualitatively differentially expressed. Such probesets show evidence of a neoplasia-specific gene expression profile, i.e. these probesets appear to be expressed above background levels in neoplastic tissues only. This observation and the resulting hypothesis are based on two principles:

  • 1. That the majority of human transcripts that are present on a genome-wide GeneChip (e.g. U133) will not likely be expressed in the colorectal mucosa; and
  • 2. That microarray binding intensity for such ‘off’ probesets to labelled cRNA will reflect technical assay background, i.e. non-specific oligonucleotide binding.


To generate a list of neoplasia specific probesets the non-neoplastic intensity of differentially expressed probesets was compared with a hypothetical background signal threshold from across all probesets on the chip. By design, all probesets in the candidate pool from which the ‘on’ transcripts are chosen are at least two fold over-expressed in the diseased tissues. Combined, these criteria yield the subset of differentially expressed transcript species that are specifically expressed in neoplasia.


Validation/Hypothesis Testing

The custom gene chip design precludes testing the hypothetically neoplasia-specific probesets using the same principles as used for discovery. In particular, the custom gene chip (by design) does not contain a large pool of probesets anticipated to hybridise to hypothetically ‘off’/‘non-transcribed’ gene transcripts. This is because the custom gene chip design is biased toward differentially expressed transcripts in colorectal neoplastic tissues.


The usual differential expression testing (limma) was therefore to these candidate probesets for neoplasia-specific transcripts. Of the 33 probesets on the custom gene chip, 32 probesets (or probesets which bind to the same locus) were differentially expressed between the 38 neoplastic tissues (adenoma & cancer) and non-neoplastic controls. The results of these validation experiments is shown in Table 3.


All probesets which are known to hybridise to the gene loci to which the 33 probesets claimed herein were tested. Of the 32 putative gene loci targeted by the probesets, 29 were present in the validation data. Twenty-eight (28) of these 29 gene symbols demonstrated at least one hybridising probeset which was differentially expressed in the neoplastic tissues. Results for these experiments, including all probesets that bind to each target locus in a differentially expressed manner are shown in Table 4.


Example 4
Probesets Useful for Characterizing Neoplastic Tissues

Differential expression analysis was applied to Affymetrix gene chip data measuring RNA concentration in neoplastic tissues including 161 adenocarcinoma specimens and 29 adenoma specimens. It was observed that 43 probesets hybridizing to approximately 33 putative gene symbols were expressed higher (P<0.05) in adenoma tissues relative to cancer tissues. Conversely, 145 probesets (104 gene symbols) were identified to be expressed higher in cancer relative to adenomas.


Validation/Hypothesis Testing

188 (43+145) of these probesets were then measured in a set of independent clinical specimens including 19 adenoma tissues and 19 cancer tissues. It was confirmed that 158 (30+128) of the target probesets (or probesets against the same gene locus) were likewise differentially expressed (P<0.05) in these independently-derived tissues. Probesets elevated in adenoma and cancers relative to each other are shown in Table 5 and Table 6 respectively.


It was further observed that 137 (33+104) gene loci are diagnostically useful for discriminating colorectal adenomas and cancers relative to each phenotype. The validation data included probesets designed to hybridise to 128 of these candidate gene symbols. It was observed that 21 of the 31 genes elevated in adenomas relative to cancers were likewise differentially expressed by at least one probeset. Of the 97 gene symbols elevated in cancer relative to adenoma it was confirmed that 89 gene symbols demonstrated at least one probeset in the validation data to be likewise differentially expressed. The validation testing of the adenoma and cancer elevated gene loci is shown in Table 7 and Table 8, respectively.


Conclusion

It was concluded that the candidate probesets shown in FIXME are differentially expressed between adenomatous and adenocarcinoma tissues and thus useful for distinguishing these tissues. Gene transcripts that hybridise to these probesets are thus diagnostically informative in a clinical setting to classify such neoplastic tissues.


Example 5
Materials and Methods for Examples 2 to 3

Gene expression profiling data measured in 454 colorectal tissue specimens including neoplastic, normal and non-neoplastic disease controls was purchased from GeneLogic Inc (Gaithersburg, Md. USA). For each tissue specimen an Affymetrix (Santa Clara, Calif. USA) oligonucleotide microarray data totalling 44,928 probesets (HGU133A & HGU133B, combined), experimental and clinical descriptors, and digitally archived microscopy images of histological preparations was received. Prior to applying discovery methods to these data extensive quality control methods were carried out, including statistical exploration, review of clinical records for consistency and histopathology audit of a random sample of arrays. Microarrays that did not meet acceptable quality criteria were removed from the analysis.


Hypothesis Testing

Candidate transcription biomarkers were tested using a custom oligonucleotide microarray of 25-mer oligonucleotide probesets designed to hybridise to candidate RNA transcripts identified during discovery. Differential expression hypotheses were tested using RNA extracts derived from independently collected clinical samples comprising 30 normal colorectal tissues, 19 colorectal adenoma tissues, and 19 colorectal adenocarcinoma tissues. Each RNA extract was confirmed to meet strict quality control criteria.


Colorectal Tissue Specimens

All tissues used for hypothesis testing were obtained from a tertiary referral hospital tissue bank in metropolitan Adelaide, Australia (Repatriation General Hospital and Flinders Medical Centre). Access to the tissue bank for this research was approved by the Research and Ethics Committee of the Repatriation General Hospital and the Ethics Committee of Flinders Medical Centre. Informed patient consent was received for each tissue studied.


Following surgical resection, specimens were placed in a sterile receptacle and collected from theatre. The time from operative resection to collection from theatre was variable but not more than 30 minutes. Samples, approximately 125 mm3 (5×5×5 mm) in size, were taken from the macroscopically normal tissue as far from pathology as possible, defined both by colonic region as well as by distance either proximal or distal to the pathology. Tissues were placed in cryovials, then immediately immersed in liquid nitrogen and stored at −150 C until processing.


RNA Extraction

RNA extractions were performed using Trizol(R) reagent (Invitrogen, Carlsbad, Calif., USA) as per manufacturer's instructions. Each sample was homogenised in 300 μL of Trizol reagent using a modified Dremel drill and sterilised disposable pestles. An additional 200 μL of Trizol reagent was added to the homogenate and samples were incubated at RT for 10 minutes. 100 μL of chloroform was then added, samples were shaken vortexed for 15 seconds, and incubated at RT for 3 further minutes. The aqueous phase containing target RNA was obtained by centrifugation at 12,000 rpm for 15 min, 40 C. RNA was then precipitated by incubating samples at RT for 10 min with 250 μL of isopropanol. Purified RNA precipitate was collected by centrifugation at 12,000 rpm for 10 minutes, 40 C and supernatants were discarded. Pellets were then washed with 1 mL 75% ethanol, followed by vortexing and centrifugation at 7,500 g for 8 min, 40 C. Finally, pellets were air-dried for 5 min and resuspended in 80 μL of RNase free water. To improve subsequent solubility samples were incubated at 55° C. for 10 min. RNA was quantified by measuring the optical density at A260/280 nm. RNA quality was assessed by electrophoresis on a 1.2% agarose formaldehyde gel.


Gene Chip Processing

To test hypotheses related to biomarker candidates for colorectal neoplasia RNA extracts were assayed using a custom GeneChip designed in collaboration with Affymetrix (Santa Clara, Calif. USA). These custom GeneChips were processed using the standard Affymetrix protocol developed for the HU Gene ST 1.0 array described in (Affy:WTAssay).


Statistical Software and Data Processing

The R statistics environment R and BioConductor libraries (BioConductor, www.bioconductor.org) (BIOC) were used for most analyses. To map probeset IDs to gene symbol on the Custom GeneChip, hgu133plus2 library version 2.2.0, which was assembled using Entrez Gene data downloaded on Apr 18 12:30:55 2008 (BIOC) was used.


Hypothesis Testing of Differentially Expressed Biomarkers

To assess differential expression between tissue classes, the Student's t test for equal means between two samples or the robust variant provided by the limma library (Smyth)(limma) was used. The impact of false discovery due to multiple hypothesis testing was mitigated by applying a Bonferroni adjustment to P values in the discovery process (MHT:Bonf). For hypotheses testing the slightly less conservative multiple hypothesis testing correction of Benjamini & Hochberg, which aims to control the false discovery rate of solutions (MHT:BH) was applied.


Discovery of Tissue-Specific Gene Expression Patterns

Discovery methods using gene expression data often yield numerous candidates, many of which are not suitable for commercial products because they involve subtle gene expression differences that would be difficult to detect in laboratory practice. Pepe et al. note that the ‘ideal’ biomarker is detectable in tumor tissue but not detectable (at all) in non-tumour tissue (Pepe:biomarker:development.) To bias toward candidates that meet this criterion, an analysis method was developed that aims to enrich the candidates for biomarkers whose qualitative absence or presence measurement is diagnostic for the phenotype of interest. This method attempts to select candidates that show a prototypical ‘turned-on’ or ‘turned-off’ pattern relative to an estimate of the background/noise expression across the chip. Such RNA transcripts are more likely to correlate with downstream translated proteins with diagnostic potential or to predict upstream genomic changes (e.g. methylation status) that can be used diagnostically. This focus on qualitative rather than quantitative outcomes may simplify the product development process for such biomarkers.


The method is based on the assumption that the pool of extracted RNA species in any given tissue (e.g. colorectal mucosae) will specifically bind to a relatively small subset of the full set of probesets on a GeneChip designed to measure the whole genome. On this assumption, it is estimated that most probesets on a full human gene chip will not exhibit specific, high-intensity signals.


This observation is utilised to approximate the background or ‘non-specific binding’ across the chip by choosing a theoretical level equal to the value of e.g. lowest 30% quantile of the ranked mean values. This quantile can be arbitrarily set to some level below which a reasonable assumption is made that the signals do not represent above-background RNA binding. Finally, this background estimate is used as a threshold to estimate the ‘OFF’ probesets in an experiment for, say, the non-neoplastic tissue specimens.


Conversely, probesets which are 1) expressed above this theoretical threshold level and 2) at differentially higher levels in the tumour specimens may be a tumour specific candidate biomarker. In this case the concept of ‘fold-change’ thresholds can also be conveniently applied to further emphasize the concept of absolute expression increases in a putatively ‘ON’ probeset.


Given the assumption of low background binding for a sizeable fraction of the measured probesets, this method was only used in the large GeneLogic data and discovery. To construct a filter for hypothetically ‘turned on’ biomarkers in the GeneLogic discovery data, the mean expression level for all 44,928 probesets was first estimated across the full range of 454 tissues. The 44,928 mean values were then ranked and the expression value equivalent to the 25th percentile across the dataset calculated. This arbitrary threshold was chosen because it was theorized that the majority of transcripts (and presumably more than 25%) in a given specimen should exhibit low concentration which effectively transcriptional silence. Thus this threshold represents a conservative upper bound for what is estimated as non-specific, or background, expression.


Example 6
Determine Gene Identity of a Nucleic Acid Sequence of Interest which is Define by an Affymetrix Probeset

BLAST the sequence of interest using online available Basic Local Alignment Search Tools [BLAST]. e.g. NCBI/BLAST

    • (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
  • (a) Select “Human” in BLAST ASSEMBLED GENOMES on the web page http://blast.ncbi.nlm.nih.gov/Blast.cgi
  • (b) Leave the default settings, i.e.:
    • Database: Genome (all assemblies)
    • Program: megaBLAST: compare highly related nucleotide sequences
    • Optional parameters: Expect: 0.01, Filter: default, Descriptions: 100, Alignments: 100
  • (c) Copy/Paste Sequence into the “BLAST” window
  • (d) Click “Begin Search”
  • (e) Click “View Report”


Assessment of the Open BLAST Search Results

Multiple significant sequence alignments may be identified when “blasting” the sequence.


Identify gene nomenclature of the identified sequence match

  • (a) Click the link to one of the identified hits
  • (b) The new page will schematically depict the position of the hit on one chromosome. It will be apparent which gene is hit.
  • (c) Retrieve the “hit” sequence clicking on the link
  • (d) Do a search for the gene in the provided “search” window. This provides the gene nucleotide coordinates for the gene.


    Determine promiscuity of Sequence
  • (a) Open the NCBI/BLAST tool, (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
  • (b) Click on “nucleotide Blast” under “basic BLAST”
  • (c) Copy/paste the sequence of interest into the “Query Sequence” window
  • (d) Click “Blast”.


    Assessment of the nBLAST Search Results of the Sequence
  • (a) The nBLAST exercise with the Sequence may result in multiple Blast hits of which some accession entry numbers are listed in “Description”.
  • (b) These hits should be reviewed.


    Determine location of the Sequence in the Gene


The Ensembl database is an online database, which produces and maintains automatic annotation selected eukaryotic genomes (www.ensembl.orq/index.html)


Identify Location of the Sequence in the Gene



  • (a) Set “Search” to Homo Sapiens, Type “the gene name” in the provided Search Field Ensemble.org/index.html)

  • (b) Click “Go”

  • (c) Click the “vega protein_coding Gene: OTTHUMG000000144184” link to get an annotation report

  • (d) Click on “Gene DAS Report” to retrieve information regarding Alternative splice site database: Type “the gene name” in search field
    • Click on “the gene entry”
    • Scroll down to “evidence”
    • Review alternative splice sites
    • Click “Confirmed intron/exons” to get a list of coordinates for the exons & introns.


      Alternative Splicing and/or Transcription



The AceView Database provides curated and non-redundant sequence representation of all public mRNA sequences. The database is available through NCBI: http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/


Further Investigation of the Gene mRNA Transcripts

  • (a) Type “the gene name” into the provided “search” field
  • (b) Click “Go”
  • (c) The following information is available from the resulting entry in AceView:
    • The number of cDNA clones from which the gene is constructed (ie originated-from experimental work involving isolation of mRNA)
    • The mRNAs predicted to be produced by the gene
    • The existence of non-overlapping alternative exons and validated alternative polyadenylation sites
    • The existence of truncations
    • The possibility of regulated alternate expression
    • Introns recorded as participating in alternatively splicing of the gene
  • (d) Classic splice site motives


    Application of Method to LOC643911/hCG1815491


Materials and Methods
Extraction of RNA

RNA extractions were performed using Trizol(R) reagent (Invitrogen, Carlsbad, Calif., USA) as per manufacturer's instructions. Each sample was homogenised in 300 μL of Trizol reagent using a modified dremel drill and sterilised disposable pestles. Additional 200 μL of Trizol reagent was added to the homogenate and samples were incubated at RT for 10 minutes. 100 μL, of chloroform was then added, samples were shaken vortexed for 15 seconds, and incubated at RT for 3 further minutes. The aqueous phase containing target RNA was obtained by centrifugation at 12,000 rpm for 15 min, 40. C. RNA was then precipitated by incubating samples at RT for 10 min with 250 μL of isopropanol. Purified RNA precipitate was collected by centrifugation at 12,000 rpm for 10 minutes, 40. C and supernatants were discarded. Pellets were then washed with 1 mL 75% ethanol, followed by vortexing and centrifugation at 7,500 g for 8 min, 40° C. Finally, pellets were air-dried for 5 min and resuspended in 80 μL, of RNase free water. To improve subsequent solubility samples were incubated at 55. C for 10 min. RNA was quantified by measuring the optical density at A260/280 nm. RNA quality was assessed by electrophoresis on a 1.2% agarose formaldehyde gel.


Gene Chip Processing

RNA samples to analyze on Human Exon 1.0 ST GeneChips were processed using the Affymetrix WT target labeling and control kit (part#900652) following the protocol described in (Affymetrix 2007 P/N 701880 Rev.4). Briefly: First cycle cDNA was synthesized from 100 ng ribosomal reduced RNA using random hexamer primers tagged with T7 promoter sequence and SuperScript II (Invitrogen, Carlsbad Calif.), this was followed by DNA Polymerase I synthesis of the second strand cDNA. Anti-sense cRNA was then synthesized using T7 polymerase. Second cycle sense cDNA was then synthesised using SuperScript II, dNTP+ dUTP, and random hexamers to produce sense strand cDNA incorporating uracil. This single stranded uracil containing cDNA was then fragmented using a combination of uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease1 (APE 1). Finally the DNA was biotin labelled using terminal deoxynucleotidyl transferase (TdT) and the Affymetrix proprietary DNA Labeling reagent. Hybridization to the arrays was carried out at 45° C. for 16-18 hours.


Washing and staining of the hybridized GeneChips was carried out using the Affymetrix Fluidics Station 450 and scanned with the Affymetrix Scanner 3000 following recommended protocols.


SYBR Green Based Quantitative Real Time-PCR

Quantitative real time polymerase chain reaction was performed on RNA isolated from clinical samples for the amplification and detection of the various hCG1815491 transcripts.


Firstly cDNA was synthesized from 2 ug of total RNA using the Applied Biosystems High Capacity Reverse transcription Kit (P/N 4368814). After synthesis the reaction was diluted 1:2 with water to obtain a final volume of 40 ul and 1 ul of this diluted cDNA used in subsequent PCR reactions.


PCR was performed in a 25 ul volume using 12.5 ul Promega 2x PCR master mix (P/N M7502), 1.5 ul 5 uM forward primer, 1.5 ul 5 uM reverse primer, 7.875 ul water, 0.625 ul of a 1:3000 dilution of 10,000× stock of SYBR green 1 pure dye (Invitrogen P/N S7567), and 1 ul of cDNA.


Cycling conditions for amplification were 95° for 2 minutes×1 cycle, 95° for 15 seconds and 60° for 1 minute×40 cycles. The amplification reactions were performed in a Corbett Research Rotor-Gene RG3000 or a Roche LightCycler480 real-time PCR machine. When the Roche LightCycler480 real-time PCR machine was used for amplification the reaction volume was reduced to 10 ul and performed in a 384 well plate but the relative ratios between all the components remained the same. Final results were calculated using the ΔΔCt method with the expression levels of the various hCG1815491 transcripts being calculated relative to the expression level of the endogenous house keeping gene HPRT.


End-Point PCR

End point PCR was performed on RNA isolated from clinical samples for the various hCG1815491 transcripts. Conditions were identical to those described for the SYBR green assay above but with the SYBR green dye being replaced with water. The amplification reactions were performed in a MJ Research PTC-200 thermal cycler. 2.5 μl of the amplified products were analysed on 2% agarose E-gel (Invitrogen) along with a 100-base pair DNA Ladder Marker.


Results

The nucleotide structure and expression levels of transcripts related to hCG1815491 was analysed based on the identification of diagnostic utility of Affymetrix probesets 238021_s_at and 238022_at from the gene chip analysis.


The gene hCG1815491 is currently represented in NCBI as a single RefSeq sequence, XM93911. The RefSeq sequence of hCG1815491 is based on 89 GenBank accessions from 83 cDNA clones. Prior to March 2006, these clones were predicted to represent two overlapping genes, LOC388279 and LOC650242 (the latter also known as LOC643911). In March 2006, the human genome database was filtered against clone rearrangements, co-aligned with the genome and clustered in a minimal non-redundant way. As a result, LOC388272 and LOC650242 were merged into one gene named hCG1815491 (earlier references to hCG1815491 are: LOC388279, LOC643911, LOC650242, XM944116, AF275804, XM373688).


It has been determined that the Ref Sequence, which is defined by the genomic coordinates 8579310 to 8562303 on human chromosome 16 as defined by the NCBI contig reference NT010498.15|Hs1610655, NCBI 36 Mar. 2006 genome encompasses hCG1815491. The 10 predicted RNA variants derived from this gene have been aligned with the genomic nucleotide sequence residing in the map region 8579310 to 8562303. This alignment analysis revealed the existence of at least 6 exons of which several are alternatively spliced. The identified exons are in contrast to the just 4 exons specified in the NCBI hCG1815491 RefSeq XM93911. Two additional putative exons were also identified in the Ref Sequence by examination of included probesets on Affymetrix Genechip HuGene Exon 1.0 that target nucleotide sequences embedded in the Ref Sequence. The identified and expanded exon-intron structure of hCG1815491 have been used to design specific oligonucleotide primers, which allowed measurement of the expression of RNA variants generated from the Ref Sequence by using PCR-based methodology (FIG. 4)


Example 7

Immunohistochemistry is a useful method for evaluating changes in local expression of up or down-regulated markers in human tissue.


Materials and Methods:

Four micrometre sections were incubated in a universal decloaking buffer for 75 minutes at 80 μL to expose masked epitopes. Protein expression was determined using an antibody targeting the C-terminal domain of Mesothelin (MSLN) on colonic biopsies from 30 patients (10 normals, 10 cancers, 10 adenomas). Antibodies were applied for one hour at room temperature. After washing, sections were incubated with polymeric horse-radish peroxidase. Antibody localization was visualized using 3′3′ diaminobenzidine.


Result:

There was a marked upregulation of MSLN in the adenoma and cancer tissues compared to the normal controls. The normal tissues showed mild staining for MSLN in the cytoplasm of the colonic epithelium but the cancer and particularly the adenomas tissues shows significant upregulation of MSLN in their multilayered epithelium. This upregulation was observed in all 10 adenomas tissue and in 9 out of the 10 cancer tissues. These patterns of staining are illustrated in FIGS. 4, 5 and 6.


Conclusion:

Elevated expression of MSLN has been detected in colon neoplasia, confirming the upregulation observed in the mRNA expression data and verifying the diagnostic utility of both the MSLN mRNA and protein for detection of colorectal neoplasia.


Example 8
Evidence of MMP3 Protein Expression in Stools of Patients with Colorectal Neoplasia

Affymetrix probeset designated 205828_at was identified to be expressed higher in 190 neoplastic tissue specimens relative to 264 non-neoplastic specimens. The probeset 205828_at hybridizes to RNA transcribed from the gene encoding Matrix Metalloproteinase 3 (MMP3) NM002422. The differential expression profile of probeset 205828_at was further demonstrated by profiling RNA collected from 68 independent clinical specimens comprising 19 adenomas, 19 adenocarcinomas and 30 non-disease controls, FIG. 7.


Materials and Methods

A commercially available bead-suspension immunoassay targeting the protein MMP3 was purchased from R&D Systems (MMP Kit reagents LMP000 and LMP513) to measure MMP3 concentration in stools of human patients diagnosed with colorectal neoplasia. Proteins were extracted from stool specimens using a phosphate buffered saline wash from 6 non-disease controls, 10 adenoma and 11 adenocarcinoma subjects. The resulting protein extracts were analyzed using the Luminex bead-based suspension MMP3 assay as recommended by manufacturer.


Results

An elevated endogenous expression of MMP3 was observed in stool specimens from patients diagnosed with colon adenomas or adenocarcinomas relative to non-neoplastic controls (FIG. 8).


Conclusion

Measurement of MMP3 protein in bodily fluids such as stool samples is useful for diagnosing colorectal neoplasia.


TABLES

Probeset designations include both HG-133plus2 probeset IDs and Human Gene 1.0ST array probe ids. The latter can be conveniently mapped to Transcript Cluster ID using the Human Gene 1.0ST probe tab file provided by Affymetrix (http://www.affymetrix.com/Auth/analysis/downloads/na22/wtgene/HuGene-10-st-v1.probe.tab.zip). Using publicly available software such as NetAffx (provided by Affymetrix), the Transcript Cluster ID may be further mapped to gene symbol, chromosomal location, etc.


Table 1

Probesets demonstrated to be expressed higher in neoplastic tissues relative to non-neoplastic controls. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 2

Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between neoplasia and non-neoplastic controls. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Example 2
Table 3

Probesets which demonstrate a qualitatively (in addition to quantitative) elevated profile in neoplastic tissues relative to non-neoplastic controls. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 4

Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting qualitative changes in RNA concentration in neoplastic tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of neoplasia vs. non-neoplasia; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 5

Probesets demonstrated to be expressed higher in adenoma tissues relative to cancer tissues. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of adenomas vs. cancers; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 6

Probesets demonstrated to be expressed higher in cancer tissues relative to adenoma tissues. TargetPS: Affymetrix HG-U133plus2 probeset id; Symbol: putative gene symbol corresponding to target probeset id—multiple symbol names indicate the possibility of probeset hybridisation to multiple gene targets; Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of cancer tissues vs. adenoma tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 7

Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between adenoma and cancer tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of adenoma tissues vs. cancer tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Table 8

Evidence of multiple probesets which correspond to gene symbols claimed herein exhibiting RNA concentration differences between cancer and adenoma tissues. Symbol: gene symbol; ValidPS_UP: Affymetrix probeset IDs demonstrating statistically significant overexpression in neoplastic RNA extracts relative to non-neoplastic controls. Signif. FDR: Adjusted p-value for mean difference testing between RNA extracted from neoplasia and non-neoplastic tissues. Adjustment is made using Benjamini & Hochberg correction for multiple hypothesis testing (Benjamini and Hochberg, 1995); D.value50: Diagnostic effectiveness parameter estimate corresponding to the area of a receiver operator characteristic ROC. This parameter provides a convenient estimate of diagnostic utility and is described in (Saunders, 2006); FC: fold change between mean expression level of cancer tissues vs. adenoma tissues; Sens-Spec: Estimate of diagnostic performance corresponding to the ROC curve point demonstrating equal sensitivity and specificity; CI (95): 95% confidence interval of sensitivity and specificity estimates.


Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.















TABLE 1







Signif.
D.val

Sens-



TargetPS
Symbol
FDR
5
FC
Spec
CI (95)





















203256_at
CDH3
3.75E−31
4.2476
37.54
98.3
95.5-99.5


200660_at
S100A11: LOC730558: LOC730278:
2.68E−27
3.8969
3.83
97.4
93.9-99.1



LOC729659







201341_at
ENC1
1.44E−26
3.667
3.93
96.7
92.6-98.7


212063_at
MAPK10: CD44
3.35E−26
3.7161
7.06
96.8
92.9-98.8


217523_at
MAPK10: CD44
3.35E−26
3.7151
7.06
96.8
92.9-98.8


201563_at
SORD
3.44E−25
3.4659
4.36
95.8
91.3-98.3


202431_s_at
LOC731404: LOC729194: MYC
5.19E−25
3.6014
4.11
96.4
92.2-98.6


221577_x_at
GDF15
5.51E−25
3.5554
5.84
96.2
91.8-98.5


204702_s_at
LOC650331: NFE2L3: LOC642996
1.51E−24
3.52
4.57
96.1
91.6-98.4


203961_at
NEBL
5.41E−24
3.5292
5.52
96.1
91.7-98.4


203962_s_at
NEBL
5.41E−24
3.5295
5.52
96.1
91.7-98.4


201338_x_at
GTF3A
1.74E−22
3.2283
2.92
94.7
89.6-97.6


215091_s_at
GTF3A
1.74E−22
3.2283
2.92
94.7
89.5-97.6


207850_at
CXCL2: CXCL3
5.76E−22
3.2874
7.85
95
  90-97.8


222549_at
CLDN1
6.10E−22
3.2561
13.09
94.8
89.7-97.7


204259_at
MMP7
7.61E−22
3.2624
69.29
94.9
89.8-97.7


228754_at
SLC6A6: LOC728721
1.15E−21
3.2282
5.02
94.7
89.5-97.6


209774_x_at
CXCL2: CXCL3
1.88E−21
3.2884
7.85
95
  90-97.8


218872_at
TESC
3.26E−21
3.2134
16.84
94.6
89.5-97.6


212942_s_at
KIAA1199
8.12E−21
3.0489
25.16
93.6
88-97


209369_at
ANXA3
1.15E−20
3.0417
3.34
93.6
87.9-97  


204404_at
SLC12A2
1.40E−20
3.0281
3.42
93.5
87.9-96.9


225835_at
SLC12A2
1.40E−20
3.0261
3.42
93.5
87.8-96.9


219911_s_at
SLCO4A1
1.46E−20
3.0968
4.84
93.9
88.4-97.2


203510_at
MET
1.50E−20
3.0806
3.35
93.8
88.3-97.1


202936_s_at
SOX9
1.63E−20
3.0982
3.85
93.9
88.4-97.2


201416_at
SOX4
2.30E−20
3.0179
2.89
93.4
87.8-96.9


201417_at
SOX4
2.30E−20
3.0146
2.89
93.4
87.7-96.9


208712_at
CCND1
7.06E−20
2.9082
2.85
92.7
86.7-96.4


204351_at
S100P
4.56E−19
2.9463
4.37
93
87.1-96.6


227475_at
FOXQ1
4.85E−19
2.9494
10.97
93
87.1-96.6


205983_at
DPEP1
5.27E−19
2.8878
23.9
92.6
86.6-96.3


204470_at
CXCL2: CXCL1
5.53E−19
2.9257
10.4
92.8
86.8-96.5


212531_at
LCN2
5.68E−19
2.9407
14.6
92.9
  87-96.5


217867_x_at
BACE2
5.87E−19
2.9042
3.8
92.7
86.7-96.4


228915_at
DACH1
1.05E−18
2.9218
5.81
92.8
86.9-96.5


218704_at
RNF43
2.12E−18
2.9218
3.24
92.8
86.9-96.5


202504_at
TRIM29
2.36E−18
2.8231
11.01
92.1
85.9-96  


241031_at
NLF1
3.12E−18
2.7999
8.12
91.9
85.6-95.9


201195_s_at
SLC7A5: LAT1-3TM
5.11E−18
2.7562
6.31
91.6
85.2-95.7


201656_at
ITGA6
7.38E−18
2.6842
2.62
91
84.5-95.3


229215_at
ASCL2
7.76E−18
2.7573
7.73
91.6
85.3-95.7


217996_at
PHLDA1
1.34E−17
2.7007
5.27
91.2
84.6-95.4


205476_at
CCL20
2.03E−17
2.6222
10.14
90.5
83.8-94.9


226360_at
ZNRF3
2.03E−17
2.7245
4.91
91.3
84.9-95.6


219956_at
GALNT6: ELA1
2.90E−17
2.682
5.27
91
84.4-95.3


201506_at
TGFBI
4.14E−17
2.6863
4.31
91
84.5-95.3


212070_at
GPR56
7.45E−17
2.5866
2.6
90.2
83.5-94.7


212281_s_at
LOC731966: LOC729599: TMEM97
1.88E−16
2.583
2.77
90.2
83.4-94.7


202831_at
GPX2
4.00E−16
2.397
3.56
88.5
81.2-93.5


225541_at
LOC442108: RPL22L1
4.37E−16
2.5983
4.19
90.3
83.5-94.8


218984_at
PUS7: LOC730279
5.26E−16
2.6006
3.06
90.3
83.6-94.8


219630_at
PDZK1IP1
5.38E−16
2.506
4.22
89.5
82.5-94.2


202935_s_at
FLJ37644
1.04E−15
2.4727
3.64
89.2
82.1-94  


204401_at
KCNN4
1.85E−15
2.4677
3.07
89.1
82-94


222696_at
AXIN2
1.90E−15
2.4301
4.44
88.8
81.6-93.7


221923_s_at
NPM1
2.22E−15
2.6018
2.18
90.3
83.5-94.8


201666_at
TIMP1
2.44E−15
2.4295
3.01
88.8
81.6-93.7


210511_s_at
INHBA
2.80E−15
2.5137
3.76
89.6
82.6-94.3


223062_s_at
LOC651255: PSAT1: LOC389173:
3.32E−15
2.4895
5.52
89.3
82.3-94.1



LOC729779: C8orf62







225520_at
MTHFD1L
4.46E−15
2.4846
4.04
89.3
82.3-94.1


206224_at
CST1
7.04E−15
2.4174
13.01
88.7
81.5-93.6


201014_s_at
PAICS
1.19E−14
2.3935
2.49
88.4
81.3-93.5


209309_at
AZGP1: LOC401393
1.31E−14
2.3949
6.19
88.4
81.2-93.5


218796_at
C20orf42
1.38E−14
2.4561
2.78
89
  82-93.9


60474_at
C20orf42
1.38E−14
2.4547
2.78
89
81.9-93.9


219787_s_at
ECT2
1.42E−14
2.4283
2.82
88.8
81.6-93.7


231832_at
WDR51B: GALNT4
1.79E−14
2.4259
2.12
88.7
81.6-93.7


218507_at
HIG2
2.50E−14
2.3654
4.25
88.2
80.9-93.3


202286_s_at
TACSTD2
3.13E−14
2.3701
15.71
88.2
80.9-93.3


205513_at
TCN1
4.81E−14
2.3019
15.22
87.5
80.1-92.8


224428_s_at
CDCA7: LOC442172
6.41E−14
2.2662
4.27
87.1
79.6-92.5


203124_s_at
SLC11A2
7.07E−14
2.3616
2.18
88.1
80.8-93.3


224915_x_at
TALDO1: C20orf199
8.45E−14
2.2732
2.87
87.2
79.7-92.6


226227_x_at
TALDO1: C20orf199
8.45E−14
2.2707
2.87
87.2
79.7-92.6


226835_s_at
TALDO1: C20orf199
8.45E−14
2.2746
2.87
87.2
79.7-92.6


200832_s_at
SCD: LOC651109: LOC645313
1.23E−13
2.2759
4.28
87.2
79.8-92.6


204170_s_at
CKS2
2.13E−13
2.2413
4.15
86.9
79.3-92.3


219682_s_at
TBX3
3.27E−13
2.2498
4.94
87
79.4-92.4


203313_s_at
TGIF
3.35E−13
2.175
2.12
86.2
78.4-91.8


201601_x_at
IFITM1
4.78E−13
2.0659
3.87
84.9
  77-90.8


214022_s_at
IFITM1
4.78E−13
2.065
3.87
84.9
  77-90.8


201328_at
ETS2
5.23E−13
2.2182
2.36
86.6
  79-92.2


201112_s_at
CSE1L
7.98E−13
2.2336
2.28
86.8
79.2-92.2


210766_s_at
CSE1L
7.98E−13
2.232
2.28
86.8
79.2-92.2


205361_s_at
TMEM23: PFDN4: HDAC9
1.69E−12
2.2328
2.24
86.8
79.2-92.3


218086_at
NPDC1
2.66E−12
2.169
2.53
86.1
78.4-91.8


206286_s_at
TDGF1: TDGF3
3.07E−12
2.1205
6.33
85.5
77.7-91.4


204855_at
SERPINB5
4.80E−12
2.1265
10.36
85.6
77.8-91.4


203878_s_at
MMP11
6.30E−12
2.0959
4.55
85.3
77.4-91.1


202833_s_at
SERPINA1
7.12E−12
2.0804
3.43
85.1
77.1-91  


211429_s_at
SERPINA1
7.12E−12
2.0818
3.43
85.1
77.2-91  


228303_at
No Symbol
9.19E−12
2.1527
1.61
85.9
78.2-91.6


225767_at
No Symbol
9.19E−12
2.1514
1.61
85.9
78.1-91.6


226311_at
No Symbol
9.19E−12
2.1527
1.61
85.9
78.1-91.6


226777_at
No Symbol
9.19E−12
2.152
1.61
85.9
78.1-91.6


227140_at
No Symbol
9.19E−12
2.152
1.61
85.9
78.1-91.6


229802_at
No Symbol
9.19E−12
2.1519
1.61
85.9
78.2-91.6


232151_at
No Symbol
9.19E−12
2.1534
1.61
85.9
78.1-91.6


213880_at
LGR5
1.10E−11
2.0619
7.89
84.9
76.9-90.8


225295_at
SLC39A10
2.32E−11
2.1227
1.93
85.6
77.7-91.3


205470_s_at
KLK11
3.11E−11
2.0097
6.04
84.3
76.2-90.3


205174_s_at
QPCT
3.46E−11
2.0435
3.03
84.7
76.6-90.7


222449_at
TMEPAI
3.73E−11
2.0605
2.2
84.9
  77-90.8


222450_at
TMEPAI
3.73E−11
2.0616
2.2
84.9
76.9-90.9


238021_s_at
LOC643911
3.73E−11
1.647
1.33
79.5
70.8-86.5


227174_at
WDR72
5.22E−11
1.9844
14.11
83.9
75.8-90.1


202779_s_at
UBE2S: LOC731049, UBE2S:
5.62E−11
1.9821
2.4
83.9
75.8-90  



LOC731049







219727_at
DUOX2
9.34E−11
1.9355
9.27
83.3
75.1-89.6


210445_at
FABP6
1.28E−10
1.9366
3.01
83.4
75.1-89.6


205828_at
MMP3
1.44E−10
1.8964
15.63
82.8
74.6-89.2


218963_s_at
KRT23
3.58E−10
1.8856
6.81
82.7
74.5-89.1


223447_at
REG4
5.97E−10
1.8052
7.75
81.7
73.2-88.3


238984_at
REG4
5.97E−10
1.8036
7.75
81.6
73.3-88.3


204475_at
MMP1
1.22E−09
1.8132
10.59
81.8
73.4-88.3


228653_at
RP5-875H10.1
1.33E−09
1.8788
1.99
82.6
74.3-89.1


204580_at
MMP12
1.99E−09
1.7881
6.24
81.4
  73-88.1


203895_at
PLCB4
2.29E−09
1.8389
2.37
82.1
73.7-88.6


203896_s_at
PLCB4
2.29E−09
1.8414
2.37
82.1
73.8-88.6


235210_s_at
RPESP
2.38E−09
1.8005
9.07
81.6
73.2-88.2


201468_s_at
NQO1
2.68E−09
1.6978
2.62
80.2
71.6-87.1


210519_s_at
NQO1
2.68E−09
1.6973
2.62
80.2
71.6-87  


222608_s_at
ANLN
4.94E−09
1.7543
2.63
81
72.5-87.7


212344_at
SULF1
9.70E−09
1.7754
1.74
81.3
72.9-88  


212353_at
SULF1
9.70E−09
1.7777
1.74
81.3
72.9-88  


212354_at
SULF1
9.70E−09
1.7751
1.74
81.3
72.8-87.9


201925_s_at
CD55
1.45E−08
1.7612
2.22
81.1
72.6-87.8


201926_s_at
CD55
1.45E−08
1.7603
2.22
81.1
72.5-87.8


202954_at
PAK3: UBE2C
1.74E−08
1.6455
2.82
79.5
70.9-86.4


209792_s_at
KLK10
2.64E−08
1.6142
4.52
79
70.2-86.1


205890_s_at
UBD: GABBR1, UBD
4.07E−08
1.6362
6.59
79.3
70.6-86.3


209773_s_at
RRM2
4.25E−08
1.6077
2.25
78.9
70.2-86  


234331_s_at
FAM84A: LOC653602
5.97E−08
1.6031
1.73
78.9
70.1-86  


206976_s_at
HSPH1
6.17E−08
1.6476
1.85
79.5
70.8-86.5


202718_at
IGFBP2
8.07E−08
1.6348
1.93
79.3
70.6-86.3


225664_at
TMEM30A: COL12A1
9.48E−08
1.6379
3.16
79.4
70.7-86.3


231766_s_at
TMEM30A: COL12A1
9.48E−08
1.6394
3.16
79.4
70.7-86.3


201261_x_at
BGN
1.01E−07
1.5939
2.69
78.7
69.9-85.9


213905_x_at
BGN
1.01E−07
1.596
2.69
78.8
69.9-85.8


204127_at
RFC3
1.25E−07
1.5497
2.25
78.1
69.2-85.3


207457_s_at
C6orf21: LY6G6D, C6orf21:
1.34E−07
1.5549
6.64
78.2
69.3-85.4



LY16G6D, C6orf21: LY6G6D







210052_s_at
TPX2
1.56E−07
1.6655
2.03
79.8
71.1-86.7


202859_x_
LOC652128: IGHG1: IGHM:
1.99E−07
1.6331
3.1
79.3
70.6-86.3


at
IGHV4-31: LOC647189: IGHV1-69:








IGHA1: IL8: EXOC7: SIX6: IGHD:








IGH@: IGHG3: C12orf32:








ZCWPW2: IFI6: IGHG4: IGHA2:








IGHG2: RAC1







211506_s_at
LOC652128: IGHG1: IGHM:
1.99E−07
1.6324
3.1
79.3
70.6-86.4



IGHV4-31: LOC647189: IGHV1-69:








IGHA1: IL8: EXOC7: SIX6: IGHD:








IGH@: IGHG3: C12orf32:








ZCWPW2: IFI6: IGHG4: IGHA2:








IGHG2: RAC1







205479_s_at
PLAU
2.25E−07
1.5392
3.5
77.9
69.1-85.1


238017_at
RDHE2
2.71E−07
1.5511
2.52
78.1
69.3-85.3


204320_at
COL11A1
2.93E−07
1.5718
2.6
78.4
69.6-85.6


37892_at
COL11A1
2.93E−07
1.57
2.6
78.4
69.5-85.6


203213_at
CDC2
3.58E−07
1.5342
2.72
77.8
  69-85.1


210559_s_at
CDC2
3.58E−07
1.5348
2.72
77.9
  69-85.1


232252_at
DUSP27
4.68E−07
1.5123
4.81
77.5
68.7-84.8


225799_at
MGC4677, MGC4677: LOC541471
7.40E−07
1.4933
2.04
77.2
68.3-84.6


206239_s_at
SPINK1
1.70E−06
1.4816
2.74
77.1
68.1-84.5


225806_at
C14orf94
2.40E−06
1.6542
1.19
79.6
70.9-86.5


204885_s_at
MSLN
3.78E−06
1.4263
1.93
76.2
67.2-83.7


202998_s_at
ENTPD4: LOXL2
4.81E−06
1.3717
2.19
75.4
66.3-83  


207158_at
APOBEC1
9.49E−06
1.3811
1.63
75.5
66.4-83.1


218211_s_at
MLPH
1.16E−05
1.4176
1.47
76.1
67.1-83.6


205366_s_at
HOXB6
1.33E−05
1.3346
1.87
74.8
65.7-82.5


225681_at
CTHRC1
1.83E−05
1.2913
2.57
74.1
64.9-81.8


205815_at
REG3A
2.22E−05
1.2228
12.09
73
63.8-80.9


214974_x_at
CXCL5
2.79E−05
1.281
4.48
73.9
64.8-81.7


207173_x_at
CDH11
3.44E−05
1.2644
2.25
73.6
64.4-81.5


209955_s_at
IFIH1: FAP
6.66E−05
1.2544
2.33
73.5
64.3-81.3


205886_at
REG1B
8.08E−05
1.1731
13.15
72.1
62.8-80.1


205713_s_at
COMP
0.0001
1.1543
1.69
71.8
62.6-79.9


208079_s_at
AURKA: STK6P
0.0001
1.1173
1.81
71.2
61.8-79.3


209218_at
SQLE
0.0001
1.1362
2.69
71.5
62.2-79.6


212190_at
SERPINE2
0.0001
1.1279
1.9
71.4
62.1-79.5


219955_at
L1TD1
0.0001
1.1579
2.36
71.9
62.6-79.9


236894_at
L1TD1
0.0002
1.1598
2.36
71.9
62.6-79.9


209875_s_at
SPP1
0.0004
1.0666
3.32
70.3
60.9-78.5


205910_s_at
CEL
0.0006
1.0877
1.46
70.7
61.2-78.8


209752_at
REG1A
0.0006
1.0018
10.93
69.2
59.8-77.5


213975_s_at
LILRA1: LILRB1
0.0013
1.0772
1.55
70.5
61.1-78.7


202310_s_at
COL1A1
0.0018
1.007
2.5
69.3
59.9-77.5


202311_s_at
COL1A1
0.0018
1.0058
2.5
69.2
59.8-77.5


217430_x_at
COL1A1
0.0018
1.006
2.5
69.3
59.9-77.5


221729_at
COL5A2
0.0026
1.054
1.36
70.1
60.7-78.4


221730_at
COL5A2
0.0026
1.0559
1.36
70.1
60.8-78.4


205825_at
PCSK1
0.0029
1.107
1.48
71
61.6-79.2


203860_at
PCCA
0.0038
0.9396
1.42
68.1
58.6-76.5


224646_x_at
RPS12: H19
0.0051
1.0213
1.47
69.5
60.1-77.8


205941_s_at
COL10A1
0.0143
0.8495
2.05
66.4
  57-75.1


226237_at
COL8A1
0.0254
0.8307
1.43
66.1
56.6-74.8


223970_at
RETNLB
0.0304
0.8148
1.47
65.8
56.3-74.4


205765_at
CYP3A5: CYP3A7
0.0545
0.8252
1.58
66
56.4-74.6


232176_at
SLITRK6
0.0576
0.8693
1.31
66.8
57.3-75.4


232481_s_at
SLITRK6
0.0576
0.8701
1.31
66.8
57.4-75.3


235976_at
SLITRK6
0.0576
0.868
1.31
66.8
57.4-75.3


200665_s_at
SPARC
0.0684
0.6727
1.45
63.2
53.6-72  


205927_s_at
CTSE
0.0694
0.7488
1.83
64.6
55.1-73.3


214651_s_at
HOXA9
0.0759
0.7491
1.41
64.6
  55-73.3


204051_s_at
SFRP4
0.0829
0.6983
1.29
63.7
54.1-72.4


202404_s_at
COL1A2: LOC728628
0.1891
0.6492
1.9
62.7
53.1-71.6


204620_s_at
CSPG2
0.9788
0.1834
1.05
53.7
44-63


221731_x_at
CSPG2
0.9788
0.183
1.05
53.6
44.1-63  


203083_at
THBS2
0.9844
0.2784
1.26
55.5
  46-64.8


214235_at
CYP3A5: CYP3A43: CYP3A5P2
0.9932
0.3165
1.16
56.3
46.7-65.6























TABLE 2





Gene


Signif.
D.val

Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
5
FC
Spec
(95)






















CDH3
802708-HuGene_st: 280037-HuGene_st: 1019645-HuGene_st: 119416-
CDH3
3.75E−31
4.2474
37.54
98.3
95.5-



HuGene_st: 642035-HuGene_st: 665706-HuGene_st: 249831-





99.5



HuGene_st: 604066-HuGene_st: 260528-HuGene_st: 166615-









HuGene_st: 411984-HuGene_st: 520679-HuGene_st: 1071177-









HuGene_st: 988525-HuGene_st: 317603-HuGene_st: 301020-









HuGene_st: 693824-HuGene_st: 468436-HuGene_st: 203256_at: 265728-









HuGene_st: 806796-HuGene_st: 893171-HuGene_st








ENC1
216704-HuGene_st: 529141-HuGene_st: 968541-HuGene_st: 1015647-
ENC1
1.44E−26
3.6666
3.93
96.7
92.6-



HuGene_st: 524348-HuGene_st: 291883-HuGene_st: 154485-





98.7



HuGene_st: 174870-HuGene_st: 967480-HuGene_st: 729586-









HuGene_st: 826381-HuGene_st: 40464-HuGene_st: 340065-









HuGene_st: 1066975-HuGene_st: 1090631-HuGene_st: 201340_s_at:









86039-









HuGene_st: 686829-HuGene_st: 733896-HuGene_st: 201341_at: 698873-









HuGene_st: 730768-HuGene_st: 403595-HuGene_st








CD44
366106-HuGene_st: 314808-HuGene_st: 59730-HuGene_st: 599371-
MAPK10:
3.35E−26
3.7114
7.06
96.8
92.9-



HuGene_st: 391296-HuGene_st: 1031797-HuGene_st: 314340-
CD44




98.8



HuGene_st: 10723-HuGene_st: 950067-HuGene_st: 282016-









HuGene_st: 480680-HuGene_st: 69560-HuGene_st: 388781-









HuGene_st: 243049-HuGene_st: 374652-HuGene_st: 194553-









HuGene_st: 1075454-HuGene_st: 204489_s_at: 619139-









HuGene_st: 210916_s_at: 542762-









HuGene_st: 1557905_s_at: 212014_x_at: 229221_at: 204490_s_at:









234418_x_at:









209835_x_at: 212063_at: 216062_at: 777408-









HuGene_st: 234411_x_at: 217523_at: 216056_at: 1565868_at: 83114-









HuGene_st








SORD
510024-HuGene_st: 895709-HuGene_st: 1079720-HuGene_st: 566899-
SORD
3.44E−25
3.4665
4.36
95.8
91.3-



HuGene_st: 339498-HuGene_st: 91263-HuGene_st: 256497-





98.3



HuGene_st: 720484-HuGene_st: 187420-HuGene_st: 580807-









HuGene_st: 267000-HuGene_st: 321981-HuGene_st: 1019581-









HuGene_st: 1020801-HuGene_st: 520376-HuGene_st: 670131-









HuGene_st: 201562_s_at: 455746-HuGene_st: 67454-









HuGene_st: 201563_at: 309303-HuGene_st: 1001165-HuGene_st: 411387-









HuGene_st: 49636-HuGene_st








MYC
292645-HuGene_st: 257928-HuGene_st: 284020-HuGene_st: 517374-
LOC731404:
5.19E−25
3.5977
4.11
96.4
92.2-



HuGene_st: 869576-HuGene_st: 1099727-HuGene_st: 33994-
LOC729194:




98.6



HuGene_st: 781657-HuGene_st: 509634-HuGene_st: 273419-
MYC








HuGene_st: 1068468-HuGene_st: 1095763-HuGene_st: 149150-









HuGene_st: 841622-HuGene_st: 730300-HuGene_st: 964312-









HuGene_st: 963427-HuGene_st: 202431_s_at: 522112-









HuGene_st: 244089_at: 239931_at: 649622-HuGene_st








GDF15
716715-HuGene_st: 81268-HuGene_st: 221576_at: 1032661-
GDF15
5.51E−25
3.5534
5.84
96.2
91.9-



HuGene_st: 430762-HuGene_st: 392223-HuGene_st: 325978-





98.5



HuGene_st: 273598-HuGene_st: 229868_s_at: 835644-HuGene_st: 271704-









HuGene_st: 1097896-HuGene_st: 692830-HuGene_st: 1033023-









HuGene_st: 85522-HuGene_st: 954824-HuGene_st: 221577_x_at: 634293-









HuGene_st: 594344-HuGene_st: 231517-HuGene_st: 307405-









HuGene_st: 31827-HuGene_st: 496173-HuGene_st: 636515-









HuGene_st: 30047-HuGene_st








NFE2L3
95873-HuGene_st: 1058969-HuGene_st: 86088-HuGene_st: 1093456-
LOC650331:
1.51E−24
3.523
4.57
96.1
91.7-



HuGene_st: 347351-HuGene_st: 878719-HuGene_st: 880179-
NFE2L3:




98.4



HuGene_st: 240089_at: 822197-HuGene_st: 873612-HuGene_st: 517821-
LOC642996








HuGene_st: 489354-HuGene_st: 20603-HuGene_st: 204702_s_at








NEBL
923272-HuGene_st: 580150-HuGene_st: 925039-HuGene_st: 451073-
NEBL
5.41E−24
3.5322
5.52
96.1
91.7-



HuGene_st: 23015-HuGene_st: 714203-HuGene_st: 479241-





98.4



HuGene_st: 1092604-HuGene_st: 458919-HuGene_st: 207279_s_at:









932542-









HuGene_st: 203962_s_at: 889861-HuGene_st: 106510-HuGene_st: 997698-









HuGene_st: 116329-HuGene_st: 1000081-HuGene_st: 216882_s_at:









374229-









HuGene_st: 107562-HuGene_st: 203961_at: 103041-HuGene_st: 553617-









HuGene_st: 244077_at: 92634-HuGene_st: 233280_at: 217585_at








GTF3A
955636-HuGene_st: 336043-HuGene_st: 876286-HuGene_st: 147251-
GTF3A
1.74E−22
3.2254
2.92
94.7
89.5-



HuGene_st: 27776-HuGene_st: 88229-HuGene_st: 508903-





97.6



HuGene_st: 98817-HuGene_st: 158745-HuGene_st: 386048-









HuGene_st: 611132-HuGene_st: 23049-HuGene_st: 247205-









HuGene_st: 995043-HuGene_st: 655976-HuGene_st: 140189-









HuGene_st: 1043983-HuGene_st: 903143-HuGene_st: 577269-









HuGene_st: 659477-HuGene_st: 215091_s_at: 201338_x_at: 942640-









HuGene_st








CLDN1
557209-HuGene_st: 769363-HuGene_st: 96611-HuGene_st: 517610-
CLDN1
6.10E−22
3.2528
13.09
94.8
89.7-



HuGene_st: 737746-HuGene_st: 847409-HuGene_st: 100345-





97.7



HuGene_st: 391208-HuGene_st: 98926-HuGene_st: 130886-









HuGene_st: 134239-HuGene_st: 647196-HuGene_st: 1054117-









HuGene_st: 218182_s_at: 511075-HuGene_st: 510210-HuGene_st: 781587-









HuGene_st: 1081991-HuGene_st: 155669-HuGene_st: 1020398-









HuGene_st: 620570-HuGene_st: 222549_at: 502206-HuGene_st: 943250-









HuGene_st: 916987-HuGene_st








MMP7
267137-HuGene_st: 1068392-HuGene_st: 794865-HuGene_st: 876922-
MMP7
7.61E−22
3.2633
69.29
94.9
89.8-



HuGene_st: 669567-HuGene_st: 1039935-HuGene_st: 514120-





97.7



HuGene_st: 1092830-HuGene_st: 745768-HuGene_st: 272260-









HuGene_st: 30733-HuGene_st: 401681-HuGene_st: 854024-









HuGene_st: 221616-HuGene_st: 805045-HuGene_st: 783838-









HuGene_st: 204259_at: 934756-HuGene_st: 446688-HuGene_st: 10259-









HuGene_st: 267021-HuGene_st: 889042-HuGene_st








SLC6A6
128406-HuGene_st: 85866-HuGene_st: 835577-HuGene_st: 475923-
SLC6A6:
1.15E−21
3.2313
5.02
94.7
89.6-



HuGene_st: 249964-HuGene_st: 362002-HuGene_st: 126399-
LOC728721




97.6



HuGene_st: 205921_s_at: 319890-HuGene_st: 748425-HuGene_st: 447287-









HuGene_st: 1091412-HuGene_st: 62392-HuGene_st: 44403-









HuGene_st: 825742-HuGene_st: 510986-HuGene_st: 205920_at: 661693-









HuGene_st: 843791-HuGene_st: 228754_at: 705910-









HuGene_st: 1561538_at: 972205-HuGene_st: 65222-HuGene_st: 747017-









HuGene_st: 239474_at: 955688-HuGene_st: 211030_s_at








CXCL1
11327-HuGene_st: 626337-HuGene_st: 322604-HuGene_st: 256806-
CXCL2:
1.88E−21
3.2911
7.85
95
90-



HuGene_st: 261067-HuGene_st: 448247-HuGene_st: 666569-
CXCL3




97.8



HuGene_st: 222646-HuGene_st: 262117-HuGene_st: 798675-









HuGene_st: 391369-HuGene_st: 865299-HuGene_st: 877897-









HuGene_st: 575433-HuGene_st: 43120-HuGene_st: 42070-









HuGene_st: 33632-HuGene_st: 965957-HuGene_st: 556939-









HuGene_st: 26460-HuGene_st: 796450-HuGene_st: 230101_at: 541868-









HuGene_st: 1064107-HuGene_st: 490134-HuGene_st: 230192-









HuGene_st: 645829-HuGene_st: 455502-HuGene_st: 249140-









HuGene_st: 906606-HuGene_st: 1098767-HuGene_st: 721989-









HuGene_st: 500578-HuGene_st: 33301-HuGene_st: 204470_at: 622384-









HuGene_st: 209774_x_at: 432036-HuGene_st: 30559-HuGene_st: 187557-









HuGene_st: 1101027-HuGene_st: 1038334-HuGene_st: 260925-









HuGene_st: 515662-HuGene_st: 258081-HuGene_st: 1569203_at: 280828-









HuGene_st: 1000069-HuGene_st: 509822-HuGene_st: 890213-









HuGene_st: 739461-HuGene_st: 342746-HuGene_st: 98929-









HuGene_st: 818131-HuGene_st: 1091592-HuGene_st: 420504-









HuGene_st: 41644-HuGene_st: 655278-HuGene_st: 188562-









HuGene_st: 458602-HuGene_st








CXCL2
11327-HuGene_st: 626337-HuGene_st: 322604-HuGene_st: 256806-
CXCL2:
1.95E−21
3.2941
7.85
95
90-



HuGene_st: 261067-HuGene_st: 448247-HuGene_st: 666569-
CXCL3




97.8



HuGene_st: 222646-HuGene_st: 262117-HuGene_st: 798675-









HuGene_st: 391369-HuGene_st: 865299-HuGene_st: 877897-









HuGene_st: 575433-HuGene_st: 43120-HuGene_st: 42070-









HuGene_st: 33632-HuGene_st: 965957-HuGene_st: 556939-









HuGene_st: 26460-HuGene_st: 796450-HuGene_st: 230101_at: 541868-









HuGene_st: 490134-HuGene_st: 1064107-HuGene_st: 230192-









HuGene_st: 645829-HuGene_st: 455502-HuGene_st: 249140-









HuGene_st: 906606-HuGene_st: 1098767-HuGene_st: 721989-









HuGene_st: 500578-HuGene_st: 33301-HuGene_st: 207850_at: 622384-









HuGene_st: 204470_at: 209774_x_at: 432036-HuGene_st: 30559-









HuGene_st: 187557-HuGene_st: 1101027-HuGene_st: 1038334-









HuGene_st: 260925-HuGene_st: 515662-HuGene_st: 258081-









HuGene_st: 1569203_at: 280828-HuGene_st: 1000069-HuGene_st: 509822-









HuGene_st: 890213-HuGene_st: 739461-HuGene_st: 342746-









HuGene_st: 98929-HuGene_st: 818131-HuGene_st: 1091592-









HuGene_st: 420504-HuGene_st: 41644-HuGene_st: 655278-









HuGene_st: 188562-HuGene_st: 458602-HuGene_st








CXCL3
11327-HuGene_st: 626337-HuGene_st: 322604-HuGene_st: 256806-
CXCL2:
1.95E−21
3.2892
7.85
95
90.1-



HuGene_st: 261067-HuGene_st: 448247-HuGene_st: 666569-
CXCL3




97.8



HuGene_st: 222646-HuGene_st: 262117-HuGene_st: 798675-









HuGene_st: 391369-HuGene_st: 865299-HuGene_st: 877897-









HuGene_st: 575433-HuGene_st: 43120-HuGene_st: 42070-









HuGene_st: 33632-HuGene_st: 965957-HuGene_st: 556939-









HuGene_st: 26460-HuGene_st: 796450-HuGene_st: 230101_at: 541868-









HuGene_st: 490134-HuGene_st: 1064107-HuGene_st: 230192-









HuGene_st: 645829-HuGene_st: 455502-HuGene_st: 249140-









HuGene_st: 906606-HuGene_st: 1098767-HuGene_st: 721989-









HuGene_st: 500578-HuGene_st: 33301-HuGene_st: 207850_at: 622384-









HuGene_st: 209774_x_at: 432036-HuGene_st: 30559-HuGene_st: 187557-









HuGene_st: 1101027-HuGene_st: 1038334-HuGene_st: 260925-









HuGene_st: 515662-HuGene_st: 258081-HuGene_st: 1569203_at: 280828-









HuGene_st: 1000069-HuGene_st: 509822-HuGene_st: 890213-









HuGene_st: 739461-HuGene_st: 342746-HuGene_st: 98929-









HuGene_st: 818131-HuGene_st: 1091592-HuGene_st: 420504-









HuGene_st: 41644-HuGene_st: 655278-HuGene_st: 188562-









HuGene_st: 458602-HuGene_st








TESC
921201-HuGene_st: 608171-HuGene_st: 146516-HuGene_st: 484639-
TESC
3.26E−21
3.2128
16.84
94.6
89.4-



HuGene_st: 107953-HuGene_st: 765929-HuGene_st: 948263-





97.6



HuGene_st: 78061-HuGene_st: 808895-HuGene_st: 69258-









HuGene_st: 1017219-HuGene_st: 244981-HuGene_st: 116590-









HuGene_st: 263121-HuGene_st: 260709-









HuGene_st: 218872_at: 240553_at: 243302-HuGene_st: 936401-









HuGene_st: 8542-HuGene_st








KIAA1199
1008852-HuGene_st: 897250-HuGene_st: 264350-HuGene_st: 309186-
KIAA1199
8.12E−21
3.0498
25.16
93.6
88-



HuGene_st: 442314-HuGene_st: 14957-HuGene_st: 16406-





97



HuGene_st: 742741-HuGene_st: 115371-HuGene_st: 864695-









HuGene_st: 83178-HuGene_st: 107689-HuGene_st: 444553-









HuGene_st: 972252-HuGene_st: 822568-HuGene_st: 55289-









HuGene_st: 744719-HuGene_st: 999558-HuGene_st: 93042-









HuGene_st: 287365-









HuGene_st: 215140_at: 239747_s_at: 1554685_a_at: 239746_at: 719670-









HuGene_st: 212942_s_at: 15281-HuGene_st








ANXA3
839382-HuGene_st: 366797-HuGene_st: 1053078-HuGene_st: 469415-
ANXA3
1.15E−20
3.0459
3.34
93.6
88-



HuGene_st: 506093-HuGene_st: 78819-HuGene_st: 149613-





97



HuGene_st: 48457-HuGene_st: 316401-HuGene_st: 35420-









HuGene_st: 165320-HuGene_st: 987987-HuGene_st: 437259-









HuGene_st: 34408-HuGene_st: 689653-HuGene_st: 212737-









HuGene_st: 1018751-HuGene_st: 358834-HuGene_st: 1097138-









HuGene_st: 931805-HuGene_st: 796166-HuGene_st: 209369_at: 358455-









HuGene_st








SLCO4A1
181673-HuGene_st: 556210-HuGene_st: 125087-HuGene_st: 555973-
SLCO4A1
1.46E−20
3.0952
4.84
93.9
88.4-



HuGene_st: 690409-HuGene_st: 885495-HuGene_st: 52728-





97.2



HuGene_st: 272770-HuGene_st: 21709-HuGene_st: 661785-









HuGene_st: 229239_x_at: 1554332_a_at: 233439-HuGene_st: 471571-









HuGene_st: 219911_s_at: 556433-HuGene_st: 248366-HuGene_st: 543178-









HuGene_st: 1026187-HuGene_st: 981152-HuGene_st: 236109-









HuGene_st: 381101-HuGene_st: 141523-HuGene_st: 739914-HuGene_st








MET
388394-HuGene_st: 648631-HuGene_st: 15602-HuGene_st: 176281-
MET
1.50E-20
3.0827
3.35
93.8
88.3-



HuGene_st: 748069-HuGene_st: 1008518-HuGene_st: 1087950-





97.1



HuGene_st: 988485-HuGene_st: 796914-HuGene_st: 331502-









HuGene_st: 103511-HuGene_st: 61232-HuGene_st: 278022-









HuGene_st: 112349-HuGene_st: 926399-HuGene_st: 510918-









HuGene_st: 213816_s_at: 211599_x_at: 367353-HuGene_st: 311383-









HuGene_st: 791322-HuGene_st: 1076627-HuGene_st: 213807_x_at:









697685-









HuGene_st: 203510_at: 825027-HuGene_st








SOX9
772629-HuGene_st: 546810-HuGene_st: 787388-HuGene_st: 629934-
SOX9
1.63E−20
3.0954
3.85
93.9
88.4-



HuGene_st: 1026354-HuGene_st: 863993-HuGene_st: 573850-





97.2



HuGene_st: 583284-HuGene_st: 944246-HuGene_st: 56367-









HuGene_st: 851353-HuGene_st: 191947-HuGene_st: 202936_s_at: 610027-









HuGene_st: 564548-HuGene_st: 361189-HuGene_st: 978036-









HuGene_st: 10753-HuGene_st: 762890-HuGene_st: 399511-









HuGene_st: 669806-HuGene_st: 893973-HuGene_st








SOX4
455510-HuGene_st: 631864-HuGene_st: 41874-
SOX4
2.30E−20
3.0197
2.89
93.4
87.7-



HuGene_st: 1567906_at: 213665_at: 1001159-HuGene_st: 1082118-





96.9



HuGene_st: 11876-HuGene_st: 195182-HuGene_st: 6275-









HuGene_st: 1032572-HuGene_st: 413494-HuGene_st: 251834-









HuGene_st: 201416_at: 213668_s_at: 622600-









HuGene_st: 201418_s_at: 389422-HuGene_st: 731726-HuGene_st: 119384-









HuGene_st: 201417_at: 438341-HuGene_st: 893969-HuGene_st: 591113-









HuGene_st: 725118-HuGene_st








CCND1
210671-HuGene_st: 693250-HuGene_st: 850876-HuGene_st: 140311-
CCND1
7.06E−20
2.9073
2.85
92.7
86.8-



HuGene_st: 1002162-HuGene_st: 1018086-HuGene_st: 407388-





96.4



HuGene_st: 984437-HuGene_st: 141586-HuGene_st: 647830-









HuGene_st: 790359-HuGene_st: 210601-HuGene_st: 794719-









HuGene_st: 208711_s_at: 179331-HuGene_st: 208712_at: 592143-









HuGene_st: 583936-HuGene_st: 960743-HuGene_st: 632867-









HuGene_st: 125910-HuGene_st








FOXQ1
763699-HuGene_st: 567459-HuGene_st: 447803-HuGene_st: 319823-
FOXQ1
4.85E−19
2.9444
10.97
93
87.1-



HuGene_st: 304771-HuGene_st: 1086901-HuGene_st: 444851-





96.6



HuGene_st: 742304-HuGene_st: 301921-HuGene_st: 227475_at: 541230-









HuGene_st: 894028-HuGene_st: 89134-HuGene_st: 1082772-









HuGene_st: 850136-HuGene_st: 293941-HuGene_st: 55647-HuGene_st








DPEP1
195459-HuGene_st: 60499-HuGene_st: 783842-HuGene_st: 457180-
DPEP1
5.27E−19
2.8897
23.9
92.6
86.5-



HuGene_st: 450442-HuGene_st: 414432-HuGene_st: 312589-





96.3



HuGene_st: 598841-HuGene_st: 13146-HuGene_st: 677461-









HuGene_st: 66845-HuGene_st: 26927-HuGene_st: 405654-









HuGene_st: 931982-HuGene_st: 205983_at: 529997-HuGene_st: 496293-









HuGene_st: 301001-HuGene_st: 312462-HuGene_st: 495102-









HuGene_st: 270434-HuGene_st: 1074719-HuGene_st: 734183-HuGene_st








LCN2
769185-HuGene_st: 478322-HuGene_st: 1089212-HuGene_st: 427722-
LCN2
5.68E−19
2.9407
14.6
92.9
87-



HuGene_st: 341012-HuGene_st: 277123-HuGene_st: 866455-





96.6



HuGene_st: 545638-HuGene_st: 974940-HuGene_st: 942257-









HuGene_st: 446106-HuGene_st: 666350-HuGene_st: 755674-









HuGene_st: 1040520-HuGene_st: 212531_at: 374635-HuGene_st: 924701-









HuGene_st: 899307-HuGene_st: 911350-HuGene_st: 586877-HuGene_st








BACE2
790683-HuGene_st: 54885-HuGene_st: 545060-HuGene_st: 863425-
BACE2
5.87E−19
2.9056
3.8
92.7
86.7-



HuGene_st: 159264-HuGene_st: 718321-HuGene_st: 211932-





96.4



HuGene_st: 705852-HuGene_st: 1090860-HuGene_st: 1004109-









HuGene_st: 281923-HuGene_st: 449589-HuGene_st: 1049187-









HuGene_st: 217867_x_at: 222446_s_at: 733284-HuGene_st: 378351-









HuGene_st: 525711-HuGene_st: 834444-HuGene_st: 889532-









HuGene_st: 172501-HuGene_st: 659292-HuGene_st: 748638-HuGene_st








DACH1
686187-HuGene_st: 985190-HuGene_st: 1011822-HuGene_st: 1092705-
DACH1
1.05E−18
2.9243
5.81
92.8
86.8-



HuGene_st: 693255-HuGene_st: 722787-HuGene_st: 465556-





96.5



HuGene_st: 113230-HuGene_st: 49101-HuGene_st: 290879-









HuGene_st: 646013-HuGene_st: 3984-HuGene_st: 378631-









HuGene_st: 1002554-HuGene_st: 620749-HuGene_st: 802309-









HuGene_st: 82679-HuGene_st: 205471_s_at: 303920-HuGene_st: 338273-









HuGene_st: 20454-









HuGene_st: 1567100_at: 205472_s_at: 228915_at: 1562342_at: 169641-









HuGene_st: 984254-HuGene_st: 1567101_at








RNF43
680908-HuGene_st: 971480-HuGene_st: 933045-HuGene_st: 512035-
RNF43
2.12E−18
2.9237
3.24
92.8
86.9-



HuGene_st: 246870-HuGene_st: 542187-HuGene_st: 235920-





96.5



HuGene_st: 398750-HuGene_st: 377708-HuGene_st: 509050-









HuGene_st: 292965-HuGene_st: 228826_at: 228828_at: 581833-









HuGene_st: 205211-HuGene_st: 292037-HuGene_st: 297431-









HuGene_st: 875834-HuGene_st: 101494-HuGene_st: 631606-









HuGene_st: 110817-HuGene_st: 442527-HuGene_st: 218704_at: 284952-









HuGene_st: 239588_s_at: 7711-HuGene_st: 244226_s_at: 232238-









HuGene_st: 239589_at: 678261-HuGene_st: 978591-HuGene_st: 692794-









HuGene_st: 401794-HuGene_st: 29943-HuGene_st: 997900-









HuGene_st: 1085055-HuGene_st: 612499-HuGene_st: 202326-









HuGene_st: 520369-HuGene_st: 728337-HuGene_st: 469125-









HuGene_st: 529498-HuGene_st: 166542-HuGene_st: 963597-









HuGene_st: 82123-HuGene_st: 851970-HuGene_st








TRIM29
84230-HuGene_st: 776118-HuGene_st: 317358-HuGene_st: 848242-
TRIM29
2.36E−18
2.8229
11.01
92.1
85.9-



HuGene_st: 304181-HuGene_st: 245405-HuGene_st: 150773-





96



HuGene_st: 398649-HuGene_st: 202504_at: 653465-HuGene_st: 693258-









HuGene_st: 211002_s_at: 393591-HuGene_st: 584774-HuGene_st: 816340-









HuGene_st: 426369-HuGene_st: 1085014-HuGene_st: 1023102-









HuGene_st: 105055-HuGene_st: 237257-HuGene_st: 1076218-









HuGene_st: 905217-HuGene_st








NLF1
269939-HuGene_st: 314919-HuGene_st: 552234-HuGene_st: 622058-
NLF1
3.12E−18
2.7997
8.12
91.9
85.7-



HuGene_st: 68900-HuGene_st: 376228-HuGene_st: 194806-





95.9



HuGene_st: 923707-HuGene_st: 745661-HuGene_st: 996995-









HuGene_st: 534469-HuGene_st: 560627-HuGene_st: 711203-









HuGene_st: 24103 l_at: 93378-HuGene_st: 611899-HuGene_st: 57671-









HuGene_st: 443570-HuGene_st: 231416-HuGene_st








SLC7A5
496060-HuGene_st: 951443-HuGene_st: 212037-HuGene_st: 766877-
SLC7A5:
5.11E−18
2.7527
6.31
91.6
85.2-



HuGene_st: 54540-HuGene_st: 467618-HuGene_st: 663825-
LAT1-3TM




95.7



HuGene_st: 705196-HuGene_st: 426149-HuGene_st: 852968-









HuGene_st: 215712-HuGene_st: 854122-HuGene_st: 885601-









HuGene_st: 517431-HuGene_st: 127432-HuGene_st: 330269-









HuGene_st: 545636-HuGene_st: 636901-HuGene_st: 814676-









HuGene_st: 201195_s_at: 450412-HuGene_st: 389490-HuGene_st








ASCL2
342676-HuGene_st: 857204-HuGene_st: 748900-HuGene_st: 853536-
ASCL2
7.76E−18
2.7559
7.73
91.6
85.3-



HuGene_st: 945534-HuGene_st: 295182-HuGene_st: 1038742-





95.7



HuGene_st: 1100969-HuGene_st: 940755-HuGene_st: 229215_at: 209473-









HuGene_st: 710287-HuGene_st: 920942-HuGene_st: 236012-









HuGene_st: 474427-HuGene_st: 207607_at: 272814-HuGene_st: 584635-









HuGene_st: 793415-HuGene_st: 724997-HuGene_st: 746596-









HuGene_st: 792089-HuGene_st: 623773-HuGene_st: 1085101-HuGene_st








PHLDA1
810737-HuGene_st: 617999-HuGene_st: 84013-HuGene_st: 972772-
PHLDA1
1.34E−17
2.701
5.27
91.2
84.7-



HuGene_st: 843746-HuGene_st: 217999_s_at: 218000_s_at: 865439-





95.4



HuGene_st: 949246-HuGene_st: 660326-HuGene_st: 759020-









HuGene_st: 140047-HuGene_st: 217997_at: 942344-HuGene_st: 1056055-









HuGene_st: 793477-HuGene_st: 800341-HuGene_st: 363808-









HuGene_st: 217998_at: 225842_at: 234244-HuGene_st: 893315-









HuGene_st: 217996_at: 940094-HuGene_st: 588322-HuGene_st: 706809-









HuGene_st








CCL20
454699-HuGene_st: 213798-HuGene_st: 391284-HuGene_st: 628958-
CCL20
2.03E−17
2.6209
10.14
90.5
83.8-



HuGene_st: 733349-HuGene_st: 609947-HuGene_st: 437757-





94.9



HuGene_st: 803267-HuGene_st: 400137-HuGene_st: 542758-









HuGene_st: 650731-HuGene_st: 781726-HuGene_st: 617384-









HuGene_st: 537758-HuGene_st: 176182-HuGene_st: 297268-









HuGene_st: 205476_at: 183884-HuGene_st: 486887-HuGene_st: 827625-









HuGene_st: 314818-HuGene_st: 65947-HuGene_st








ZNRF3
395397-HuGene_st: 749062-HuGene_st: 491467-HuGene_st: 978668-
ZNRF3
2.03E−17
2.7278
4.91
91.4
84.9-



HuGene_st: 364904-HuGene_st: 157166-HuGene_st: 176366-





95.5



HuGene_st: 296148-HuGene_st: 428183-HuGene_st: 867313-









HuGene_st: 732465-HuGene_st: 426052-HuGene_st: 244820_at: 31672-









HuGene_st: 226360_at: 149994-HuGene_st: 620378-









HuGene_st: 243014_at: 401539-HuGene_st: 713294-HuGene_st: 814560-









HuGene_st: 205482-HuGene_st: 276580-HuGene_st: 231419-HuGene_st








TMEM97
458988-HuGene_st: 845548-HuGene_st: 184387-HuGene_st: 583199-
LOC731966:
1.88E−16
2.5821
2.77
90.2
83.4-



HuGene_st: 1045327-HuGene_st: 568790-HuGene_st: 52799-
LOC729599:




94.7



HuGene_st: 1018996-HuGene_st: 212279_at: 980043-HuGene_st: 942215-
TMEM97








HuGene_st: 184687-HuGene_st: 979249-HuGene_st: 212282_at: 825431-









HuGene_st: 1008874-HuGene_st: 280056-HuGene_st: 212281_s_at:









256071-









HuGene_st: 596777-HuGene_st: 10453-HuGene_st








GPX2
526503-HuGene_st: 607351-HuGene_st: 824087-HuGene_st: 249710-
GPX2
4.00E−16
2.3996
3.56
88.5
81.2-



HuGene_st: 1052500-HuGene_st: 727999-HuGene_st: 129991-





93.5



HuGene_st: 548286-HuGene_st: 912827-HuGene_st: 228033-









HuGene_st: 138844-HuGene_st: 93652-HuGene_st: 953341-









HuGene_st: 365006-HuGene_st: 402697-HuGene_st: 434203-









HuGene_st: 552705-HuGene_st: 651410-HuGene_st: 106023-









HuGene_st: 408006-HuGene_st: 281352-HuGene_st: 202831_at: 721501-









HuGene_st: 239595_at








RPL22L1
772808-HuGene_st: 181084-HuGene_st: 494932-HuGene_st: 1058299-
LOC442108:
4.37E−16
2.6007
4.19
90.3
83.6-



HuGene_st: 463691-HuGene_st: 43581-HuGene_st: 383669-
RPL22L1




94.9



HuGene_st: 852429-HuGene_st: 507824-HuGene_st: 759518-









HuGene_st: 225541_at: 302606-HuGene_st: 635124-HuGene_st: 399732-









HuGene_st: 97487-HuGene_st: 449121-HuGene_st: 533177-









HuGene_st: 373445-HuGene_st: 986445-HuGene_st: 656340-









HuGene_st: 494985-HuGene_st: 249336-HuGene_st: 673318-









HuGene_st: 815820-HuGene_st: 226052-HuGene_st: 282085-









HuGene_st: 990639-HuGene_st: 20450-HuGene_st: 133162-









HuGene_st: 403826-HuGene_st: 856534-HuGene_st: 437128-









HuGene_st: 563837-HuGene_st: 1032326-HuGene_st: 57026-









HuGene_st: 792488-HuGene_st: 165053-HuGene_st: 244269-









HuGene_st: 618543-HuGene_st: 292279-HuGene_st: 848648-









HuGene_st: 23825-HuGene_st: 210450-HuGene_st: 278025-HuGene_st








PUS7
188478-HuGene_st: 676751-HuGene_st: 364450-HuGene_st: 323572-
PUS7:
5.26E−16
2.6017
3.06
90.3
83.6-



HuGene_st: 1073917-HuGene_st: 520873-HuGene_st: 104521-
LOC730279




94.8



HuGene_st: 38904-HuGene_st: 243458-HuGene_st: 233716-









HuGene_st: 521418-HuGene_st: 189829-HuGene_st: 622175-









HuGene_st: 352376-HuGene_st: 404327-HuGene_st: 795156-









HuGene_st: 965807-HuGene_st: 360606-HuGene_st: 447010-









HuGene_st: 853552-HuGene_st: 218984_at: 233563-HuGene_st








PDZK1IP1
327351-HuGene_st: 692667-HuGene_st: 61336-HuGene_st: 120414-
PDZK1IP1
5.38E−16
2.5049
4.22
89.5
82.5-



HuGene_st: 874822-HuGene_st: 922904-HuGene_st: 783689-





94.2



HuGene_st: 301666-HuGene_st: 976408-HuGene_st: 1003400-









HuGene_st: 653237-HuGene_st: 76927-HuGene_st: 1050028-









HuGene_st: 984155-HuGene_st: 834996-









HuGene_st: 1553589_a_at: 219630_at: 211897-HuGene_st: 289125-









HuGene_st: 27948-HuGene_st: 678521-HuGene_st: 768406-









HuGene_st: 834666-HuGene_st








FLJ37644
202935_s_at: 230419_at
FLJ37644
1.04E−15
2.4695
3.64
89.2
82.1-









94


KCNN4
144049-HuGene_st: 871303-HuGene_st: 187064-HuGene_st: 1009798-
KCNN4
1.85E−15
2.4698
3.07
89.2
82.1-



HuGene_st: 306542-HuGene_st: 945226-HuGene_st: 489209-





94



HuGene_st: 846968-HuGene_st: 468559-HuGene_st: 546781-









HuGene_st: 993022-HuGene_st: 510713-HuGene_st: 39255-









HuGene_st: 176231-HuGene_st: 204401_at: 140466-HuGene_st: 534792-









HuGene_st: 511374-HuGene_st: 319720-HuGene_st: 745030-HuGene_st








AXIN2
466765-HuGene_st: 940175-HuGene_st: 409416-HuGene_st: 855558-
AXIN2
1.90E−15
2.4309
4.44
88.8
81.7-



HuGene_st: 201699-HuGene_st: 717222-HuGene_st: 650014-





93.7



HuGene_st: 376280-HuGene_st: 1046349-HuGene_st: 218016-









HuGene_st: 224498_x_at: 222695_s_at: 43779-HuGene_st: 309785-









HuGene_st: 679194-HuGene_st: 606406-HuGene_st: 48333-









HuGene_st: 758349-HuGene_st: 224176_s_at: 982781-









HuGene_st: 222696_at: 904523-HuGene_st: 732685-HuGene_st: 774988-









HuGene_st: 189491-HuGene_st: 317267-HuGene_st








NPM1
771033-HuGene_st: 995636-HuGene_st: 360439-HuGene_st: 808147-
NPM1
2.22E−15
2.6004
2.18
90.3
83.6-



HuGene_st: 1046029-HuGene_st: 740084-





94.8



HuGene_st: 221691_x_at: 200063_s_at








TIMP1
676809-HuGene_st: 14950-HuGene_st: 152072-HuGene_st: 1042197-
TIMP1
2.44E−15
2.4307
3.01
88.8
81.6-



HuGene_st: 480229-HuGene_st: 344184-HuGene_st: 1032497-





93.7



HuGene_st: 101433-HuGene_st: 1010207-HuGene_st: 338299-









HuGene_st: 192845-HuGene_st: 153535-HuGene_st: 1063549-









HuGene_st: 685630-HuGene_st: 761585-HuGene_st: 357407-









HuGene_st: 362978-HuGene_st: 686046-HuGene_st: 201666_at: 296784-









HuGene_st: 242170-HuGene_st: 677163-HuGene_st








INHBA
402595-HuGene_st: 289422-HuGene_st: 151327-HuGene_st: 363337-
INHBA
2.80E−15
2.5141
3.76
89.6
82.7-



HuGene_st: 344276-HuGene_st: 874496-HuGene_st: 395552-





94.3



HuGene_st: 36929-HuGene_st: 1088123-HuGene_st: 328796-









HuGene_st: 838338-HuGene_st: 623455-HuGene_st: 1088331-









HuGene_st: 1030680-HuGene_st: 865665-HuGene_st: 210511_s_at:









746887-









HuGene_st: 909672-HuGene_st: 204926_at: 548889-HuGene_st








PSAT1
139416-HuGene_st: 795030-HuGene_st: 160439-HuGene_st: 322148-
LOC651255:
3.32E−15
2.4893
5.52
89.3
82.3-



HuGene_st: 85375-HuGene_st: 223335-HuGene_st: 2658-
PSAT1:




94.2



HuGene_st: 399855-HuGene_st: 220892_s_at: 941491-HuGene_st:
LOC389173:








1017348-









HuGene_st: 856207-HuGene_st: 194347-HuGene_st: 553133-
LOC729779:








HuGene_st: 223062_s_at: 987517-HuGene_st: 336174-HuGene_st
C8orf62







MTHFD1L
478940-HuGene_st: 729886-HuGene_st: 826803-HuGene_st: 504735-
MTHFD1L
4.46E−15
2.4849
4.04
89.3
82.3-



HuGene_st: 632092-HuGene_st: 926226-HuGene_st: 417984-





94.1



HuGene_st: 752367-HuGene_st: 919180-HuGene_st: 574022-









HuGene_st: 1096822-HuGene_st: 516882-HuGene_st: 683402-









HuGene_st: 843250-HuGene_st: 548091-HuGene_st: 209210-









HuGene_st: 238923-HuGene_st: 852630-HuGene_st: 231094_s_at: 97046-









HuGene_st: 225520_at: 225518_x_at: 240552_at: 106397-









HuGene_st: 363602-HuGene_st








CST1
95123-HuGene_st: 125297-HuGene_st: 235257-HuGene_st: 102028-
CST1
7.04E−15
2.4183
13.01
88.7
81.6-



HuGene_st: 291462-HuGene_st: 206224_at: 906914-HuGene_st: 936009-





93.7



HuGene_st: 1055285-HuGene_st








PAICS
426927-HuGene_st: 871276-HuGene_st: 297278-HuGene_st: 832875-
PAICS
1.19E−14
2.3937
2.49
88.4
81.2-



HuGene_st: 287760-HuGene_st: 667051-HuGene_st: 1057511-





93.5



HuGene_st: 1064821-HuGene_st: 25834-HuGene_st: 467534-









HuGene_st: 1057741-HuGene_st: 760475-HuGene_st: 2629-









HuGene_st: 151478-HuGene_st: 667637-HuGene_st: 302338-









HuGene_st: 201014_s_at: 264119-HuGene_st: 685936-









HuGene_st: 201013_s_at: 171734-HuGene_st: 333427-HuGene_st








AZGP1
363333-HuGene_st: 620891-HuGene_st: 619378-HuGene_st: 741747-
AZGP1:
1.31E−14
2.3989
6.19
88.5
81.3-



HuGene_st: 28018-HuGene_st: 594026-HuGene_st: 222884-
LOC401393




93.5



HuGene_st: 1006522-HuGene_st: 974237-HuGene_st: 473891-









HuGene_st: 784628-HuGene_st: 488818-









HuGene_st: 209309_at: 217014_s_at: 63620-HuGene_st: 366096-









HuGene_st: 950952-HuGene_st: 601798-HuGene_st: 399823-









HuGene_st: 734365-HuGene_st: 1054227-HuGene_st








C20orf42
405380-HuGene_st: 276728-HuGene_st: 60228-HuGene_st: 754922-
C20orf42
1.38E−14
2.4573
2.78
89
82-



HuGene_st: 444538-HuGene_st: 733591-HuGene_st: 159372-





93.9



HuGene_st: 763243-HuGene_st: 978177-HuGene_st: 752032-









HuGene_st: 673425-HuGene_st: 591638-









HuGene_st: 229545_at: 60474_at: 335096-HuGene_st: 1029169-









HuGene_st: 326834-HuGene_st: 1028510-HuGene_st: 218796_at: 15777-









HuGene_st: 582076-HuGene_st: 455924-HuGene_st: 835558-









HuGene_st: 232479_at: 889482-HuGene_st: 915156-HuGene_st








ECT2
770888-HuGene_st: 82454-HuGene_st: 171418-HuGene_st: 52318-
ECT2
1.42E−14
2.4271
2.82
88.8
81.6-



HuGene_st: 530079-HuGene_st: 288145-HuGene_st: 234992_x_at: 64803-





93.7



HuGene_st: 705846-HuGene_st: 158755-HuGene_st: 554622-









HuGene_st: 237241_at: 629949-HuGene_st: 222681-HuGene_st: 241642-









HuGene_st: 143403-HuGene_st: 770445-HuGene_st: 218688-









HuGene_st: 700408-HuGene_st: 165018-HuGene_st: 917458-









HuGene_st: 219787_s_at: 609829-HuGene_st: 110350-HuGene_st








WDR51B
659635-HuGene_st: 465621-HuGene_st: 886760-HuGene_st: 222145-
WDR51B:
1.79E−14
2.4266
2.12
88.7
81.6-



HuGene_st: 67663-HuGene_st: 359031-HuGene_st: 36172-
GALNT4




93.7



HuGene_st: 290669-HuGene_st: 148935-HuGene_st: 41107-









HuGene_st: 229778-HuGene_st: 965397-HuGene_st: 51869-









HuGene_st: 583938-HuGene_st: 640969-HuGene_st: 744231-









HuGene_st: 371123-HuGene_st: 1059241-HuGene_st: 39345-









HuGene_st: 684483-HuGene_st: 231832_at: 226283_at: 313270-









HuGene_st








HIG2
246364-HuGene_st: 881374-HuGene_st: 841420-HuGene_st: 674772-
HIG2
2.50E−14
2.366
4.25
88.2
80.9-



HuGene_st: 761463-HuGene_st: 977422-HuGene_st: 470541-





93.3



HuGene_st: 82081-HuGene_st: 266176-HuGene_st: 127241-









HuGene_st: 833078-HuGene_st: 218507_at: 766773-HuGene_st: 153456-









HuGene_st: 1554452_s_at: 727443-HuGene_st: 342125-HuGene_st:









921181-









HuGene_st: 507618-HuGene_st: 128889-HuGene_st: 786248-









HuGene_st: 801240-HuGene_st: 286419-HuGene_st








TACSTD2
1004611-HuGene_st: 755233-HuGene_st: 815649-HuGene_st: 567105-
TACSTD2
3.13E−14
2.3686
15.71
88.2
80.9-



HuGene_st: 8281-HuGene_st: 1041491-HuGene_st: 339450-





93.3



HuGene_st: 227128_s_at: 653539-HuGene_st: 1079680-HuGene_st:









958592-









HuGene_st: 202286_s_at: 620831-HuGene_st: 53075-HuGene_st:









1009541-









HuGene_st: 861600-HuGene_st: 181597-HuGene_st: 130895-









HuGene_st: 849592-HuGene_st








TCN1
293164-HuGene_st: 505517-HuGene_st: 1070815-HuGene_st: 178742-
TCN1
4.81E−14
2.3035
15.22
87.5
80-



HuGene_st: 286092-HuGene_st: 479663-HuGene_st: 464294-





92.8



HuGene_st: 243324-HuGene_st: 181726-HuGene_st: 321817-









HuGene_st: 593508-HuGene_st: 779892-HuGene_st: 1077339-









HuGene_st: 951254-HuGene_st: 91481-HuGene_st: 801919-









HuGene_st: 329572-HuGene_st: 415460-HuGene_st: 611568-









HuGene_st: 888427-HuGene_st: 352827-HuGene_st: 205513_at








CDCA7
776822-HuGene_st: 460577-HuGene_st: 73904-HuGene_st: 164226-
CDCA7:
6.41E−14
2.2638
4.27
87.1
79.6-



HuGene_st: 268581-HuGene_st: 1038532-HuGene_st: 418719-
LOC442172




92.5



HuGene_st: 491386-HuGene_st: 701450-HuGene_st: 1021593-









HuGene_st: 207989-HuGene_st: 516224-HuGene_st: 872337-









HuGene_st: 299408-HuGene_st: 46784-HuGene_st: 187234-









HuGene_st: 745531-HuGene_st: 754921-HuGene_st: 142653-









HuGene_st: 230060_at: 310790-HuGene_st: 224428_s_at: 929597-









HuGene_st








SLC11A2
107248-HuGene_st: 501575-HuGene_st: 23656-HuGene_st: 221382-
SLC11A2
7.07E−14
2.362
2.18
88.1
80.7-



HuGene_st: 774882-HuGene_st: 752508-HuGene_st: 132318-





93.2



HuGene_st: 1009819-HuGene_st: 60401-HuGene_st: 914535-









HuGene_st: 1037630-HuGene_st: 519284-HuGene_st: 19391-









HuGene_st: 873314-HuGene_st: 437100-HuGene_st: 203125_x_at:









1028733-









HuGene_st: 203123_s_at: 1029520-HuGene_st: 1078393-









HuGene_st: 203124_s_at: 237106_at: 357798-HuGene_st: 210047_at








SCD
446192-HuGene_st: 562893-HuGene_st: 713000-HuGene_st: 1054693-
SCD:
1.23E−13
2.2789
4.28
87.3
79.8-



HuGene_st: 698268-HuGene_st: 1088784-HuGene_st: 87215-
LOC651109:




92.6



HuGene_st: 64902-HuGene_st: 211708_s_at: 1019041-HuGene_st: 749928-
LOC645313








HuGene_st: 211162_x_at: 891971-HuGene_st: 433956-









HuGene_st: 200831_s_at: 130491-HuGene_st: 200832_s_at: 214388-









HuGene_st








CKS2
139489-HuGene_st: 193566-HuGene_st: 404458-HuGene_st: 318195-
CKS2
2.13E−13
2.2406
4.15
86.9
79.2-



HuGene_st: 744649-HuGene_st: 710242-HuGene_st: 221677-





92.3



HuGene_st: 452466-HuGene_st: 274401-HuGene_st: 1091509-









HuGene_st: 617848-HuGene_st: 871385-HuGene_st: 869931-









HuGene_st: 204170_s_at








TBX3
976999-HuGene_st: 995051-HuGene_st: 1093752-
TBX3
3.27E−13
2.249
4.94
87
79.5-



HuGene_st: 228344_s_at: 91464-HuGene_st: 185883-HuGene_st: 152524-





92.4



HuGene_st: 229565_x_at: 761496-HuGene_st: 396474-HuGene_st: 34571-









HuGene_st: 862915-HuGene_st: 50568-HuGene_st: 229576_s_at: 1041335-









HuGene_st: 897089-HuGene_st: 193698-HuGene_st: 222917_s_at: 58151-









HuGene_st: 18446-HuGene_st: 821350-HuGene_st: 470069-









HuGene_st: 219682_s_at: 243234_at: 385428-HuGene_st: 872020-









HuGene_st: 219399-HuGene_st: 225544_at: 652999-HuGene_st








CSE1L
757480-HuGene_st: 23664-HuGene_st: 913239-HuGene_st: 766409-
CSE1L
7.98E−13
2.2314
2.28
86.8
79.2-



HuGene_st: 353842-HuGene_st: 248622-HuGene_st: 173835-





92.3



HuGene_st: 570272-HuGene_st: 545123-HuGene_st: 843659-









HuGene_st: 313522-HuGene_st: 517527-HuGene_st: 795866-









HuGene_st: 485221-HuGene_st: 1003371-HuGene_st: 110422-









HuGene_st: 564736-HuGene_st: 201112_s_at: 706263-









HuGene_st: 210766_s_at: 224382-HuGene_st: 201111_at: 985134-









HuGene_st: 720754-HuGene_st








PFDN4
28403-HuGene_st: 31309-HuGene_st: 925296-HuGene_st: 587633-
TMEM23:
1.69E−12
2.2333
2.24
86.8
79.1-



HuGene_st: 918571-HuGene_st: 547690-HuGene_st: 702390-
PFDN4:




92.3



HuGene_st: 291601-HuGene_st: 218399-HuGene_st: 990433-
HDAC9








HuGene_st: 1455-HuGene_st: 975016-HuGene_st: 990960-









HuGene_st: 205361_s_at: 39033-HuGene_st: 763499-HuGene_st: 663125-









HuGene_st: 20745-HuGene_st: 254305-HuGene_st: 205360_at








NPDC1
907995-HuGene_st: 26898-HuGene_st: 921321-HuGene_st: 845513-
NPDC1
2.66E−12
2.1699
2.53
86.1
78.3-



HuGene_st: 273361-HuGene_st: 1018950-HuGene_st: 398079-





91.7



HuGene_st: 268093-HuGene_st: 299764-HuGene_st: 963808-









HuGene_st: 81566-HuGene_st: 785389-HuGene_st: 951435-









HuGene_st: 218086_at: 1014678-HuGene_st: 304194-HuGene_st: 206447-









HuGene_st: 914011-HuGene_st: 276494-HuGene_st: 1069732-









HuGene_st: 405336-HuGene_st: 962827-HuGene_st: 117974-









HuGene_st: 554799-HuGene_st: 711186-HuGene_st: 884580-









HuGene_st: 351662-HuGene_st: 691470-HuGene_st: 92212-









HuGene_st: 354271-HuGene_st: 539456-HuGene_st: 125362-









HuGene_st: 166269-HuGene_st: 15150-HuGene_st: 586601-









HuGene_st: 100718-HuGene_st: 364482-HuGene_st: 323014-









HuGene_st: 928836-HuGene_st: 229380-HuGene_st: 317669-









HuGene_st: 310638-HuGene_st: 561684-HuGene_st: 151109-









HuGene_st: 432072-HuGene_st: 425009-HuGene_st: 883763-HuGene_st








TDGF1
509506-HuGene_st: 636337-HuGene_st: 1020236-HuGene_st: 764617-
TDGF1:
3.07E−12
2.1179
6.33
85.5
77.7-



HuGene_st: 287790-HuGene_st: 206286_s_at: 1012920-HuGene_st:
TDGF3




91.3



633937-









HuGene_st: 2464-HuGene_st: 85190-HuGene_st








IL8
1044664-HuGene_st: 714746-HuGene_st: 442029-HuGene_st: 119200-
AHNAK:
3.28E−12
2.3281
1.73
87.8
80.3-



HuGene_st: 550444-HuGene_st: 493978-HuGene_st: 713906-
IGHG1




93



HuGene_st: 943156-HuGene_st: 504843-HuGene_st: 501902-









HuGene_st: 497219-HuGene_st: 23149-HuGene_st: 387164-









HuGene_st: 562654-HuGene_st: 1047492-HuGene_st: 538558-









HuGene_st: 239300-HuGene_st: 211430_s_at: 390695-HuGene_st:









1081759-









HuGene_st: 144630-HuGene_st: 661013-HuGene_st: 393191-









HuGene_st: 55017-HuGene_st: 1005159-HuGene_st: 359116-









HuGene_st: 373132-HuGene_st: 689050-HuGene_st: 611041-









HuGene_st: 715689-HuGene_st: 289354-HuGene_st: 820633-









HuGene_st: 555788-HuGene_st: 988945-HuGene_st: 307991-









HuGene_st: 211506_s_at: 924368-HuGene_st: 47911-HuGene_st: 929972-









HuGene_st: 561100-HuGene_st: 68522-









HuGene_st: 217039_x_at: 231668_x_at: 1080400-HuGene_st: 141662-









HuGene_st: 765200-HuGene_st: 648539-HuGene_st: 274868-









HuGene_st: 233969_at








SERPINB5
237063-HuGene_st: 329959-HuGene_st: 806576-HuGene_st: 690681-
SERPINB5
4.80E−12
2.1258
10.36
85.6
77.8-



HuGene_st: 536963-HuGene_st: 923557-HuGene_st: 183189-





91.4



HuGene_st: 25703-HuGene_st: 959811-HuGene_st: 1087872-









HuGene_st: 774653-HuGene_st: 1019802-HuGene_st: 909910-









HuGene_st: 533096-HuGene_st: 213088-HuGene_st: 387940-









HuGene_st: 769890-HuGene_st: 133132-HuGene_st: 204855_at: 806980-









HuGene_st: 749473-HuGene_st: 470592-HuGene_st: 254090-









HuGene_st: 1555551_at








MMP11
324921-HuGene_st: 203877_at: 718792-HuGene_st: 935371-
MMP11
6.30E−12
2.0946
4.55
85.3
77.4-



HuGene_st: 514533-HuGene_st: 213602_s_at: 671549-HuGene_st: 858774-





91.1



HuGene_st: 986917-HuGene_st: 127919-HuGene_st: 943793-









HuGene_st: 670295-HuGene_st: 1036101-HuGene_st: 922731-









HuGene_st: 203878_s_at: 844472-HuGene_st: 519881-









HuGene_st: 203876_s_at: 715236-HuGene_st: 963997-HuGene_st: 155442-









HuGene_st








SERPINA1
1045251-HuGene_st: 994130-HuGene_st: 83597-HuGene_st: 515713-
SERPINA1
7.12E−12
2.0812
3.43
85.1
77.1-



HuGene_st: 853812-HuGene_st: 1018939-HuGene_st: 52824-





91



HuGene_st: 624314-HuGene_st: 75136-HuGene_st: 667302-









HuGene_st: 975350-HuGene_st: 616531-HuGene_st: 211429_s_at: 521503-









HuGene_st: 1068115-HuGene_st: 560886-HuGene_st: 202833_s_at:









135752-









HuGene_st: 646987-HuGene_st: 230318_at: 141207-HuGene_st: 520102-









HuGene_st: 228566-HuGene_st: 723345-HuGene_st








LGR5
784585-HuGene_st: 777519-HuGene_st: 937559-HuGene_st: 297045-
LGR5
1.10E−11
2.0623
7.89
84.9
76.9-



HuGene_st: 796093-HuGene_st: 783411-HuGene_st: 876648-





90.8



HuGene_st: 842003-HuGene_st: 102017-HuGene_st: 562251-









HuGene_st: 295997-HuGene_st: 747520-HuGene_st: 811121-









HuGene_st: 677407-HuGene_st: 522834-HuGene_st: 475414-









HuGene_st: 802999-HuGene_st: 1066925-HuGene_st: 216864-









HuGene_st: 890928-HuGene_st: 179502-HuGene_st: 79633-









HuGene_st: 210393_at: 241266_at: 213880_at








KLK11
549986-HuGene_st: 890775-HuGene_st: 236557-HuGene_st: 450049-
KLK11
3.11E−11
2.0091
6.04
84.2
76.1-



HuGene_st: 1004334-HuGene_st: 1069590-HuGene_st: 300088-





90.4



HuGene_st: 787829-HuGene_st: 220172-HuGene_st: 668386-









HuGene_st: 205470_s_at: 232801-HuGene_st: 569957-HuGene_st: 273555-









HuGene_st: 471415-HuGene_st: 171521-HuGene_st: 1060009-HuGene_st








QPCT
261837-HuGene_st: 108729-HuGene_st: 942514-HuGene_st: 184578-
QPCT
3.46E−11
2.0418
3.03
84.6
76.6-



HuGene_st: 454020-HuGene_st: 202482-HuGene_st: 1012784-





90.6



HuGene_st: 854999-HuGene_st: 62841-HuGene_st: 271540-









HuGene_st: 524919-HuGene_st: 78507-HuGene_st: 89785-









HuGene_st: 728309-HuGene_st: 625205-HuGene_st: 170279-









HuGene_st: 561083-HuGene_st: 322236-HuGene_st: 205174_s_at: 303448-









HuGene_st








TMEPAI
69901-HuGene_st: 272000-HuGene_st: 290146-HuGene_st: 949819-
TMEPAI
3.73E−11
2.0603
2.2
84.9
76.9-



HuGene_st: 38546-HuGene_st: 576310-HuGene_st: 1043092-





90.8



HuGene_st: 1032094-HuGene_st: 54841-HuGene_st: 520417-









HuGene_st: 482971-HuGene_st: 390671-









HuGene_st: 222449_at: 217875_s_at: 616128-HuGene_st: 626087-









HuGene_st: 452007-HuGene_st: 222450_at: 793710-HuGene_st: 935955-









HuGene_st: 190534-HuGene_st: 147633-HuGene_st: 505849-









HuGene_st: 108118-HuGene_st








WDR72
829740-HuGene_st: 1063796-HuGene_st: 725768-
WDR72
5.22E−11
1.9862
14.11
84
75.8-



HuGene_st: 227174_at: 36564-HuGene_st: 236741_at: 604794-





90.1



HuGene_st: 1040675-HuGene_st: 527199-HuGene_st: 1052168-









HuGene_st: 1563874_at: 177868-HuGene_st: 667158-HuGene_st: 542462-









HuGene_st: 136243-HuGene_st: 551835-HuGene_st








UBE2S
50114-HuGene_st: 827969-HuGene_st: 618483-HuGene_st: 403161-
UBE2S:
5.62E−11
1.9793
2.4
83.9
75.8-



HuGene_st: 202779_s_at: 588403-HuGene_st: 235992-HuGene_st: 261249-
LOC731049,




90.1



HuGene_st: 692372-HuGene_st: 86733-HuGene_st: 892371-
UBE2S:








HuGene_st: 415931-HuGene_st: 285497-HuGene_st: 1092919-
LOC731049








HuGene_st: 692891-HuGene_st: 651401-HuGene_st: 1097987-









HuGene_st: 753061-HuGene_st: 989526-HuGene_st: 209702-









HuGene_st: 883359-HuGene_st: 356270-HuGene_st: 946490-









HuGene_st: 975035-HuGene_st: 9564-HuGene_st








DUOX2
1099413-HuGene_st: 659224-HuGene_st: 156555-HuGene_st: 324189-
DUOX2
9.34E−11
1.9359
9.27
83.3
75.1-



HuGene_st: 213344-HuGene_st: 978958-HuGene_st: 301512-





89.6



HuGene_st: 541945-HuGene_st: 793215-HuGene_st: 791778-









HuGene_st: 737640-HuGene_st: 246083-HuGene_st: 798367-









HuGene_st: 826588-HuGene_st: 442908-HuGene_st: 870549-









HuGene_st: 1015396-HuGene_st: 79359-HuGene_st: 587684-









HuGene_st: 633860-HuGene_st: 659015-HuGene_st: 219727_at: 307924-









HuGene_st








FABP6
306586-HuGene_st: 486210-HuGene_st: 205174-HuGene_st: 918118-
FABP6
1.28E−10
1.9367
3.01
83.4
75.2-



HuGene_st: 123214-HuGene_st: 776487-HuGene_st: 292087-





89.6



HuGene_st: 399564-HuGene_st: 791516-HuGene_st: 221287-









HuGene_st: 288462-HuGene_st: 210445_at: 86381-HuGene_st: 191002-









HuGene_st: 62247-HuGene_st: 248143-HuGene_st: 618873-









HuGene_st: 117294-HuGene_st








MMP3
542596-HuGene_st: 149350-HuGene_st: 35444-HuGene_st: 200029-
MMP3
1.44E−10
1.8957
15.63
82.8
74.5-



HuGene_st: 438906-HuGene_st: 357556-HuGene_st: 206224-





89.2



HuGene_st: 483424-HuGene_st: 701539-HuGene_st: 945713-









HuGene_st: 766524-HuGene_st: 664043-HuGene_st: 560206-









HuGene_st: 191436-HuGene_st: 526573-HuGene_st: 822598-









HuGene_st: 634624-HuGene_st: 7912-HuGene_st: 392207-









HuGene_st: 205828_at: 134417-HuGene_st: 569533-HuGene_st








KRT23
962342-HuGene_st: 65048-HuGene_st: 941972-HuGene_st: 290153-
KRT23
3.58E−10
1.887
6.81
82.7
74.4-



HuGene_st: 120900-HuGene_st: 151180-HuGene_st: 980580-





89.1



HuGene_st: 587527-HuGene_st: 33349-HuGene_st: 439472-









HuGene_st: 882546-HuGene_st: 693456-HuGene_st: 611219-









HuGene_st: 917080-HuGene_st: 890494-HuGene_st: 274715-









HuGene_st: 218963_s_at: 501017-HuGene_st: 82313-HuGene_st: 590458-









HuGene_st








MMP1
61706-HuGene_st: 300572-HuGene_st: 1020786-HuGene_st: 437171-
MMP1
1.22E−09
1.8163
10.59
81.8
73.5-



HuGene_st: 671620-HuGene_st: 689073-HuGene_st: 622653-





88.4



HuGene_st: 958445-HuGene_st: 445730-HuGene_st: 914223-









HuGene_st: 693724-HuGene_st: 673683-HuGene_st: 524115-









HuGene_st: 422476-HuGene_st: 361198-HuGene_st: 710307-









HuGene_st: 468477-HuGene_st: 840324-HuGene_st: 1070117-









HuGene_st: 473664-HuGene_st: 732367-HuGene_st: 204475_at: 353235-









HuGene_st








RP5-
538290-HuGene_st: 177752-HuGene_st: 428459-HuGene_st: 376412-
RP5-
1.33E−09
1.8807
1.99
82.6
74.4-


875H10.1
HuGene_st: 769774-HuGene_st: 862879-HuGene_st: 242626_at: 811503-
875H10.1




89.1



HuGene_st: 488462-HuGene_st: 964336-HuGene_st: 498480-









HuGene_st: 1047616-HuGene_st: 187658-HuGene_st: 201892-









HuGene_st: 372716-HuGene_st: 1038921-HuGene_st: 930484-









HuGene_st: 1569433_at: 990429-HuGene_st: 1077002-HuGene_st: 193834-









HuGene_st: 228653_at: 208211-HuGene_st








MMP12
372865-HuGene_st: 108955-HuGene_st: 80569-HuGene_st: 354173-
MMP12
1.99E−09
1.7858
6.24
81.4
73-88



HuGene_st: 1078790-HuGene_st: 969948-HuGene_st: 868781-









HuGene_st: 574015-HuGene_st: 615370-HuGene_st: 628463-









HuGene_st: 515838-HuGene_st: 130587-HuGene_st: 165281-









HuGene_st: 49605-HuGene_st: 821221-HuGene_st: 131503-









HuGene_st: 337285-HuGene_st: 759246-HuGene_st: 1040687-









HuGene_st: 204580_at








PLCB4
10322-HuGene_st: 957911-HuGene_st: 35530-HuGene_st: 107476-
PLCB4
2.29E−09
1.8407
2.37
82.1
73.8-



HuGene_st: 770342-HuGene_st: 701058-HuGene_st: 76455-





88.6



HuGene_st: 662074-HuGene_st: 330909-HuGene_st: 98190-









HuGene_st: 895165-HuGene_st: 120897-HuGene_st: 215874-









HuGene_st: 575063-HuGene_st: 618779-HuGene_st: 370708-









HuGene_st: 874698-HuGene_st: 203896_s_at: 203895_at: 768644-









HuGene_st: 958443-HuGene_st: 976920-HuGene_st: 531382-









HuGene_st: 240728_at: 1024936-HuGene_st








RPESP
216316-HuGene_st: 211185-HuGene_st: 396353-HuGene_st: 723267-
RPESP
2.38E−09
1.8014
9.07
81.6
73.1-



HuGene_st: 853543-HuGene_st: 472245-HuGene_st: 177506-





88.2



HuGene_st: 271443-HuGene_st: 437371-HuGene_st: 429127-









HuGene_st: 1010482-HuGene_st: 629529-HuGene_st: 814381-









HuGene_st: 619363-HuGene_st: 235209_at: 235210_s_at: 296762-









HuGene_st








ANLN
522941-HuGene_st: 550252-HuGene_st: 477118-HuGene_st: 858635-
ANLN
4.94E−09
1.7558
2.63
81
72.5-



HuGene_st: 34728-HuGene_st: 165560-HuGene_st: 226318-





87.7



HuGene_st: 207100-HuGene_st: 842538-HuGene_st: 343961-









HuGene_st: 899690-HuGene_st: 705871-HuGene_st: 42619-









HuGene_st: 984996-HuGene_st: 733290-HuGene_st: 1008901-









HuGene_st: 752472-HuGene_st: 619756-HuGene_st: 674545-









HuGene_st: 558324-HuGene_st: 261208-









HuGene_st: 222608_s_at: 1552619_a_at








SULF1
807443-HuGene_st: 671986-HuGene_st: 381424-HuGene_st: 187508-
SULF1
9.70E−09
1.7762
1.74
81.3
72.8-



HuGene_st: 532406-HuGene_st: 740854-HuGene_st: 730003-





87.9



HuGene_st: 754502-HuGene_st: 20084-HuGene_st: 517026-









HuGene_st: 1045684-HuGene_st: 512275-HuGene_st: 166879-









HuGene_st: 72604-HuGene_st: 34752-HuGene_st: 933799-









HuGene_st: 212353_at: 212354_at: 1063384-HuGene_st: 492122-









HuGene_st: 212344_at: 482916-HuGene_st: 530745-HuGene_st








CD55
422754-HuGene_st: 440808-HuGene_st: 531637-HuGene_st: 22645-
CD55
1.45E−08
1.7603
2.22
81.1
72.6-



HuGene_st: 891581-HuGene_st: 980059-HuGene_st: 907061-





87.8



HuGene_st: 536297-HuGene_st: 31908-HuGene_st: 1051267-









HuGene_st: 154663-HuGene_st: 688144-HuGene_st: 216097-









HuGene_st: 988881-HuGene_st: 932482-HuGene_st: 813995-









HuGene_st: 449911-









HuGene_st: 1555950_a_at: 201926_s_at: 201925_s_at: 241616_at:









243395_at:









630657-HuGene_st: 288375-HuGene_st: 750208-









HuGene_st: 241615_x_at: 721979-HuGene_st








UBE2C
352222-HuGene_st: 202954_at: 1098731-HuGene_st: 627921-
PAK3:
1.74E−08
1.6437
2.82
79.4
70.8-



HuGene_st: 49079-HuGene_st: 989700-HuGene_st: 941779-
UBE2C




86.5



HuGene_st: 9599-HuGene_st: 736605-HuGene_st: 814147-









HuGene_st: 379525-HuGene_st: 514999-HuGene_st: 634987-









HuGene_st: 1070235-HuGene_st: 697185-HuGene_st: 1032891-









HuGene_st: 827728-HuGene_st: 109552-HuGene_st: 956095-









HuGene_st: 489433-HuGene_st








KLK10
303816-HuGene_st: 935808-HuGene_st: 586276-HuGene_st: 1045718-
KLK10
2.64E−08
1.6155
4.52
79
70.3-



HuGene_st: 209792_s_at: 279985-HuGene_st: 679337-HuGene_st: 542814-





86.1



HuGene_st: 238963-HuGene_st: 910249-HuGene_st: 1009566-









HuGene_st: 989821-HuGene_st: 167404-HuGene_st: 140675-









HuGene_st: 702375-HuGene_st: 497565-HuGene_st: 868046-









HuGene_st: 428218-HuGene_st: 196226-HuGene_st








UBD
918426-HuGene_st: 402478-HuGene_st: 152370-HuGene_st: 1031056-
UBD:
4.07E−08
1.6371
6.59
79.3
70.5-



HuGene_st: 266533-HuGene_st: 338984-HuGene_st: 248325-
GABBR1,




86.3



HuGene_st: 675615-HuGene_st: 917763-HuGene_st: 74769-
UBD








HuGene_st: 435761-HuGene_st: 94745-HuGene_st: 614172-









HuGene_st: 871149-HuGene_st: 374784-HuGene_st: 205890_s_at: 757108-









HuGene_st








RRM2
158317-HuGene_st: 573546-HuGene_st: 788577-
RRM2
4.25E−08
1.608
2.25
78.9
70.2-



HuGene_st: 209773_s_at: 126031-HuGene_st: 1064973-HuGene_st:





86



456984-









HuGene_st: 503676-HuGene_st: 236699-HuGene_st: 240795-









HuGene_st: 523072-HuGene_st: 201890_at








FAM84A
351279-HuGene_st: 452541-HuGene_st: 228319_at: 973835-
FAM84A:
5.97E−08
1.6052
1.73
78.9
70-



HuGene_st: 412010-HuGene_st: 1032585-HuGene_st: 254221-
LOC653602




86



HuGene_st: 948951-HuGene_st: 252448-HuGene_st: 968035-









HuGene_st: 367165-HuGene_st: 1079872-HuGene_st: 641006-









HuGene_st: 104989-HuGene_st: 401120-HuGene_st: 87362-









HuGene_st: 910211-HuGene_st: 234335_s_at: 228459_at: 714477-









HuGene_st: 725313-HuGene_st: 225667_s_at: 234331_s_at








HSPH1
74086-HuGene_st: 246081-HuGene_st: 887199-HuGene_st: 430002-
HSPH1
6.17E−08
1.647
1.85
79.5
70.8-



HuGene_st: 268776-HuGene_st: 760404-HuGene_st: 454747-





86.5



HuGene_st: 984599-HuGene_st: 205087-HuGene_st: 215482-









HuGene_st: 208744_x_at: 398393-HuGene_st: 315510-HuGene_st:









957456-









HuGene_st: 468891-HuGene_st: 669816-HuGene_st: 1086868-









HuGene_st: 774542-HuGene_st: 160544-HuGene_st: 1033297-









HuGene_st: 977601-HuGene_st: 206976_s_at: 363341-HuGene_st








IGFBP2
50377-HuGene_st: 401927-HuGene_st: 845904-HuGene_st: 601554-
IGFBP2
8.07E−08
1.6359
1.93
79.3
70.6-



HuGene_st: 398340-HuGene_st: 314502-HuGene_st: 218007-





86.3



HuGene_st: 686058-HuGene_st: 788427-HuGene_st: 964835-









HuGene_st: 376015-HuGene_st: 1093382-HuGene_st: 202718_at: 303829-









HuGene_st: 1089028-HuGene_st: 439677-HuGene_st: 715676-









HuGene_st: 801130-HuGene_st: 696938-HuGene_st: 224352-









HuGene_st: 983285-HuGene_st








COL12A1
405565-HuGene_st: 874183-HuGene_st: 1057284-
TMEM30A:
9.48E−08
1.6377
3.16
79.4
70.7-



HuGene_st: 234951_s_at: 180263-HuGene_st: 905983-HuGene_st: 140178-
COL12A1




86.3



HuGene_st: 620694-HuGene_st: 913204-HuGene_st: 1063560-









HuGene_st: 289954-HuGene_st: 567963-HuGene_st: 319853-









HuGene_st: 1009559-HuGene_st: 415220-HuGene_st: 419264-









HuGene_st: 31736-HuGene_st: 303383-HuGene_st: 231766_s_at: 595404-









HuGene_st: 435472-HuGene_st: 447689-HuGene_st: 759154-









HuGene_st: 794749-HuGene_st: 225664_at: 231879_at








BGN
279145-HuGene_st: 429977-HuGene_st: 45294-HuGene_st: 722197-
BGN
1.01E−07
1.594
2.69
78.7
70-



HuGene_st: 171694-HuGene_st: 643594-HuGene_st: 201262_s_at:





85.8



1090822-









HuGene_st: 497499-HuGene_st: 1051954-HuGene_st: 381650-









HuGene_st: 978124-HuGene_st: 422042-HuGene_st: 1096605-









HuGene_st: 861988-HuGene_st: 973749-HuGene_st: 164623-









HuGene_st: 213905_x_at: 838396-HuGene_st: 11448-









HuGene_st: 201261_x_at: 987820-HuGene_st: 111675-HuGene_st: 298959-









HuGene_st








RFC3
848747-HuGene_st: 3592-HuGene_st: 785802-HuGene_st: 404399-
RFC3
1.25E−07
1.551
2.25
78.1
69.2-



HuGene_st: 837611-HuGene_st: 815998-HuGene_st: 697366-





85.3



HuGene_st: 133672-HuGene_st: 180712-HuGene_st: 435344-









HuGene_st: 756480-HuGene_st: 567461-HuGene_st: 204128_s_at: 898295-









HuGene_st: 952352-HuGene_st: 976745-HuGene_st: 665489-









HuGene_st: 11314-HuGene_st: 204127_at








LY6G6D
80885-HuGene_st: 260184-HuGene_st: 222480-HuGene_st: 123649-
C6orf21:
1.34E−07
1.5536
6.64
78.1
69.3-



HuGene_st: 290348-HuGene_st: 207457_s_at: 263557-HuGene_st: 49853-
LY6G6D,




85.4



HuGene_st: 556933-HuGene_st: 153804-HuGene_st: 89374-
C6orf21:








HuGene_st: 738758-HuGene_st: 883797-HuGene_st: 649378-
LY6G6D,








HuGene_st: 787525-HuGene_st: 974035-HuGene_st: 722632-
C6orf21:








HuGene_st: 736016-HuGene_st: 254189-HuGene_st: 152334-
LY6G6D








HuGene_st: 318378-HuGene_st: 35133-HuGene_st








TPX2
210052_s_at: 626194-HuGene_st: 116965-HuGene_st: 631447-
TPX2
1.56E−07
1.6664
2.03
79.8
71.1-



HuGene_st: 218832-HuGene_st: 835196-HuGene_st: 865389-





86.7



HuGene_st: 784001-HuGene_st: 653583-HuGene_st: 150197-









HuGene_st: 583927-HuGene_st: 501611-HuGene_st: 1101424-









HuGene_st: 715774-HuGene_st: 1097812-HuGene_st: 290350-









HuGene_st: 325542-HuGene_st: 635970-HuGene_st: 157916-









HuGene_st: 918534-HuGene_st: 787891-HuGene_st








PLAU
131855-HuGene_st: 471777-HuGene_st: 246040-HuGene_st: 31176-
PLAU
2.25E−07
1.5372
3.5
77.9
69.1-



HuGene_st: 323438-HuGene_st: 211668_s_at: 1027344-





85.2



HuGene_st: 1076162-HuGene_st: 186016-HuGene_st: 156254-









HuGene_st: 692506-HuGene_st: 783863-HuGene_st: 52541-









HuGene_st: 738306-HuGene_st: 611756-HuGene_st: 7925-









HuGene_st: 1085903-HuGene_st: 585614-HuGene_st: 205479_s_at:









410729-









HuGene_st: 390198-HuGene_st: 1043179-HuGene_st: 708663-









HuGene_st: 589365-HuGene_st








RDHE2
533383-HuGene_st: 530222-HuGene_st: 515817-HuGene_st: 163536-
RDHE2
2.71E−07
1.5509
2.52
78.1
69.2-



HuGene_st: 229834-HuGene_st: 178723-HuGene_st: 795130-





85.3



HuGene_st: 850113-HuGene_st: 964061-HuGene_st: 314806-









HuGene_st: 905527-HuGene_st: 740748-HuGene_st: 581500-









HuGene_st: 238017_at: 133825-HuGene_st: 320855-HuGene_st: 855530-









HuGene_st: 945673-HuGene_st: 436054-HuGene_st: 665205-HuGene_st








COL11A1
254341-HuGene_st: 485975-HuGene_st: 869898-HuGene_st: 755872-
COL11A1
2.93E−07
1.5722
2.6
78.4
69.6-



HuGene_st: 2674-HuGene_st: 230890-HuGene_st: 6042-





85.5



HuGene_st: 1100922-HuGene_st: 800510-HuGene_st: 64257-









HuGene_st: 301971-HuGene_st: 360139-HuGene_st: 549979-









HuGene_st: 603002-HuGene_st: 756718-HuGene_st: 1043994-









HuGene_st: 198973-HuGene_st: 550144-HuGene_st: 986684-









HuGene_st: 743059-HuGene_st: 708360-HuGene_st: 575064-









HuGene_st: 633985-HuGene_st: 392228-HuGene_st: 204320_at: 121425-









HuGene_st: 468885-HuGene_st: 20543-HuGene_st: 170503-HuGene_st








CDC2
1086386-HuGene_st: 472750-HuGene_st: 503957-HuGene_st: 486448-
CDC2
3.58E−07
1.5339
2.72
77.8
69-



HuGene_st: 210559_s_at: 601189-HuGene_st: 231534_at: 251684-





85.1



HuGene_st: 1039286-HuGene_st: 373877-HuGene_st: 490933-









HuGene_st: 913358-HuGene_st: 714839-HuGene_st: 203214_x_at:









428760-









HuGene_st: 203213_at: 217937-HuGene_st: 922512-HuGene_st: 422389-









HuGene_st: 44156-HuGene_st: 15376-HuGene_st: 576658-









HuGene_st: 302174-HuGene_st: 127098-HuGene_st








DUSP27
612025-HuGene_st: 737703-HuGene_st: 124098-HuGene_st: 102948-
DUSP27
4.68E−07
1.5106
4.81
77.5
68.6-



HuGene_st: 35826-HuGene_st: 226732-HuGene_st: 513585-





84.8



HuGene_st: 135885-HuGene_st: 737040-HuGene_st: 446627-









HuGene_st: 724445-HuGene_st: 289189-HuGene_st: 5396-









HuGene_st: 520095-HuGene_st: 172210-HuGene_st: 277848-









HuGene_st: 312172-HuGene_st: 903613-HuGene_st: 232252_at: 303717-









HuGene_st: 846174-HuGene_st








LOC541471
276744-HuGene_st: 644672-HuGene_st: 812194-HuGene_st: 279980-
MGC4677,
7.40E−07
1.4932
2.04
77.2
68.3-



HuGene_st: 225799_at: 624891-HuGene_st: 149287-HuGene_st: 277416-
MGC4677:




84.6



HuGene_st: 709116-HuGene_st: 236489-HuGene_st: 873188-
LOC541471








HuGene_st: 129947-HuGene_st: 569637-HuGene_st: 916693-









HuGene_st: 469295-HuGene_st








SPINK1
366191-HuGene_st: 47871-HuGene_st: 365962-HuGene_st: 427748-
SPINK1
1.70E−06
1.4805
2.74
77
68.1-



HuGene_st: 190115-HuGene_st: 393701-HuGene_st: 206239_s_at: 67198-





84.4



HuGene_st: 507942-HuGene_st: 547524-HuGene_st: 755318-









HuGene_st: 814516-HuGene_st: 511654-HuGene_st: 159182-









HuGene_st: 250165-HuGene_st: 381410-HuGene_st: 85856-









HuGene_st: 199974-HuGene_st: 97379-HuGene_st: 620717-









HuGene_st: 1058758-HuGene_st: 267993-HuGene_st: 371764-HuGene_st








C14orf94
225806_at: 243446_at: 88782-HuGene_st: 537586-HuGene_st: 973643-
C14orf94
2.40E−06
1.653
1.19
79.6
70.8-



HuGene_st: 646464-HuGene_st: 729584-HuGene_st: 973338-





86.5



HuGene_st: 95576-HuGene_st: 301260-HuGene_st: 559586-









HuGene_st: 942952-HuGene_st: 82798-HuGene_st: 218383_at: 165751-









HuGene_st: 965936-HuGene_st: 31043-HuGene_st: 650638-









HuGene_st: 984201-HuGene_st: 925802-HuGene_st: 306659-









HuGene_st: 345230-HuGene_st








MSLN
63302-HuGene_st: 821643-HuGene_st: 99135-HuGene_st: 192667-
MSLN
3.78E−06
1.4279
1.93
76.2
67.2-



HuGene_st: 765000-HuGene_st: 44188-HuGene_st: 59621-





83.8



HuGene_st: 465236-HuGene_st: 559922-HuGene_st: 82252-









HuGene_st: 1039687-HuGene_st: 1053735-









HuGene_st: 204885_s_at: 870302-HuGene_st: 246473-HuGene_st: 58043-









HuGene_st: 122629-HuGene_st: 826602-HuGene_st: 689741-









HuGene_st: 931732-HuGene_st: 227498-HuGene_st








LOXL2
818138-HuGene_st: 46172-HuGene_st: 346541-HuGene_st: 281266-
ENTPD4:
4.81E−06
1.373
2.19
75.4
66.3-



HuGene_st: 202998_s_at: 1074111-HuGene_st: 228808_s_at: 271051-
LOXL2




82.9



HuGene_st: 827532-HuGene_st: 228823-HuGene_st: 950166-









HuGene_st: 254550-HuGene_st: 260752-HuGene_st: 937941-









HuGene_st: 328673-HuGene_st: 966956-HuGene_st: 84360-









HuGene_st: 34062-HuGene_st: 291104-HuGene_st: 898787-









HuGene_st: 202997_s_at: 626390-HuGene_st: 929733-HuGene_st








APOBEC1
735977-HuGene_st: 188849-HuGene_st: 423265-HuGene_st: 882201-
APOBEC1
9.49E−06
1.3847
1.63
75.6
66.5-



HuGene_st: 237979-HuGene_st: 708999-HuGene_st: 293863-





83.1



HuGene_st: 372914-HuGene_st: 237042-HuGene_st: 207158_at: 1080489-









HuGene_st: 815110-HuGene_st: 417875-HuGene_st: 745636-









HuGene_st: 34403-HuGene_st: 650730-HuGene_st: 164111-









HuGene_st: 360993-HuGene_st








MLPH
549562-HuGene_st: 92890-HuGene_st: 305885-HuGene_st: 709610-
MLPH
1.16E−05
1.4174
1.47
76.1
67.1-



HuGene_st: 337433-HuGene_st: 128794-HuGene_st: 824637-





83.6



HuGene_st: 131043-HuGene_st: 702794-HuGene_st: 533212-









HuGene_st: 398611-HuGene_st: 423382-HuGene_st: 865544-









HuGene_st: 546078-HuGene_st: 505182-HuGene_st: 400420-









HuGene_st: 316126-HuGene_st: 586617-HuGene_st: 506198-









HuGene_st: 218211_s_at: 229150_at: 976628-HuGene_st








HOXB6
339062-HuGene_st: 885612-HuGene_st: 1075575-HuGene_st: 746940-
HOXB6
1.33E−05
1.3346
1.87
74.8
65.6-



HuGene_st: 103632-HuGene_st: 883931-HuGene_st: 552163-





82.4



HuGene_st: 249935-HuGene_st: 726433-HuGene_st: 31257-









HuGene_st: 242080-HuGene_st: 630137-HuGene_st: 959882-









HuGene_st: 546294-HuGene_st: 241578-HuGene_st: 142774-









HuGene_st: 881260-HuGene_st: 290100-HuGene_st: 447667-









HuGene_st: 205366_s_at: 299629-HuGene_st: 831836-HuGene_st








CTHRC1
235232-HuGene_st: 86783-HuGene_st: 426340-HuGene_st: 385407-
CTHRC1
1.83E−05
1.2895
2.57
74
64.9-



HuGene_st: 647908-HuGene_st: 756615-HuGene_st: 978256-





81.8



HuGene_st: 651961-HuGene_st: 193568-HuGene_st: 310105-









HuGene_st: 393578-HuGene_st








REG3A
290546-HuGene_st: 265033-HuGene_st: 385905-HuGene_st: 459677-
REG3A
2.22E−05
1.2218
12.09
72.9
63.7-



HuGene_st: 230871-HuGene_st: 214805-HuGene_st: 1060074-





80.8



HuGene_st: 816902-HuGene_st: 1092213-HuGene_st: 942177-









HuGene_st: 191737-HuGene_st: 729928-HuGene_st: 205815_at: 256155-









HuGene_st: 677349-HuGene_st








CXCL5
264137-HuGene_st: 272626-HuGene_st: 745715-HuGene_st: 968572-
CXCL5
2.79E−05
1.2805
4.48
73.9
64.8-



HuGene_st: 1054472-HuGene_st: 394185-HuGene_st: 181128-





81.7



HuGene_st: 456756-HuGene_st: 415578-









HuGene_st: 215101_s_at: 214974_x_at: 935926-HuGene_st: 781518-









HuGene_st: 235326-HuGene_st: 941963-HuGene_st: 242589-









HuGene_st: 798477-HuGene_st: 257906-HuGene_st: 350119-









HuGene_st: 222708-HuGene_st








CDH11
167614-HuGene_st: 234040-HuGene_st: 609892-HuGene_st: 583244-
CDH11
3.44E−05
1.2652
2.25
73.7
64.4-



HuGene_st: 863670-HuGene_st: 599824-HuGene_st: 142981-





81.5



HuGene_st: 96018-HuGene_st: 217538-HuGene_st: 634855-









HuGene_st: 60296-HuGene_st: 546348-HuGene_st: 206371-









HuGene_st: 960949-HuGene_st: 353648-HuGene_st: 184349-









HuGene_st: 356919-HuGene_st: 611963-HuGene_st: 626011-









HuGene_st: 543798-HuGene_st: 207173_x_at: 207172_s_at








FAP
993707-HuGene_st: 132558-HuGene_st: 581008-
IFIH1:
6.66E−05
1.2541
2.33
73.5
64.2-



HuGene_st: 209955_s_at: 600137-HuGene_st: 284881-HuGene_st: 40379-
FAP




81.3



HuGene_st








REG1B
796972-HuGene_st: 1089426-HuGene_st: 762519-HuGene_st: 270006-
REG1B
8.08E−05
1.1728
13.15
72.1
62.8-



HuGene_st: 553619-HuGene_st: 279169-HuGene_st: 342759-





80.1



HuGene_st: 337497-HuGene_st: 898145-HuGene_st: 603979-









HuGene_st: 134214-HuGene_st: 469380-HuGene_st: 332107-









HuGene_st: 608771-HuGene_st: 965588-HuGene_st: 205886_at: 1010838-









HuGene_st: 714363-HuGene_st: 29068-HuGene_st: 215693-HuGene_st








COMP
401785-HuGene_st: 710767-HuGene_st: 996888-HuGene_st: 348725-
COMP
0.0001
1.1565
1.69
71.8
62.6-



HuGene_st: 492440-HuGene_st: 307171-HuGene_st: 121009-





79.9



HuGene_st: 205713_s_at








AURKA
147919-HuGene_st: 826493-HuGene_st: 453415-HuGene_st: 126529-
AURKA:
0.0001
1.1173
1.81
71.2
61.8-



HuGene_st: 799451-HuGene_st: 673418-HuGene_st: 571370-
STK6P




79.3



HuGene_st: 470643-HuGene_st: 926370-HuGene_st: 93908-









HuGene_st: 426906-HuGene_st: 636365-HuGene_st: 326617-









HuGene_st: 208080_at: 582788-HuGene_st: 647783-HuGene_st: 458308-









HuGene_st: 204092_s_at: 121857-HuGene_st: 1059753-HuGene_st: 70315-









HuGene_st








SQLE
181699-HuGene_st: 213577_at: 285928-HuGene_st: 367103-
SQLE
0.0001
1.1354
2.69
71.5
62.1-



HuGene_st: 827097-HuGene_st: 213562_s_at: 819545-HuGene_st: 354972-





79.6



HuGene_st: 779168-HuGene_st: 1010566-HuGene_st: 47822-









HuGene_st: 861626-HuGene_st: 895693-HuGene_st: 94812-









HuGene_st: 967759-HuGene_st: 625566-HuGene_st: 890030-









HuGene_st: 566347-HuGene_st: 296617-HuGene_st: 894379-









HuGene_st: 1023221-HuGene_st: 198540-HuGene_st: 117280-HuGene_st








L1TD1
859419-HuGene_st: 968483-HuGene_st: 1010927-
L1TD1
0.0002
1.1589
2.36
71.9
62.6-



HuGene_st: 236894_at: 715579-HuGene_st: 540230-HuGene_st: 414266-





79.9



HuGene_st: 572495-HuGene_st: 327643-HuGene_st: 1058922-









HuGene_st: 18534-HuGene_st: 1063550-HuGene_st: 1030986-









HuGene_st: 842123-HuGene_st: 709222-HuGene_st: 887612-









HuGene_st: 219955_at: 496121-HuGene_st: 942986-HuGene_st: 799837-









HuGene_st








SERPINE2
443903-HuGene_st: 959444-HuGene_st: 48734-HuGene_st: 664848-
SERPINE2
0.0002
1.1283
1.9
71.4
62.1-



HuGene_st: 1052179-HuGene_st: 227487_s_at: 902213-HuGene_st:





79.4



621638-









HuGene_st: 230208-HuGene_st: 14188-HuGene_st: 854259-









HuGene_st: 929830-HuGene_st: 670835-HuGene_st: 48860-









HuGene_st: 31861-HuGene_st: 722385-HuGene_st: 1057158-









HuGene_st: 466703-HuGene_st: 10961-HuGene_st: 824130-









HuGene_st: 347407-HuGene_st: 205406-HuGene_st








CEL
1553970_s_at: 898561-HuGene_st: 857424-HuGene_st: 456577-
CEL
0.0006
1.0863
1.46
70.6
61.3-



HuGene_st: 1035054-HuGene_st: 539061-HuGene_st: 788693-





78.8



HuGene_st: 314198-HuGene_st: 786044-HuGene_st: 205910_s_at:









958725-









HuGene_st: 473620-HuGene_st: 74757-HuGene_st: 169727-









HuGene_st: 711091-HuGene_st: 461956-HuGene_st: 897116-









HuGene_st: 911062-HuGene_st: 796522-HuGene_st








LILRB1
213975_s_at
LILRA1:
0.0013
1.0781
1.55
70.5
61.1-




LILRB1




78.7


COL1A1
487433-HuGene_st: 719132-
COL1A1
0.0018
1.0063
2.5
69.3
59.9-



HuGene_st: 1556499_s_at: 202311_s_at: 202310_s_at: 1003153-





77.6



HuGene_st: 1029566-HuGene_st








COL5A2
292241-HuGene_st
COL5A2
0.0026
1.0556
1.36
70.1
60.8-









78.3


PCSK1
981596-HuGene_st: 31911-HuGene_st: 701212-HuGene_st: 673651-
PCSK1
0.0029
1.1077
1.48
71
61.7-



HuGene_st: 166044-HuGene_st: 989024-HuGene_st: 1039153-





79.1



HuGene_st: 688811-HuGene_st: 1068709-HuGene_st: 1083910-









HuGene_st: 527047-HuGene_st: 994213-HuGene_st: 190818-









HuGene_st: 785459-HuGene_st: 127562-HuGene_st: 1012339-









HuGene_st: 343010-HuGene_st: 109185-HuGene_st: 115345-









HuGene_st: 470044-HuGene_st: 856975-HuGene_st: 454100-HuGene_st








PCCA
54827-HuGene_st: 1042448-HuGene_st: 175778-HuGene_st: 203860_at
PCCA
0.0038
0.939
1.42
68.1
58.6-









76.5


H19
634871-HuGene_st: 51379-HuGene_st: 803516-HuGene_st: 336451-
RPS12:
0.0051
1.0228
1.47
69.5
60.2-



HuGene_st: 254511-HuGene_st: 632993-HuGene_st
H19




77.8


COL10A1
288876-HuGene_st: 815716-HuGene_st: 615071-HuGene_st: 865385-
COL10A1
0.0143
0.8493
2.05
66.4
56.9-



HuGene_st: 1067078-HuGene_st





74.9


CYP3A5
NA
CYP3A5:
0.0562
0.8249
1.58
66
56.5-




CYP3A7




74.6


CYP3A5P2
NA
CYP3A5:
0.0562
0.8246
1.58
66
56.5-




CYP3A7




74.6


SLITRK6
NA
SLITRK6
0.0576
0.8687
1.31
66.8
57.3-









75.3


SPARC
NA
SPARC
0.0684
0.6714
1.45
63.1
53.6-









72


CTSE
NA
CTSE
0.0694
0.7465
1.83
64.6
55-









73.3


HOXA9
NA
HOXA9
0.0759
0.7505
1.41
64.6
55.1-









73.3


SFRP4
NA
SFRP4
0.0829
0.6983
1.29
63.7
54-









72.4


COL1A2
NA
COL1A2:
0.1891
0.6508
1.9
62.8
53.1-




LOC728628




71.6


THBS2
NA
THBS2
0.9844
0.2782
1.26
55.5
45.9-









64.8






















TABLE 3







Signif.


Sens -



TargetPS
Symbol
FDR
D.val5
FC
Spec
CI (95)





















217523_at
MAPK10:CD44
3.35E−26
3.7166
7.06
96.8
92.9-98.8


204702_s_at
LOC650331:NFE2L3:LOC642996
1.51E−24
3.521
4.57
96.1
91.7-98.4


207850_at
CXCL2:CXCL3
5.76E−22
3.2893
7.85
95
  90-97.8


204259_at
MMP7
7.61E−22
3.2634
69.29
94.9
89.8-97.7


228915_at
DACH1
1.05E−18
2.9232
5.81
92.8
86.9-96.5


241031_at
NLF1
3.12E−18
2.8001
8.12
91.9
85.7-95.9


223062_s_at
LOC651255:PSAT1:
3.32E−15
2.4882
5.52
89.3
82.3-94.2



LOC389173:LOC729779:C8orf62


206224_at
CST1
7.04E−15
2.4165
13.01
88.7
81.5-93.6


209309_at
AZGP1:LOC401393
1.31E−14
2.3986
6.19
88.5
81.3-93.5


219787_s_at
ECT2
1.42E−14
2.4245
2.82
88.7
81.6-93.7


202286_s_at
TACSTD2
3.13E−14
2.3676
15.71
88.2
80.9-93.3


227140_at
No Symbol
9.19E−12
2.1522
1.61
85.9
78.2-91.6


229802_at
No Symbol
9.19E−12
2.1536
1.61
85.9
78.2-91.6


213880_at
LGR5
1.10E−11
2.0621
7.89
84.9
76.9-90.8


205174_s_at
QPCT
3.46E−11
2.0422
3.03
84.6
76.7-90.6


238021_s_at
LOC643911
3.73E−11
1.6459
1.33
79.5
70.8-86.5


227174_at
WDR72
5.22E−11
1.9854
14.11
84
75.8-90.1


238984_at
REG4
5.97E−10
1.8033
7.75
81.6
73.2-88.3


204475_at
MMP1
1.22E−09
1.8138
10.59
81.8
73.4-88.4


222608_s_at
ANLN
4.94E−09
1.7541
2.63
81
72.4-87.7


211506_s_at
LOC652128:IGHG1:IGHM:IGHV4-
1.99E−07
1.6343
3.1
79.3
70.6-86.3



31:LOC647189:IGHV1-



69:IGHA1:IL8:EXOC7:S1X6:IGHD:



IGH@:IGHG3:C12orf32:ZCWPW2:



IFI6:IGHG4:IGHA2:IGHG2:RAC1


204320_at
COL11A1
2.93E−07
1.5718
2.6
78.4
69.6-85.6


37892_at
COL11A1
2.93E−07
1.5707
2.6
78.4
69.6-85.6


232252_at
DUSP27
4.68E−07
1.5112
4.81
77.5
68.6-84.8


225806_at
C14orf94
2.40E−06
1.6519
1.19
79.6
70.9-86.6


204885_s_at
MSLN
3.78E−06
1.4266
1.93
76.2
67.2-83.7


214974_x_at
CXCL5
2.79E−05
1.2818
4.48
73.9
64.7-81.6


236894_at
L1TD1
0.0002
1.1596
2.36
71.9
62.6-79.9


205910_s_at
CEL
0.0006
1.0869
1.46
70.7
61.3-78.8


202311_s_at
COL1A1
0.0018
1.0054
2.5
69.2
59.9-77.6


205825_at
PCSK1
0.0029
1.1086
1.48
71
61.7-79.1


226237_at
COL8A1
0.0254
0.8303
1.43
66.1
56.6-74.7


235976_at
SLITRK6
0.0576
0.8689
1.31
66.8
57.2-75.3























TABLE 4





Gene


Signif.
D. val

Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
5
FC
Spec
(95)






















CD44
366106-HuGene_st:314808-HuGene_st:59730-
MAPK10:
3.35E−26
3.7136
7.06
96.8
92.9-



HuGene_st:599371-HuGene_st:391296-
CD44




98.8



HuGene_st:1031797-HuGene_st:314340-









HuGene_st:10723-HuGene_st:950067-









HuGene_st:282016-HuGene_st:480680-









HuGene_st:69560-HuGene_st:388781-









HuGene_st:243049-HuGene_st:374652-









HuGene_st:194553-HuGene_st:1075454-









HuGene_st:204489_s_at:619139-









HuGene_st:210916_s_at:542762-









HuGene_st:1557905_s_at:212014_x_at:229221_









at:204490_s_at:234418_x_at:209835_x_at:212063_









at:216062_at:777408-









HuGene_st:234411_x_at:217523_at:216056_at:









1565868_at:83114-HuGene_st








NFE2L3
95873-HuGene_st:1058969-HuGene_st:86088-
LOC650331:
1.51E−24
3.5213
4.57
96.1
91.6-



HuGene_st:1093456-HuGene_st:347351-
NFE2L3:




98.4



HuGene_st:878719-HuGene_st:880179-
LOC642996








HuGene_st:240089_at:822197-









HuGene_st:873612-HuGene_st:517821-









HuGene_st:489354-HuGene_st:20603-









HuGene_st:204702_s_at








MMP7
267137-HuGene_st:1068392-
MMP7
7.61E−22
3.2652
69.29
94.9
89.8-



HuGene_st:794865-HuGene_st:876922-





97.8



HuGene_st:669567-HuGene_st:1039935-









HuGene_st:514120-HuGene_st:1092830-









HuGene_st:745768-HuGene_st:272260-









HuGene_st:30733-HuGene_st:401681-









HuGene_st:854024-HuGene_st:221616-









HuGene_st:805045-HuGene_st:783838-









HuGene_st:204259_at:934756-









HuGene_st:446688-HuGene_st:10259-









HuGene_st:267021-HuGene_st:889042-









HuGene_st








CXCL3
11327-HuGene_st:626337-HuGene_st:322604-
CXCL2:
1.95E−21
3.2907
7.85
95
  90-



HuGene_st:256806-HuGene_st:261067-
CXCL3




97.8



HuGene_st:448247-HuGene_st:666569-









HuGene_st:222646-HuGene_st:262117-









HuGene_st:798675-HuGene_st:391369-









HuGene_st:865299-HuGene_st:877897-









HuGene_st:575433-HuGene_st:43120-









HuGene_st:42070-HuGene_st:33632-









HuGene_st:965957-HuGene_st:556939-









HuGene_st:26460-HuGene_st:796450-









HuGene_st:230101_at:541868-









HuGene_st:490134-HuGene_st:1064107-









HuGene_st:230192-HuGene_st:645829-









HuGene_st:455502-HuGene_st:249140-









HuGene_st:906606-HuGene_st:1098767-









HuGene_st:721989-HuGene_st:500578-









HuGene_st:33301-









HuGene_st:207850_at:622384-









HuGene_st:209774_x_at:432036-









HuGene_st:30559-HuGene_st:187557-









HuGene_st:1101027-HuGene_st:1038334-









HuGene_st:260925-HuGene_st:515662-









HuGene_st:258081-









HuGene_st:1569203_at:280828-









HuGene_st:1000069-HuGene_st:509822-









HuGene_st:890213-HuGene_st:739461-









HuGene_st:342746-HuGene_st:98929-









HuGene_st:818131-HuGene_st:1091592-









HuGene_st:420504-HuGene_st:41644-









HuGene_st:655278-HuGene_st:188562-









HuGene_st:458602-HuGene_st








DACH1
686187-HuGene_st:985190-
DACH1
1.05E−18
2.9206
5.81
92.8
86.9-



HuGene_st:1011822-HuGene_st:1092705-





96.5



HuGene_st:693255-HuGene_st:722787-









HuGene_st:465556-HuGene_st:113230-









HuGene_st:49101-HuGene_st:290879-









HuGene_st:646013-HuGene_st:3984-









HuGene_st:378631-HuGene_st:1002554-









HuGene_st:620749-HuGene_st:802309-









HuGene_st:82679-









HuGene_st:205471_s_at:303920-









HuGene_st:338273-HuGene_st:20454-









HuGene_st:1567100_at:205472_s_at:228915_at:









1562342_at:169641-HuGene_st:984254-









HuGene_st:1567101_at








NLF1
269939-HuGene_st:314919-
NLF1
3.12E−18
2.8001
8.12
91.9
85.7-



HuGene_st:552234-HuGene_st:622058-





95.9



HuGene_st:68900-HuGene_st:376228-









HuGene_st:194806-HuGene_st:923707-









HuGene_st:745661-HuGene_st:996995-









HuGene_st:534469-HuGene_st:560627-









HuGene_st:711203-









HuGene_st:241031_at:93378-









HuGene_st:611899-HuGene_st:57671-









HuGene_st:443570-HuGene_st:231416-









HuGene_st








PSAT1
139416-HuGene_st:795030-
LOC651255:
3.32E−15
2.4883
5.52
89.3
82.3-



HuGene_st:160439-HuGene_st:322148-
PSAT1:




94.1



HuGene_st:85375-HuGene_st:223335-
LOC389173:








HuGene_st:2658-HuGene_st:399855-
LOC729779:








HuGene_st:220892_s_at:941491-
C8orf62








HuGene_st:1017348-HuGene_st:856207-









HuGene_st:194347-HuGene_st:553133-









HuGene_st:223062_s_at:987517-









HuGene_st:336174-HuGene_st








CST1
95123-HuGene_st:125297-HuGene_st:235257-
CST1
7.04E−15
2.4165
13.01
88.7
81.5-



HuGene_st:102028-HuGene_st:291462-





93.7



HuGene_st:206224_at:906914-









HuGene_st:936009-HuGene_st:1055285-









HuGene_st








AZGP1
363333-HuGene_st:620891-
AZGP1:
1.31E−14
2.3984
6.19
88.5
81.3-



HuGene_st:619378-HuGene_st:741747-
LOC401393




93.5



HuGene_st:28018-HuGene_st:594026-









HuGene_st:222884-HuGene_st:1006522-









HuGene_st:974237-HuGene_st:473891-









HuGene_st:784628-HuGene_st:488818-









HuGene_st:209309_at:217014_s_at:63620-









HuGene_st:366096-HuGene_st:950952-









HuGene_st:601798-HuGene_st:399823-









HuGene_st:734365-HuGene_st:1054227-









HuGene_st








ECT2
770888-HuGene_st:82454-HuGene_st:171418-
ECT2
1.42E−14
2.4269
2.82
88.8
81.6-



HuGene_st:52318-HuGene_st:530079-





93.7



HuGene_st:288145-









HuGene_stat:234992_x_at:64803-









HuGene_st:705846-HuGene_st:158755-









HuGene_st:554622-









HuGene_st:237241_at:629949-









HuGene_st:222681-HuGene_st:241642-









HuGene_st:143403-HuGene_st:770445-









HuGene_st:218688-HuGene_st:700408-









HuGene_st:165018-HuGene_st:917458-









HuGene_st:219787_s_at:609829-









HuGene_st:110350-HuGene_st








TACSTD2
1004611-HuGene_st:755233-
TACSTD2
3.13E−14
2.3693
15.71
88.2
80.9-



HuGene_st:815649-HuGene_st:567105-





93.3



HuGene_st:8281-HuGene_st:1041491-









HuGene_st:339450-









HuGene_st:227128_s_at:653539-









HuGene_st:1079680-HuGene_st:958592-









HuGene_st:202286_s_at:620831-









HuGene_st:53075-HuGene_st:1009541-









HuGene_st:861600-HuGene_st:181597-









HuGene_st:130895-HuGene_st:849592-









HuGene_st








IL8
1044664-HuGene_st:714746-
AHNAK:
3.28E−12
2.3273
1.73
87.8
80.3-



HuGene_st:442029-HuGene_st:119200-
IGHG1




93  



HuGene_st:550444-HuGene_st:493978-









HuGene_st:713906-HuGene_st:943156-









HuGene_st:504843-HuGene_st:501902-









HuGene_st:497219-HuGene_st:23149-









HuGene_st:387164-HuGene_st:562654-









HuGene_st:1047492-HuGene_st:538558-









HuGene_st:239300-









HuGene_st:211430_s_at:390695-









HuGene_st:1081759-HuGene_st:144630-









HuGene_st:661013-HuGene_st:393191-









HuGene_st:55017-HuGene_st:1005159-









HuGene_st:359116-HuGene_st:373132-









HuGene_st:689050-HuGene_st:611041-









HuGene_st:715689-HuGene_st:289354-









HuGene_st:820633-HuGene_st:555788-









HuGene_st:988945-HuGene_st:307991-









HuGene_st:211506_s_at:924368-









HuGene_st:47911-HuGene_st:929972-









HuGene_st:561100-HuGene_st:68522-









HuGene_st:217039_x_at:231668_x_at:1080400-









HuGene_st:141662-HuGene_st:765200-









HuGene_st:648539-HuGene_st:274868-









HuGene_st:233969_at








LGR5
784585-HuGene_st:777519-
LGR5
1.10E−11
2.0645
7.89
84.9
76.9-



HuGene_st:937559-HuGene_st:297045-





90.8



HuGene_st:796093-HuGene_st:783411-









HuGene_st:876648-HuGene_st:842003-









HuGene_st:102017-HuGene_st:562251-









HuGene_st:295997-HuGene_st:747520-









HuGene_st:811121-HuGene_st:677407-









HuGene_st:522834-HuGene_st:475414-









HuGene_st:802999-HuGene_st:1066925-









HuGene_st:216864-HuGene_st:890928-









HuGene_st:179502-HuGene_st:79633-









HuGene_st:210393at:241266_at:213880_at








QPCT
261837-HuGene_st:108729-
QPCT
3.46E−11
2.0415
3.03
84.6
76.7-



HuGene_st:942514-HuGene_st:184578-





90.6



HuGene_st:454020-HuGene_st:202482-









HuGene_st:1012784-HuGene_st:854999-









HuGene_st:62841-HuGene_st:271540-









HuGene_st:524919-HuGene_st:78507-









HuGene_st:89785-HuGene_st:728309-









HuGene_st:625205-HuGene_st:170279-









HuGene_st:561083-HuGene_st:322236-









HuGene_st:205174_s_at:303448-HuGene_st








WDR72
829740-HuGene_st:1063796-
WDR72
5.22E−11
1.9856
14.11
84
75.9-



HuGene_st:725768-





90



HuGene_st:227174_at:36564-









HuGene_st:236741_at:604794-









HuGene_st:1040675-HuGene_st:527199-









HuGene_st:1052168-









HuGene_st:1563874_at:177868-









HuGene_st:667158-HuGene_st:542462-









HuGene_st:136243-HuGene_st:551835-









HuGene_st








REG4
186424-HuGene_st:382639-
REG4
5.97E−10
1.8057
7.75
81.7
73.3-



HuGene_st:931162-HuGene_st:400261-





88.3



HuGene_st:638045-HuGene_st:852602-









HuGene_st:628254-HuGene_st:849775-









HuGene_st:274371-









HuGene_st:1554436_a_at:1092015-









HuGene_st:223447_at:29614-









HuGene_st:661518-HuGene_st:580789-









HuGene_st:929866-HuGene_st:160171-









HuGene_st:954850-HuGene_st:758344-









HuGene_st:254891-









HuGene_st:238984_at:421464-









HuGene_st:758547-HuGene_st:364821-









HuGene_st:701510-HuGene_st








MMP1
61706-HuGene_st:300572-
MMP1
1.22E−09
1.8141
10.59
81.8
73.4-



HuGene_st:1020786-HuGene_st:437171-





88.4



HuGene_st:671620-HuGene_st:689073-









HuGene_st:622653-HuGene_st:958445-









HuGene_st:445730-HuGene_st:914223-









HuGene_st:693724-HuGene_st:673683-









HuGene_st:524115-HuGene_st:422476-









HuGene_st:361198-HuGene_st:710307-









HuGene_st:468477-HuGene_st:840324-









HuGene_st:1070117-HuGene_st:473664-









HuGene_st:732367-









HuGene_st:204475_at:353235-HuGene_st








ANLN
522941-HuGene_st:550252-
ANLN
4.94E−09
1.7566
2.63
81
72.5-



HuGene_st:477118-HuGene_st:858635-





87.7



HuGene_st:34728-HuGene_st:165560-









HuGene_st:226318-HuGene_st:207100-









HuGene_st:842538-HuGene_st:343961-









HuGene_st:899690-HuGene_st:705871-









HuGene_st:42619-HuGene_st:984996-









HuGene_st:733290-HuGene_st:1008901-









HuGene_st:752472-HuGene_st:619756-









HuGene_st:674545-HuGene_st:558324-









HuGene_st:261208-









HuGene_st:222608_s_at:1552619_a_at








COL11A1
254341-HuGene_st:485975-
COL11A1
2.93E−07
1.5724
2.6
78.4
69.6-



HuGene_st:869898-HuGene_st:755872-





85.6



HuGene_st:2674-HuGene_st:230890-









HuGene_st:6042-HuGene_st:1100922-









HuGene_st:800510-HuGene_st:64257-









HuGene_st:301971-HuGene_st:360139-









HuGene_st:549979-HuGene_st:603002-









HuGene_st:756718-HuGene_st:1043994-









HuGene_st:198973-HuGene_st:550144-









HuGene_st:986684-HuGene_st:743059-









HuGene_st:708360-HuGene_st:575064-









HuGene_st:633985-HuGene_st:392228-









HuGene_st:204320_at:121425-









HuGene_st:468885-HuGene_st:20543-









HuGene_st:170503-HuGene_st








DUSP27
612025-HuGene_st:737703-
DUSP27
4.68E−07
1.5098
4.81
77.5
68.6-



HuGene_st:124098-HuGene_st:102948-





84.8



HuGene_st:35826-HuGene_st:226732-









HuGene_st:513585-HuGene_st:135885-









HuGene_st:737040-HuGene_st:446627-









HuGene_st:724445-HuGene_st:289189-









HuGene_st:5396-HuGene_st:520095-









HuGene_st:172210-HuGene_st:277848-









HuGene_st:312172-HuGene_st:903613-









HuGene_st:232252_at:303717-









HuGene_st:846174-HuGene_st








C14orf94
225806_at:243446_at:88782-
C14orf94
2.40E−06
1.6524
1.19
79.6
70.9-



HuGene_st:537586-HuGene_st:973643-





86.5



HuGene_st:646464-HuGene_st:729584-









HuGene_st:973338-HuGene_st:95576-









HuGene_st:301260-HuGene_st:559586-









HuGene_st:942952-HuGene_st:82798-









HuGene_st:218383_at:165751-









HuGene_st:965936-HuGene_st:31043-









HuGene_st:650638-HuGene_st:984201-









HuGene_st:925802-HuGene_st:306659-









HuGene_st:345230-HuGene_st








MSLN
63302-HuGene_st:821643-HuGene_st:99135-
MSLN
3.78E−06
1.427
1.93
76.2
67.2-



HuGene_st:192667-HuGene_st:765000-





83.7



HuGene_st:44188-HuGene_st:59621-









HuGene_st:465236-HuGene_st:559922-









HuGene_st:82252-HuGene_st:1039687-









HuGene_st:1053735-









HuGene_st:204885_s_at:870302-









HuGene_st:246473-HuGene_st:58043-









HuGene_st:122629-HuGene_st:826602-









HuGene_st:689741-HuGene_st:931732-









HuGene_st:227498-HuGene_st








CXCL5
264137-HuGene_st:272626-
CXCL5
2.79E−05
1.2814
4.48
73.9
64.7-



HuGene_st:745715-HuGene_st:968572-





81.7



HuGene_st:1054472-HuGene_st:394185-









HuGene_st:181128-HuGene_st:456756-









HuGene_st:415578-









HuGene_st:215101_s_at:214974_x_at:935926-









HuGene_st:781518-HuGene_st:235326-









HuGene_st:941963-HuGene_st:242589-









HuGene_st:798477-HuGene_st:257906-









HuGene_st:350119-HuGene_st:222708-









HuGene_st








L1TD1
859419-HuGene_st:968483-
L1TD1
2.00E−04
1.1595
2.36
71.9
62.6-



HuGene_st:1010927-





79.9



HuGene_st:236894_at:715579-









HuGene_st:540230-HuGene_st:414266-









HuGene_st:572495-HuGene_st:327643-









HuGene_st:1058922-HuGene_st:18534-









HuGene_st:1063550-HuGene_st:1030986-









HuGene_st:842123-HuGene_st:709222-









HuGene_st:887612-









HuGene_st:219955at:496121-









HuGene_st:942986-HuGene_st:799837-









HuGene_st








CEL
1553970_s_at:898561-HuGene_st:857424-
CEL
6.00E−04
1.0872
1.46
70.7
61.3-



HuGene_st:456577-HuGene_st:1035054-





78.8



HuGene_st:539061-HuGene_st:788693-









HuGene_st:314198-HuGene_st:786044-









HuGene_st:205910_s_at:958725-









HuGene_st:473620-HuGene_st:74757-









HuGene_st:169727-HuGene_st:711091-









HuGene_st:461956-HuGene_st:897116-









HuGene_st:911062-HuGene_st:796522-









HuGene_st








COL1A1
487433-HuGene_st:719132-
COL1A1
1.80E−03
1.0053
2.5
69.2
59.9-



HuGene_st:1556499_s_at:202311s_at:202310_





77.6



s_at:1003153-HuGene_st:1029566-HuGene_st








PCSK1
981596-HuGene_st:31911-HuGene_st:701212-
PCSK1
2.90E−03
1.1082
1.48
71
61.6-



HuGene_st:673651-HuGene_st:166044-





79.1



HuGene_st:989024-HuGene_st:1039153-









HuGene_st:688811-HuGene_st:1068709-









HuGene_st:1083910-HuGene_st:527047-









HuGene_st:994213-HuGene_st:190818-









HuGene_st:785459-HuGene_st:127562-









HuGene_st:1012339-HuGene_st:343010-









HuGene_st:109185-HuGene_st:115345-









HuGene_st:470044-HuGene_st:856975-









HuGene_st:454100-HuGene_st








COL8A1
713455-HuGene_st
COL8A1
2.54E−02
0.8325
1.43
66.1
56.6-









74.7






















TABLE 5







Signif.


Sens-



TargetPS
Symbol
FDR
D. val5
FC
Spec
CI (95)





















213106_at
ATP8A1
6.60E−08
2.2884
3.11
87.4
76.9-94.1


210107_at
CLCA1
3.19E−07
2.1573
9.98
86
75.2-93.1


204811_s_at
CACNA2D2
3.61E−05
1.659
4.41
79.7
67.7-88.5


223969_s_at
RETNLB
4.3968E−05 
1.6581
11.64
79.6
67.7-88.5


223970_at
RETNLB
4.3968E−05 
1.6576
11.64
79.6
67.8-88.5


228232_s_at
VSIG2
0.0001
1.5718
2.4
78.4
66.3-87.6


242601_at
LOC253012
0.0001
1.5777
5.28
78.5
66.5-87.6


227719_at
No Symbol
0.0002
1.642
1.98
79.4
67.4-88.3


237521_x_at
No Symbol
0.0002
1.6433
1.98
79.4
67.5-88.3


203240_at
FCGBP
3.00E−04
1.5005
3.07
77.3
65.2-86.7


204897_at
PTGER4
6.00E−04
1.4732
1.55
76.9
64.7-86.4


227676_at
FAM3D
0.001
1.2706
2.15
73.7
61.3-83.8


205765_at
CYP3A5
1.20E−03
1.5279
1.8
77.8
65.6-87.1


232176_at
SLITRK6
0.0016
1.3618
5.96
75.2
62.8-85  


232481_s_at
SLITRK6
0.0016
1.3607
5.96
75.2
62.9-85  


235976_at
SLITRK6
0.0016
1.3648
5.96
75.3
62.9-84.9


221874_at
KIAA1324
3.80E−03
1.325
2.1
74.6
62.2-84.5


226248_s_at
KIAA1324
0.0038
1.3246
2.1
74.6
62.2-84.6


204607_at
HMGCS2
5.20E−03
1.2354
3.59
73.2
60.7-83.3


203963_at
CA12
6.50E−03
1.1828
1.86
72.3
59.7-82.6


204508_s_at
CA12
6.50E−03
1.1861
1.86
72.3
59.8-82.6


215867_x_at
CA12
6.50E−03
1.1858
1.86
72.3
59.7-82.6


227725_at
ST6GALNAC1
0.0068
1.1419
1.76
71.6
59-82


200884_at
CKB
7.30E−03
1.1481
2.25
71.7
59.1-82.1


219955_at
L1TD1
7.70E−03
1.2502
3.27
73.4
60.9-83.5


236894_at
L1TD1
0.0077
1.2465
3.27
73.3
60.9-83.5


205259_at
NR3C2
1.29E−02
1.1933
1.63
72.5
60.1-82.8


218211_s_at
MLPH
1.38E−02
1.2269
1.59
73
60.5-83.2


214234_s_at
CYP3A5P2
1.94E−02
1.098
1.7
70.8
58.1-81.3


214235_at
CYP3A5P2
1.94E−02
1.0976
1.7
70.8
58.2-81.3


204895_x_at
MUC4:TAF5L:
4.53E−02
1.1998
1.31
72.6
60.1-82.8



LOC650855:LOC645744







217109_at
MUC4:TAF5L:
4.53E−02
1.2028
1.31
72.6
60.2-82.8



LOC650855:LOC645744







217110_s_at
MUC4:TAF5L:
4.53E−02
1.198
1.31
72.5
  60-82.8



LOC650855:LOC645744







221841_s_at
KLF4
7.31E−02
1.0009
1.58
69.2
56.5-79.9


215125_s_at
UGT1A9
7.37E−02
1.0664
1.28
70.3
57.6-80.9


208063_s_at
CAPN9
7.40E−02
0.998
1.84
69.1
56.4-79.9


214433_s_at
SELENBP1
9.02E−02
0.9783
2
68.8
  56-79.6


226302_at
ATP8B1
0.093
1.039
1.4
69.8
57.2-80.5


231832_at
WDR51B
0.1284
1.0008
1.28
69.2
56.5-79.9


219543_at
PBLD
1.66E−01
0.8734
1.89
66.9
54.2-77.9


208937_s_at
ID1
2.34E−01
0.7639
1.66
64.9
52.1-76.2


205927_s_at
CTSE
2.81E−01
0.7393
3.23
64.4
51.6-75.8


229070_at
C6orf105
0.7794
0.7027
1.37
63.7
50.9-75.2






















TABLE 6







Signif.
D. val

Sens-



TargetPS
Symbol
FDR
5
FC
Spec
CI (95)





















200665_s_
SPARC
3.05E−09
2.3771
3.24
88.3
  78-94.6


at








212667_at
SPARC
3.0479E−09 
2.3752
3.24
88.3
78.1-94.6


211964_at
COL4A2
5.5315E−09 
2.4316
2.87
88.8
78.8-95  


211966_at
COL4A2
5.5315E−09 
2.4321
2.87
88.8
78.8-95  


211980_at
COL4A1
1.243E−08 
2.3031
3.03
87.5
77.2-94.2


211981_at
COL4A1
1.243E−08 
2.3045
3.03
87.5
77.2-94.2


218638_s_
SPON2
1.9471E−08 
2.3321
3.38
87.8
77.5-94.3


at








221729_at
COL5A2
5.7658E−08 
2.2145
3.31
86.6
  76-93.5


221730_at
COL5A2
5.7658E−08 
2.2138
3.31
86.6
75.9-93.6


208782_at
FSTL1
7.8434E−08 
2.228
2.64
86.7
76.1-93.7


201261_x_
BGN
9.6881E−08 
2.2253
2.99
86.7
  76-93.6


at








213905_x_
BGN
9.6881E−08 
2.2232
2.99
86.7
76.1-93.6


at








209955_s_
IFIH1:FAP
1.358E−07 
2.2261
4.88
86.7
76.2-93.6


at








226237_at
COL8A1
3.6053E−07 
2.1456
3.09
85.8
75-93


202310_s_
COL1A1
5.44E−07
2.0121
3.29
84.3
73-92


at








202311_s_
COL1A1
5.44E−07
2.0131
3.29
84.3
73.1-92  


at








217430_x_
COL1A1
5.4426E−07 
2.015
3.29
84.3
73.2-92  


at








201438_at
COL6A3
5.7026E−07 
2.0286
2.73
84.5
73.5-92.1


202403_s_
COL1A2:LOC728628
8.85E−07
2.0609
2.62
84.9
73.9-92.4


at








202404_s_
COL1A2:LOC728628
8.85E−07
2.0621
2.62
84.9
73.7-92.4


at








229218_at
COL1A2:LOC728628
8.8466E−07 
2.0618
2.62
84.9
73.9-92.4


208850_s_
THY1
1.0326E−06 
1.9159
3.34
83.1
71.8-91.1


at








208851_s_
THY1
1.0326E−06 
1.915
3.34
83.1
71.7-91.1


at








213869_x_
THY1
1.0326E−06 
1.9132
3.34
83.1
71.7-91.1


at








203477_at
COL15A1
1.0611E−06 
2.0121
3.37
84.3
73.2-91.9


201616_s_
CALD1
1.11E−06
2.1136
1.7
85.5
74.6-92.8


at








212077_at
CALD1
1.1059E−06 
2.1131
1.7
85.5
74.5-92.8


201162_at
IGFBP7
1.1574E−06 
2.0016
1.91
84.2
72.9-91.8


201163_s_
IGFBP7
1.16E−06
1.999
1.91
84.1
  73-91.9


at








210511_s_
INHBA
1.1943E−06 
2.0027
3.38
84.2
  73-91.9


at








225664_at
TMEM30A:COL12A1
1.2492E−06 
2.0313
4.16
84.5
73.4-92.1


231766_s_
TMEM30A:COL12A1
1.2492E−06 
2.0303
4.16
84.5
73.4-92.1


at








231879_at
TMEM30A:COL12A1
1.2492E−06 
2.0325
4.16
84.5
73.5-92.1


203325_s_
COL5A1
1.6076E−06 
1.934
2.75
83.3
72.1-91.3


at








212488_at
COL5A1
1.6076E−06 
1.9342
2.75
83.3
72.1-91.3


212489_at
COL5A1
1.6076E−06 
1.9339
2.75
83.3
  72-91.2


203083_at
THBS2
2.3382E−06 
1.9081
6.5
83
71.6-91  


202291_s_
MGP:C12orf46
2.50E−06
1.9993
2.62
84.1
  73-91.9


at








201645_at
TNC
3.74E−06
1.9608
2.14
83.7
72.5-91.5


201852_x_
COL3A1
9.29E−06
1.8472
2.32
82.2
70.7-90.5


at








211161_s_
COL3A1
9.2906E−06 
1.8501
2.32
82.3
70.7-90.5


at








215076_s_
COL3A1
9.2906E−06 
1.8495
2.32
82.2
70.7-90.5


at








232458_at
COL3A1
9.2906E−06 
1.8473
2.32
82.2
70.7-90.5


212344_at
SULF1
1.4436E−05 
1.7528
2.84
81
69.3-89.5


212353_at
SULF1
1.4436E−05 
1.7555
2.84
81
69.2-89.5


212354_at
SULF1
1.4436E−05 
1.7521
2.84
80.9
69.3-89.5


201185_at
HTRA1
1.7178E−05 
1.7346
2.29
80.7
68.9-89.3


202998_s_
ENTPD4:LOXL2
1.99E−05
1.7754
2.45
81.3
69.6-89.7


at








224724_at
SULF2
2.0766E−05 
1.6837
2.25
80
68.2-88.7


233555_s_
SULF2
2.0766E−05 
1.6795
2.25
79.9
  68-88.7


at








201069_at
MMP2
2.5409E−05 
1.7345
3.02
80.7
  69-89.3


201147_s_
TIMP3
2.62E−05
1.7776
2.56
81.3
69.6-89.7


at








201150_s_
TIMP3
2.62E−05
1.7774
2.56
81.3
69.6-89.7


at








209156_s_
COL6A2
2.9551E−05 
1.7373
1.67
80.7
  69-89.4


at








227099_s_
LOC387763
0.00003052
1.8968
1.43
82.9
71.4-90.9


at








214247_s_
DKK3
3.1838E−05 
1.7434
1.86
80.8
69.1-89.5


at








202450_s_
CTSK
3.98E−05
1.7153
2.16
80.4
68.7-89.1


at








225799_at
MGC4677,MGC4677:
4.1139E−05 
1.8003
1.45
81.6
70-90



LOC541471







209395_at
CHI3L1:MYBPH
5.1515E−05 
1.6358
3.06
79.3
67.4-88.2


209396_s_
CHI3L1:MYBPH
5.1515E−05 
1.6352
3.06
79.3
67.4-88.2


at








202878_s_
CD93
5.19E−05
1.6674
2.36
79.8
67.9-88.6


at








204320_at
COL11A1
5.3391E−05 
1.7594
2.55
81
69.3-89.6


37892_at
COL11A1
5.3391E−05 
1.7556
2.55
81
69.3-89.6


221011_s_
LBH
6.3299E−05 
1.6771
1.9
79.9
68.1-88.7


at








213125_at
OLFML2B
6.6557E−05 
1.7057
1.97
80.3
68.5-89  


204475_at
MMP1
7.0616E−05 
1.6759
3.91
79.9
  68-88.8


226694_at
AKAP2:PALM2:PALM2-
7.4206E−05 
1.7231
1.58
80.6
68.8-89.2



AKAP2







202766_s_
FBN1
0.0001
1.5984
1.48
78.8
66.7-87.9


at








205828_at
MMP3
0.0001
1.6223
6.68
79.1
67.3-88.1


207191_s_
ISLR
0.0001
1.6448
1.87
79.5
67.5-88.4


at








213428_s_
COL6A1
0.0001
1.7301
1.58
80.6
68.8-89.3


at








226930_at
FNDC1
0.0001
1.521
3.14
77.7
65.6-87  


201792_at
AEBP1
0.0002
1.4772
2.11
77
64.8-86.5


203878_s_
MMP11
0.0002
1.6971
1.28
80.2
68.4-88.9


at








211959_at
IGFBP5
0.0002
1.5662
3.96
78.3
66.3-87.5


225710_at
No Symbol
0.0002
1.6426
1.98
79.4
67.5-88.4


226311_at
No Symbol
0.0002
1.6436
1.98
79.4
67.5-88.3


226777_at
No Symbol
0.0002
1.645
1.98
79.5
67.5-88.4


227140_at
No Symbol
0.0002
1.6427
1.98
79.4
67.6-88.3


229802_at
No Symbol
0.0002
1.6421
1.98
79.4
67.5-88.3


205479_s_
PLAU
0.0003
1.484
2.11
77.1
64.9-86.5


at








210495_x_
FN1
0.0003
1.494
2.87
77.2
65.1-86.6


at








211719_x_
FN1
0.0003
1.4894
2.87
77.2
65.1-86.7


at








212464_s_
FN1
0.0003
1.493
2.87
77.2
  65-86.7


at








216442_x_
FN1
0.0003
1.4935
2.87
77.2
  65-86.6


at








217762_s_
RAB31
0.0003
1.4864
2.08
77.1
  65-86.6


at








217763_s_
RAB31
0.0003
1.4848
2.08
77.1
64.9-86.6


at








217764_s_
RAB31
0.0003
1.4882
2.08
77.2
  65-86.5


at








225681_at
CTHRC1
0.0003
1.4588
3.41
76.7
64.5-86.3


201105_at
LGALS1
0.0004
1.4844
1.61
77.1
64.9-86.6


208788_at
ELOVL5
0.0004
1.5418
1.86
78
65.8-87.2


224694_at
ANTXR1
0.0005
1.52
2
77.6
65.5-86.9


200974_at
ACTA2
0.0006
1.4251
1.75
76.2
  64-85.8


210095_s_
IGFBP3
0.0006
1.5538
1.38
78.1
  66-87.4


at








201426_s_
VIM
8.00E−04
1.4819
1.48
77.1
64.9-86.4


at








219087_at
ASPN
0.0009
1.4046
2.75
75.9
63.6-85.5


227566_at
HNT
0.001
1.4215
2.26
76.1
  64-85.7


201667_at
GJA1
1.30E−03
1.4084
1.63
75.9
63.7-85.6


200600_at
MSN
1.40E−03
1.4942
1.36
77.2
  65-86.7


204051_s_
SFRP4
0.0015
1.4056
2.2
75.9
63.6-85.6


at








209101_at
CTGF
0.0015
1.3331
1.78
74.7
62.4-84.6


204620_s_
CSPG2
0.0016
1.21
1.38
72.7
60.3-83  


at








211571_s_
CSPG2
0.0016
1.2123
1.38
72.8
60.1-82.9


at








215646_s_
CSPG2
0.0016
1.2095
1.38
72.7
60.3-83  


at








221731_x_
CSPG2
0.0016
1.2115
1.38
72.8
60.3-83  


at








204006_s_
FCGR3B
0.0026
1.2308
2.14
73.1
60.6-83.2


at








203570_at
LOXL1
0.0027
1.4048
1.33
75.9
63.7-85.6


201744_s_
LUM
2.90E−03
1.3418
2.18
74.9
62.5-84.7


at








202283_at
SERPINF1
3.10E−03
1.2121
1.76
72.8
60.2-83  


209596_at
MXRA5
0.0034
1.2974
1.62
74.2
61.7-84.1


210809_s_
POSTN
0.005
1.3011
2.58
74.2
61.8-84.2


at








205547_s_
TAGLN
0.0051
1.1829
2.19
72.3
59.7-82.6


at








202237_at
NNMT
5.40E−03
1.223
1.44
73
60.4-83.1


202238_s_
NNMT
5.40E−03
1.2259
1.44
73
60.5-83.1


at








218468_s_
GREM1
0.007
1.3017
1.31
74.2
61.8-84.2


at








218469_at
GREM1
0.007
1.3027
1.31
74.3
61.9-84.2


208747_s_
C1S
0.0088
1.3575
1.77
75.1
62.9-85  


at








224560_at
TIMP2
0.0097
1.1629
1.72
72
59.4-82.3


231579_s_
TIMP2
0.0097
1.1641
1.72
72
59.5-82.4


at








209875_s_
SPP1
0.0109
1.0673
3.91
70.3
57.6-80.9


at








202859_x_
IL8
0.0112
1.3238
4.54
74.6
62.2-84.5


at








200832_s_
SCD:LOC651109:
1.27E−02
1.0749
2.33
70.5
57.9-81.1


at
LOC645313







201058_s_
MYL9
0.0131
1.1765
1.37
72.2
59.6-82.5


at








203645_s_
CD163
0.0146
1.1655
2.19
72
59.4-82.3


at








215049_x_
CD163
0.0146
1.1664
2.19
72
59.4-82.3


at








202917_s_
S100A8
1.48E−02
1.0979
3.17
70.8
58.3-81.4


at








201289_at
CYR61
0.015
1.0919
1.69
70.7
58.1-81.2


210764_s_
CYR61
0.015
1.0938
1.69
70.8
58.2-81.2


at








218559_s_
MAFB
0.0182
1.162
1.48
71.9
59.3-82.3


at








203382_s_
APOE
0.0285
1.1124
1.43
71.1
58.5-81.6


at








201893_x_
DCN
3.64E−02
1.0821
1.29
70.6
  58-81.1


at








211813_x_
DCN
0.0364
1.0838
1.29
70.6
57.8-81.1


at








211896_s_
DCN
0.0364
1.0814
1.29
70.6
  58-81.1


at








213524_s_
GOS2
0.0383
0.994
1.53
69
56.3-79.8


at








207173_x_
CDH11
0.0384
1.0121
1.98
69.4
56.6-80.1


at








209218_at
SQLE
0.041
1.0162
2.15
69.4
56.6-80.1


201141_at
GPNMB
0.0623
1.0165
1.52
69.4
56.7-80.1


201859_at
PRG1
0.0634
0.798
1.34
65.5
52.6-76.7


234994_at
KIAA1913
0.1061
0.9579
1.2
68.4
55.7-79.3


223122_s_
SFRP2
0.1336
0.968
1.24
68.6
55.9-79.4


at








223235_s_
SMOC2
0.2175
0.6547
2.06
62.8
  50-74.4


at








200986_at
SERPING1
0.2636
0.7831
1.26
65.2
52.4-76.4


201842_s_
EFEMP1
4.91E−01
0.6821
1.27
63.3
50.5-74.8


at








204122_at
TYROBP
0.4923
0.7066
1.23
63.8
51.1-75.3


202620_s_
PLOD2
5.15E−01
0.7784
1.51
65.1
52.3-76.4


at























TABLE 7





Gene


Signif.
D. val

Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
5
FC
Spec
(95)






















ATP8A1
231484_at:792569-
ATP8A1
6.60E−08
2.2854
3.11
87.3
76.9-



HuGene_st:210192_at:393806-





94



HuGene_st:743026-HuGene_st:200684-









HuGene_st:1570592_a_at:645563-









HuGene_st:245580-HuGene_st:175799-









HuGene_st:20566-HuGene_st:636204-









HuGene_st:376757-HuGene_st:273140-









HuGene_st:873028-HuGene_st:864954-









HuGene_st:349056-HuGene_st:538894-









HuGene_st:167620-HuGene_st:807498-









HuGene_st








CLCA1
210107_at:426361-HuGene_st:389155-
CLCA1
3.19E−07
2.1536
9.98
85.9
75.1-



HuGene_st:622359-HuGene_st:523802-





93.1



HuGene_st:196470-HuGene_st:1078884-









HuGene_st:515258-HuGene_st:638133-









HuGene_st:764167-HuGene_st:921948-









HuGene_st:372283-HuGene_st:252084-









HuGene_st:98798-HuGene_st:1059095-









HuGene_st:441678-HuGene_st:490107-









HuGene_st:284008-HuGene_st:258568-









HuGene_st:602588-HuGene_st:472452-









HuGene_st:640066-HuGene_st








CACNA2D2
805306-HuGene_st:1022165-
CACNA2D2
3.61E−05
1.6587
4.41
79.7
67.8-



HuGene_st:356782-HuGene_st:70395-





88.5



HuGene_st:525161-HuGene_st:729314-









HuGene_st:866616-HuGene_st:13978-









HuGene_st:715678-HuGene_st:299289-









HuGene_st:592015-HuGene_st:756393-









HuGene_st:607464-HuGene_st:862691-









HuGene_st:229636_at:885048-









HuGene_st:680228-HuGene_st:393608-









HuGene_st:886897-HuGene_st:413699-









HuGene_st








RETNLB
173654-HuGene_st:223970_at:1094109-
RETNLB
4.40E−05
1.6599
11.64
79.7
67.8-



HuGene_st:708431-HuGene_st:231770-





88.5



HuGene_st:1065075-HuGene_st:318917-









HuGene_st:719419-HuGene_st:380366-









HuGene_st:221119-HuGene_st:774168-









HuGene_st:223969_s_at:523432-









HuGene_st:45260-HuGene_st:963420-









HuGene_st:329703-HuGene_st:223761-









HuGene_st:1036667-HuGene_st:143113-









HuGene_st:414008-HuGene_st:232543-









HuGene_st








VSIG2
391438-HuGene_st:228232_s_at:265221-
VSIG2
0.0001
1.5745
2.4
78.4
66.3-



HuGene_st:343187-HuGene_st:223925-





87.6



HuGene_st:652010-HuGene_st:1069591-









HuGene_st:265186-HuGene_st:1095607-









HuGene_st:788466-HuGene_st:675062-









HuGene_st:826720-HuGene_st:1093892-









HuGene_st:985113-HuGene_st:637781-









HuGene_st:997596-HuGene_st








LOC253012
1014415-HuGene_st:912640-
LOC253012
0.0001
1.5764
5.28
78.5
66.5-



HuGene_st:463072-HuGene_st:749900-





87.7



HuGene_st:381523-HuGene_st:896826-









HuGene_st:804632-HuGene_st:304834-









HuGene_st:39629-HuGene_st:568837-









HuGene_st:1070854-HuGene_st:162938-









HuGene_st:1026726-HuGene_st:441915-









HuGene_st:242601_at:51876-









HuGene_st:199784-HuGene_st:363568-









HuGene_st:50979-HuGene_st:736612-









HuGene_st








FCGBP
203240_at:88809-HuGene_st:1085208-
FCGBP
0.0003
1.4997
3.07
77.3
65.2-



HuGene_st:338164-HuGene_st:71797-





86.7



HuGene_st:1079875-HuGene_st:63672-









HuGene_st:997435-HuGene_st:226428-









HuGene_st:948120-HuGene_st:22847-









HuGene_st:36995-HuGene_st:508230-









HuGene_st:16108-HuGene_st:311904-









HuGene_st:426005-HuGene_st:27264-









HuGene_st:516715-HuGene_st:841000-









HuGene_st:708701-HuGene_st:781083-









HuGene_st:634071-HuGene_st:948682-









HuGene_st








PTGER4
204896_s_at:109314-HuGene_st:986807-
PTGER4
0.0006
1.4713
1.55
76.9
64.7-



HuGene_st:446764-HuGene_st:548266-





86.4



HuGene_st:919403-HuGene_st:965220-









HuGene_st:192344-HuGene_st:1943-









HuGene_st:252442-HuGene_st:392964-









HuGene_st:23686-









HuGene_st:204897_at:812085-HuGene_st








FAM3D
361373-HuGene_st:963526-
FAM3D
0.001
1.2699
2.15
73.7
61.3-



HuGene_st:227676_at:741172-





83.8



HuGene_st:608385-HuGene_st:1074915-









HuGene_st:182670-HuGene_st:24363-









HuGene_st:269456-HuGene_st:833883-









HuGene_st:280625-HuGene_st:187246-









HuGene_st:964986-HuGene_st:66738-









HuGene_st:80884-HuGene_st








CYP3A5
205765_at:67735-
CYP3A5
0.0012
1.5288
1.8
77.8
65.7-



HuGene_st:214234_s_at:941416-





87



HuGene_st:238807-HuGene_st:611620-









HuGene_st








CYP3A5P2
205765_at:67735-
CYP3A5
0.0012
1.5297
1.8
77.8
65.6-



HuGene_st:214234_s_at:941416-





87



HuGene_st:238807-HuGene_st:611620-









HuGene_st








SLITRK6
936650-HuGene_st:921047-
SLITRK6
0.0016
1.36
5.96
75.2
62.8-



HuGene_st:371185-HuGene_st:510939-





85



HuGene_st:356154-HuGene_st:205559-









HuGene_st:386297-HuGene_st:483895-









HuGene_st:227644-HuGene_st:458058-









HuGene_st:232481_s_at:907326-









HuGene_st:255645-HuGene_st:830582-









HuGene_st:615220-HuGene_st:369624-









HuGene_st:78770-HuGene_st:573187-









HuGene_st:1025122-HuGene_st:584646-









HuGene_st








KIAA1324
243349_at:226248_s_at:1052694-
KIAA1324
0.0038
1.3258
2.1
74.6
62.2-



HuGene_st:893707-HuGene_st:597814-





84.5



HuGene_st:585604-HuGene_st:240530-









HuGene_st








HMGCS2
616916-HuGene_st:283650-
HMGCS2
0.0052
1.234
3.59
73.1
60.6-



HuGene_st:204607_at:43162-





83.3



HuGene_st:371076-HuGene_st:407398-









HuGene_st:900260-HuGene_st:619083-









HuGene_st:729816-HuGene_st:171889-









HuGene_st:253113-HuGene_st:448587-









HuGene_st:593619-HuGene_st:624250-









HuGene_st:865416-HuGene_st:888308-









HuGene_st:397691-HuGene_st:789982-









HuGene_st:658722-HuGene_st








CA12
215867_x_at:210735_s_at:204508_s_at:
CA12
0.0065
1.1823
1.86
72.3
59.7-



203963_at:638145-HuGene_st:1013062-





82.6



HuGene_st:280470-









HuGene_st:214164_x_at:875965-









HuGene_st:749017-HuGene_st:1049334-









HuGene_st:439438-HuGene_st:65565-









HuGene_st:1017708-HuGene_st:226479-









HuGene_st:125567-HuGene_st:698714-









HuGene_st:963408-HuGene_st:189118-









HuGene_st:1049350-HuGene_st








ST6GALNAC1
524915-HuGene_st:694442-
ST6GALNAC1
0.0068
1.1407
1.76
71.6
58.9-



HuGene_st:372293-HuGene_st:247017-





82



HuGene_st:186959-HuGene_st:149798-









HuGene_st:611157-HuGene_st:887450-









HuGene_st:227725_at:608767-









HuGene_st:891399-HuGene_st:95718-









HuGene_st:780611-HuGene_st:1006431-









HuGene_st:266448-HuGene_st:768462-









HuGene_st:616368-HuGene_st:66760-









HuGene_st:1067993-HuGene_st:69927-









HuGene_st:104705-HuGene_st








CKB
200884_at:435665-HuGene_st:888623-
CKB
0.0073
1.1468
2.25
71.7
59.2-



HuGene_st:480007-HuGene_st:396007-





82.1



HuGene_st:963331-HuGene_st:40899-









HuGene_st:373774-HuGene_st:25470-









HuGene_st:16603-HuGene_st:766369-









HuGene_st:405417-HuGene_st:718720-









HuGene_st:1041238-HuGene_st:23457-









HuGene_st:24890-HuGene_st:769422-









HuGene_st:896708-HuGene_st:581051-









HuGene_st:549987-HuGene_st:384128-









HuGene_st








L1TD1
219955_at:842123-HuGene_st:1095330-
L1TD1
0.0077
1.2497
3.27
73.4
60.9-



HuGene_st:1058922-HuGene_st:572495-





83.5



HuGene_st:414266-HuGene_st:887612-









HuGene_st:799837-HuGene_st:177635-









HuGene_st:715579-HuGene_st:709222-









HuGene_st:968483-HuGene_st:1030986-









HuGene_st:327643-HuGene_st:540230-









HuGene_st








NR3C2
100953-HuGene_st:239673_at:981978-
NR3C2
0.0129
1.1951
1.63
72.5
59.9-



HuGene_st





82.7


MLPH
218211_s_at
MLPH
0.0138
1.2275
1.59
73
60.5-









83.2


UGT1A1
208596_s_at:221305_s_at:204532_x_at:
UGT1A3
0.0376
1.0578
1.68
70.2
57.5-



232654_s_at





80.8


MUC4
NA
MUC4:
0.0453
1.1986
1.31
72.6
60.1-




TAF5L:




82.8




LOC650855:









LOC645744







KLF4
NA
KLF4
0.0731
1.0018
1.58
69.2
56.5-









79.9


CAPN9
NA
CAPN9
0.074
0.9979
1.84
69.1
56.4-









79.9


SELENBP1
NA
SELENBP1
0.0902
0.9777
2
68.8
56.1-









79.6


ATP8B1
NA
ATP8B1
0.093
1.0347
1.4
69.8
57.2-









80.4


WDR51B
NA
WDR51B
0.1284
1.0004
1.28
69.2
56.5-









80


PBLD
NA
PBLD
0.1655
0.8731
1.89
66.9
54.1-









78


ID1
NA
ID1
0.2342
0.7662
1.66
64.9
52.2-









76.2


CTSE
NA
CTSE
0.2809
0.7409
3.23
64.4
51.7-









75.8


C6orf105
NA
C6orf105
0.7794
0.7003
1.37
63.7
50.8-









75.1























TABLE 8





Gene


Signif.


Sens-
CI


Symbol
ValidPS_UP
Symbol
FDR
D. val5
FC
Spec
(95)






















SPARC
677215-HuGene_st:456544-
SPARC
3.0479E−09
2.3799
3.24
88.3
78.1-



HuGene_st:1041514-HuGene_st:868223-





94.6



HuGene_st:1053181-HuGene_st:196416-









HuGene_st:1078055-HuGene_st:213861-









HuGene_st:452422-HuGene_st:1078242-









HuGene_st:497056-HuGene_st:1285-









HuGene_st:793848-HuGene_st:455765-









HuGene_st:72235-HuGene_st:568912-









HuGene_st:887159-HuGene_st:255885-









HuGene_st:225477-HuGene_st:162094-









HuGene_st:1026630-









HuGene_st:200665_s_at








COL4A2
540082-HuGene_st:295949-
COL4A2
5.5315E−09
2.4297
2.87
88.8
78.6-



HuGene_st:1009411-HuGene_st:245530-





95



HuGene_st:834880-HuGene_st:801333-









HuGene_st:500428-HuGene_st:990355-









HuGene_st:469754-HuGene_st:980150-









HuGene_st:184258-HuGene_st:580118-









HuGene_st:281233-HuGene_st:732269-









HuGene_st:1075712-HuGene_st:643598-









HuGene_st:772366-









HuGene_st:211966_at:512520-









HuGene_st:973004-HuGene_st:839631-









HuGene_st:211964at:316644-









HuGene_st:1015712-HuGene_st








COL4A1
831741-HuGene_st:634068-
COL4A1
 1.243E−08
2.3004
3.03
87.5
  77-



HuGene_st:816476-HuGene_st:1030276-





94.2



HuGene_st:144637-HuGene_st:24196-









HuGene_st:272762-HuGene_st:604042-









HuGene_st:392785-HuGene_st:782962-









HuGene_st:381555-HuGene_st:576333-









HuGene_st:310901-HuGene_st:237606-









HuGene_st:719873-HuGene_st:914012-









HuGene_st:30564-HuGene_st:828024-









HuGene_st:687375-









HuGene_st:211981_at:211980_at:812556-









HuGene_st:681655-HuGene_st:233652_at








SPON2
173417-HuGene_st:845288-
SPON2
1.9471E−08
2.3295
3.38
87.8
77.4-



HuGene_st:170898-HuGene_st:6411-





94.3



HuGene_st:981126-HuGene_st:1098117-









HuGene_st:1049111-HuGene_st:1018834-









HuGene_st:300655-HuGene_st:45524-









HuGene_st:256565-HuGene_st:533681-









HuGene_st:346131-HuGene_st:251693-









HuGene_st:937110-HuGene_st:347749-









HuGene_st:645379-HuGene_st:107844-









HuGene_st:396405-









HuGene_st:218638_s_at:1569496_s_at








COL5A2
631247-HuGene_st:59739-
COLSA2
5.7658E−08
2.2164
3.31
86.6
  76-



HuGene_st:260654-HuGene_st:125943-





93.5



HuGene_st:292068-HuGene_st:788391-









HuGene_st:408375-HuGene_st:561511-









HuGene_st:838505-HuGene_st:915389-









HuGene_st:684636-HuGene_st:817279-









HuGene_st:514415-HuGene_st:583557-









HuGene_st:1009654-HuGene_st:416341-









HuGene_st:260479-HuGene_st:292241-









HuGene_st:1034540-HuGene_st:101178-









HuGene_st:221730_at:221729_at








FSTL1
1020674-HuGene_st:291086-
FSTL1
7.8434E−08
2.2277
2.64
86.7
76.1-



HuGene_st:964097-HuGene_st:874354-





93.6



HuGene_st:745908-HuGene_st:129330-









HuGene_st:1039443-HuGene_st:855602-









HuGene_st:494940-HuGene_st:666633-









HuGene_st:10001-HuGene_st:654906-









HuGene_st:322189-HuGene_st:891629-









HuGene_st:225280-HuGene_st:67871-









HuGene_st:965246-HuGene_st








BGN
722197-HuGene_st:1090822-
BGN
9.6881E−08
2.2246
2.99
86.7
76.1-



HuGene_st:45294-HuGene_st:381650-





93.6



HuGene_st:987820-HuGene_st:978124-









HuGene_st:171694-HuGene_st:643594-









HuGene_st:429977-HuGene_st:1096605-









HuGene_st:861988-HuGene_st:164623-









HuGene_st:201262_s_at:497499-









HuGene_st:422042-HuGene_st:1051954-









HuGene_st:262594-HuGene_st:279145-









HuGene_st:838396-HuGene_st:298959-









HuGene_st:11448-HuGene_st:111675-









HuGene_st:213905_x_at:201261_x_at:









973749-HuGene_st








FAP
58645-HuGene_st:581008-
IFIH1:FAP
 1.358E−07
2.2253
4.88
86.7
76.1-



HuGene_st:284881-HuGene_st:1022038-





93.6



HuGene_st:916010-HuGene_st:947725-









HuGene_st:477772-HuGene_st:22772-









HuGene_st:636840-HuGene_st:40379-









HuGene_st:993707-HuGene_st:322964-









HuGene_st:759386-HuGene_st:132558-









HuGene_st:600137-HuGene_st:915847-









HuGene_st:246189-HuGene_st:445095-









HuGene_st:389696-HuGene_st:438119-









HuGene_st:748913-HuGene_st:209955_s_at








COL8A1
333339-HuGene_st:214587_at:586420-
COL8A1
3.6053E−07
2.1439
3.09
85.8
74.9-



HuGene_st:103513-HuGene_st:651142-





93



HuGene_st:617293-HuGene_st:107398-









HuGene_st:79621-HuGene_st:806363-









HuGene_st:327074-HuGene_st:41199-









HuGene_st








COL1A1
767019-HuGene_st:654019-
COL1A1
5.4426E−07
2.0142
3.29
84.3
73.1-



HuGene_st:52480-HuGene_st:975188-





92



HuGene_st:731985-HuGene_st:849620-









HuGene_st:652845-HuGene_st:1077639-









HuGene_st:149590-HuGene_st:788754-









HuGene_st:1033327-HuGene_st:258815-









HuGene_st:719132-HuGene_st:971026-









HuGene_st:1061961-HuGene_st:435403-









HuGene_st:498576-HuGene_st:1003153-









HuGene_st:1029566-HuGene_st:487433-









HuGene_st:165153-HuGene_st:125258-









HuGene_st:217430_x_at:202310_s_at:









155699_s_at:202311_s_at








COL6A3
312177-HuGene_st:24239-
COL6A3
5.7026E−07
2.0313
2.73
84.5
73.5-



HuGene_st:337032-HuGene_st:31627-





92.1



HuGene_st:72819-HuGene_st:85665-









HuGene_st:51265-HuGene_st:315258-









HuGene_st:423421-HuGene_st:976272-









HuGene_st:627131-HuGene_st:547019-









HuGene_st:482866-HuGene_st:871788-









HuGene_st:273133-HuGene_st:945341-









HuGene_st:223275-HuGene_st:768482-









HuGene_st:618342-HuGene_st:993598-









HuGene_st:716493-HuGene_st:153821-









HuGene_st:201438_at








COL1A2
918394-HuGene_st:75788-
COL1A2:
8.8466E−07
2.0613
2.62
84.9
73.9-



HuGene_st:240155-HuGene_st:1079758-
LOC728628




92.3



HuGene_st:174439-HuGene_st:133455-









HuGene_st:720682-HuGene_st:723785-









HuGene_st:1076123-HuGene_st:252002-









HuGene_st:733200-HuGene_st:890123-









HuGene_st:1070579-HuGene_st:52384-









HuGene_st:928914-HuGene_st:257376-









HuGene_st:355867-HuGene_st:472073-









HuGene_st:349798-HuGene_st:153814-









HuGene_st:825347-









HuGene_st:202404_s_at:202403_s_at








THY1
149448-HuGene_st:804495-
THY1
1.0326E−06
1.9155
3.34
83.1
71.7-



HuGene_st:287669-HuGene_st:329513-





91.1



HuGene_st:432229-HuGene_st:834028-









HuGene_st:462769-HuGene_st:408326-









HuGene_st:603473-HuGene_st:497809-









HuGene_st:301090-HuGene_st:606465-









HuGene_st:208850_s_at:278686-









HuGene_st:804789-HuGene_st:236645-









HuGene_st:257047-HuGene_st:554409-









HuGene_st:108391-









HuGene_st:208851_s_at:213869_x_at:









908785-HuGene_st:516398-HuGene_st








COL15A1
330621-HuGene_st:910395-
COL15A1
1.0611E−06
2.0128
3.37
84.3
73.2-



HuGene_st:811192-HuGene_st:294092-





92



HuGene_st:958891-HuGene_st:407270-









HuGene_st:423090-HuGene_st:1079597-









HuGene_st:95084-HuGene_st:775288-









HuGene_st:813875-HuGene_st:1001637-









HuGene_st:49304-HuGene_st:970691-









HuGene_st:346838-HuGene_st:91483-









HuGene_st:528528-HuGene_st:453998-









HuGene_st:254490-









HuGene_st:203477_at:201064-HuGene_st








CALD1
816439-HuGene_st:318906-
CALD1
1.1059E−06
2.1159
1.7
85.5
74.6-



HuGene_st:558226-HuGene_st:755661-





92.8



HuGene_st:519079-HuGene_st:1094139-









HuGene_st:975649-HuGene_st:407536-









HuGene_st:908350-HuGene_st:576686-









HuGene_st:688034-HuGene_st:792918-









HuGene_st:596642-HuGene_st:797317-









HuGene_st:1023569-HuGene_st:450656-









HuGene_st:231881_at:165931-HuGene_st








IGFBP7
363517-HuGene_st:787689-
IGFBP7
1.1574E−06
1.9989
1.91
84.1
72.9-



HuGene_st:86333-HuGene_st:882867-





91.8



HuGene_st:620969-HuGene_st:167271-









HuGene_st:192752-HuGene_st:521467-









HuGene_st:699448-HuGene_st:882712-









HuGene_st:211325-HuGene_st:329940-









HuGene_st:980809-HuGene_st:22805-









HuGene_st:288233-HuGene_st:230028-









HuGene_st:551901-HuGene_st:921418-









HuGene_st:232544_at:969620-









HuGene_st:985682-HuGene_st








INHBA
1088123-HuGene_st:151327-
INHBA
1.1943E−06
2.0051
3.38
84.2
  73-



HuGene_st:363337-HuGene_st:874496-





91.9



HuGene_st:402595-HuGene_st:289422-









HuGene_st:838338-HuGene_st:746887-









HuGene_st:623455-HuGene_st:395552-









HuGene_st:865665-HuGene_st:328796-









HuGene_st:1088331-HuGene_st:751719-









HuGene_st:36929-HuGene_st:548889-









HuGene_st:909672-









HuGene_st:210511_s_at:344276-









HuGene_st:204926_at:112496-HuGene_st








COL12A1
905983-HuGene_st:794749-
TMEM30A:
1.2492E−06
2.03
4.16
84.5
73.4-



HuGene_st:1063560-HuGene_st:567963-
COL12A1




92.1



HuGene_st:140178-HuGene_st:289954-









HuGene_st:620694-HuGene_st:31736-









HuGene_st:1009559-HuGene_st:435472-









HuGene_st:415220-HuGene_st:447689-









HuGene_st:405565-HuGene_st:180263-









HuGene_st:595404-HuGene_st:759154-









HuGene_st:419264-HuGene_st:319853-









HuGene_st:225664_at:231879_at:874183-









HuGene_st:913204-









HuGene_st:231766_s_at:234951_s_at:









1057284-HuGene_st








COL5A1
64984-HuGene_st:815841-
COL5A1
1.6076E−06
1.9335
2.75
83.3
  72-



HuGene_st:299983-HuGene_st:751853-





91.3



HuGene_st:33784-HuGene_st:366345-









HuGene_st:63200-HuGene_st:293998-









HuGene_st:544275-HuGene_st:940629-









HuGene_st:383962-HuGene_st:995286-









HuGene_st:640471-HuGene_st:77586-









HuGene_st:212489at:633141-









HuGene_st:203325_s_at:777727-









HuGene_st:400357-









HuGene_st:212488_at:291267-









HuGene_st:285959-HuGene_st:886716-









HuGene_st








THBS2
789762-HuGene_st:451028-
THBS2
2.3382E−06
1.9035
6.5
82.9
71.6-



HuGene_st:807449-HuGene_st:895973-





91



HuGene_st:360384-HuGene_st:885374-









HuGene_st:178235-HuGene_st:241784-









HuGene_st:774957-HuGene_st:565405-









HuGene_st:684979-HuGene_st:890746-









HuGene_st:588267-HuGene_st:1033680-









HuGene_st:387904-HuGene_st:1096131-









HuGene_st:739113-HuGene_st:614690-









HuGene_st:270369-HuGene_st:892858-









HuGene_st








TNC
441837-HuGene_st:278723-
TNC
3.7414E−06
1.9636
2.14
83.7
72.4-



HuGene_st:1030770-HuGene_st:767997-





91.6



HuGene_st:514659-HuGene_st:873244-









HuGene_st:837401-HuGene_st:621609-









HuGene_st:888816-HuGene_st:660419-









HuGene_st:889974-HuGene_st:780538-









HuGene_st:157747-HuGene_st:908522-









HuGene_st:263796-HuGene_st:280913-









HuGene_st:201645_at:1016643-









HuGene_st:243540_at:537682-









HuGene_st:859608-HuGene_st:1079032-









HuGene_st:458991-HuGene_st:241272_at








MGP
148839-HuGene_st
MGP:
5.8225E−06
1.9994
2.62
84.1
  73-




C12orf46




91.9


COL3A1
410491-HuGene_st:718613-
COL3A1
9.2906E−06
1.8484
2.32
82.2
70.8-



HuGene_st:1083201-HuGene_st:364429-





90.5



HuGene_st:857967-HuGene_st:714343-









HuGene_st:977793-HuGene_st:295757-









HuGene_st:22453-HuGene_st:804687-









HuGene_st:682411-HuGene_st:490951-









HuGene_st:622631-HuGene_st:782663-









HuGene_st:425013-HuGene_st:214723-









HuGene_st:86407-HuGene_st:651938-









HuGene_st:403765-HuGene_st:376736-









HuGene_st:376290-HuGene_st:248520-









HuGene_st








SULF1
740854-HuGene_st:517026-
SULF1
0.000014436
1.7533
2.84
81
69.2-



HuGene_st:933799-HuGene_st:72604-





89.6



HuGene_st:1045684-HuGene_st:492122-









HuGene_st:20084-HuGene_st:512275-









HuGene_st:754502-HuGene_st:730003-









HuGene_st:532406-HuGene_st:187508-









HuGene_st:671986-HuGene_st:34752-









HuGene_st:381424-HuGene_st:166879-









HuGene_st:530745-HuGene_st:1018600-









HuGene_st:212344_at:212354_at:482916-









HuGene_st:212353_at








HTRA1
660603-HuGene_st:252436-
HTRA1
0.000017178
1.7312
2.29
80.7
68.9-



HuGene_st:299850-HuGene_st:317595-





89.3



HuGene_st:977390-HuGene_st:311841-









HuGene_st:946172-HuGene_st:761215-









HuGene_st:577479-HuGene_st:332527-









HuGene_st:1082067-HuGene_st:981054-









HuGene_st:5171-HuGene_st:1019008-









HuGene_st:757466-HuGene_st:723015-









HuGene_st








LOXL2
937941-HuGene_st:827532-
ENTPD4:
0.000019895
1.7774
2.45
81.3
69.6-



HuGene_st:346541-HuGene_st:271051-
LOXL2




89.7



HuGene_st:228808_s_at:254550-









HuGene_st:260752-HuGene_st:46172-









HuGene_st:950166-HuGene_st:281266-









HuGene_st:818138-HuGene_st:626390-









HuGene_st:291104-HuGene_st:84360-









HuGene_st:228823-HuGene_st:966956-









HuGene_st:202997_s_at:898787-









HuGene_st:202999_s_at:1074111-









HuGene_st:1064065-









HuGene_st:202998_s_at:328673-









HuGene_st:1562263_at:34062-HuGene_st








SULF2
367910-HuGene_st:661661-
SULF2
0.000020766
1.6803
2.25
80
68.1-



HuGene_st:43751-HuGene_st:395846-





88.8



HuGene_st:771921-HuGene_st:550105-









HuGene_st:195771-HuGene_st:435480-









HuGene_st:229718-HuGene_st:826084-









HuGene_st:262732-HuGene_st:848382-









HuGene_st:861858-HuGene_st:907457-









HuGene_st:801956-HuGene_st:54769-









HuGene_st:214147-HuGene_st:1034817-









HuGene_st:929065-









HuGene_st:233555_s_at:430325-HuGene_st








MMP2
650123-HuGene_st:78720-
MMP2
0.000025409
1.7328
3.02
80.7
68.8-



HuGene_st:168982-HuGene_st:598990-





89.3



HuGene_st:346729-HuGene_st:356008-









HuGene_st:821467-HuGene_st:905494-









HuGene_st:568028-HuGene_st:711286-









HuGene_st:666575-HuGene_st:208210-









HuGene_st:20913-HuGene_st:382005-









HuGene_st:186287-HuGene_st:355238-









HuGene_st:60728-









HuGene_st:1566677_at:1027926-









HuGene_st:38019-HuGene_st:39088-









HuGene_st








TIMP3
686923-HuGene_st:767021-
TIMP3
0.000026195
1.7785
2.56
81.3
69.6-



HuGene_st:231888_at:201148_s_at:326731-





89.8



HuGene_st:72249-HuGene_st:369765-









HuGene_st:711121-HuGene_st:844721-









HuGene_st:856619-HuGene_st:241221-









HuGene_st:515184-HuGene_st:948668-









HuGene_st:410881-HuGene_st








COL6A2
404866-HuGene_st:420794-
COL6A2
0.000029551
1.7418
1.67
80.8
  69-



HuGene_st:536399-HuGene_st:813295-





89.4



HuGene_st:160736-HuGene_st:501950-









HuGene_st:148827-HuGene_st:501480-









HuGene_st:375216-HuGene_st:143566-









HuGene_st:1086501-HuGene_st:475436-









HuGene_st:794188-HuGene_st:704415-









HuGene_st:213290at








LOC387763
724781-HuGene_st:816467-HuGene_st
LOC387763
0.00003052
1.8978
1.43
82.9
71.4-









90.9


DKK3
573143-HuGene_st:509897-
DKK3
0.000031838
1.7435
1.86
80.8
69.1-



HuGene_st:829432-HuGene_st:425906-





89.5



HuGene_st:1076690-HuGene_st:480668-









HuGene_st:302214-HuGene_st:673860-









HuGene_st:584666-HuGene_st:966441-









HuGene_st:138862-HuGene_st:19243-









HuGene_st:600102-HuGene_st:778172-









HuGene_st:387542-









HuGene_st:202196_s_at:86457-









HuGene_st








CTSK
592586-HuGene_st:682010-
CTSK
0.000039778
1.7156
2.16
80.4
68.8-



HuGene_st:30909-HuGene_st:235976-





89.1



HuGene_st:913861-HuGene_st:25198-









HuGene_st:96515-HuGene_st:221416-









HuGene_st:341005-HuGene_st:371949-









HuGene_st:796154-HuGene_st:555578-









HuGene_st:416489-HuGene_st:123013-









HuGene_st:50644-HuGene_st:636682-









HuGene_st:63600-HuGene_st:356075-









HuGene_st:321593-HuGene_st








LOC541471
19600-HuGene_st:149287-
MGC4677,
0.000041139
1.804
1.45
81.6
69.9-



HuGene_st:916693-HuGene_st:569637-
MGC4677:




90



HuGene_st:868769-HuGene_st:469295-
LOC541471








HuGene_st:277416-HuGene_st:71551-









HuGene_st:1558836_at:129947-









HuGene_st:644672-HuGene_st:276744-









HuGene_st:873188-HuGene_st:830227-









HuGene_st:101170-HuGene_st:624891-









HuGene_st:85671-HuGene_st:236489-









HuGene_st:709116-HuGene_st:279980-









HuGene_st:812194-HuGene_st








CHI3L1
561691-HuGene_st:116044-
CHI3L1:
0.000051515
1.6351
3.06
79.3
67.4-



HuGene_st:261087-HuGene_st:57128-
MYBPH




88.3



HuGene_st:970931-HuGene_st:518568-









HuGene_st:362438-HuGene_st:388847-









HuGene_st:738096-









HuGene_st:209396_s_at:171378-









HuGene_st:968794-HuGene_st:477315-









HuGene_st:852388-HuGene_st:90371-









HuGene_st:209395_at:657732-









HuGene_st:1050574-HuGene_st:1074100-









HuGene_st:219902-HuGene_st:744799-









HuGene_st








CD93
392816-HuGene_st:131787-
CD93
0.000051891
1.6662
2.36
79.8
67.8-



HuGene_st:900048-HuGene_st:1024597-





88.6



HuGene_st:449159-HuGene_st:937408-









HuGene_st:835153-HuGene_st:231835-









HuGene_st:1084191-HuGene_st:970338-









HuGene_st:835439-HuGene_st:345929-









HuGene_st:310915-HuGene_st:381822-









HuGene_st:627382-HuGene_st:731932-









HuGene_st








COL11A1
372742-HuGene_st:523307-
COL11A1
0.000053391
1.7583
2.55
81
69.3-



HuGene_st:360139-HuGene_st:64257-





89.5



HuGene_st:633985-HuGene_st:986684-









HuGene_st:2674-HuGene_st:575064-









HuGene_st:1023506-HuGene_st:198973-









HuGene_st:20543-HuGene_st:254341-









HuGene_st:81512-HuGene_st:549979-









HuGene_st:347332-HuGene_st








LBH
764120-HuGene_st:189486-
LBH
0.000063299
1.6753
1.9
79.9
67.9-



HuGene_st:766856-HuGene_st:1083711-





88.7



HuGene_st:541408-HuGene_st:375190-









HuGene_st:938798-HuGene_st:133862-









HuGene_st:956722-HuGene_st:97472-









HuGene_st:19277-HuGene_st








OLFML2B
1085957-HuGene_st:354052-
OLFML2B
0.000066557
1.705
1.97
80.3
68.5-



HuGene_st:682043-HuGene_st:249054-





89



HuGene_st:867838-HuGene_st:430882-









HuGene_st:704400-HuGene_st:1065400-









HuGene_st:588559-HuGene_st:827842-









HuGene_st:272527-HuGene_st:134966-









HuGene_st:523921-HuGene_st:895516-









HuGene_st:1022747-HuGene_st:529564-









HuGene_st:539568-HuGene_st:427677-









HuGene_st:122501-HuGene_st








MMP1
524115-HuGene_st:689073-
MMP1
0.000070616
1.6771
3.91
79.9
68.1-



HuGene_st:300572-HuGene_st:914223-





88.7



HuGene_st:958445-HuGene_st:61706-









HuGene_st:437171-HuGene_st:422476-









HuGene_st:361198-HuGene_st:693724-









HuGene_st:671620-HuGene_st:673683-









HuGene_st:1020786-HuGene_st:732367-









HuGene_st:710307-HuGene_st:445730-









HuGene_st:622653-HuGene_st:468477-









HuGene_st:1070117-HuGene_st:840324-









HuGene_st:473664-HuGene_st








PALM2-
945487-HuGene_st:454513-
AKAP2:
0.000074206
1.724
1.58
80.6
68.9-


AKAP2
HuGene_st:799637-HuGene_st:91787-
PALM2:




89.2



HuGene_st:448601-HuGene_st:839008-
PALM2-








HuGene_st:1044350-HuGene_st:327679-
AKAP2








HuGene_st:665040-HuGene_st:79769-









HuGene_st:216125-HuGene_st:205232-









HuGene_st:818531-HuGene_st:169199-









HuGene_st:537891-HuGene_st:667958-









HuGene_st:202760_s_at








FBN1
288955-HuGene_st:112593-
FBN1
0.0001
1.5949
1.48
78.7
66.7-



HuGene_st:427611-HuGene_st:921008-





87.8



HuGene_st:82155-HuGene_st:828273-









HuGene_st:999573-HuGene_st:192029-









HuGene_st:162818-HuGene_st:794561-









HuGene_st:316216-HuGene_st:971683-









HuGene_st:394963-HuGene_st:600623-









HuGene_st:169932-HuGene_st:941525-









HuGene_st:202765_s_at:1094040-









HuGene_st:192231-HuGene_st:235318_at








MMP3
7912-HuGene_st:438906-
MMP3
0.0001
1.6224
6.68
79.1
67.2-



HuGene_st:483424-HuGene_st:634624-





88.1



HuGene_st:191436-HuGene_st:542596-









HuGene_st:664043-HuGene_st:766524-









HuGene_st:134417-HuGene_st:945713-









HuGene_st:149350-HuGene_st:357556-









HuGene_st:206224-HuGene_st:560206-









HuGene_st:822598-HuGene_st:200029-









HuGene_st:701539-HuGene_st:526573-









HuGene_st:35444-HuGene_st








ISLR
1034362-HuGene_st:755902-
ISLR
0.0001
1.6424
1.87
79.4
67.4-



HuGene_st:864958-HuGene_st:599962-





88.4



HuGene_st:864958-HuGene_s_at:256349-









HuGene_st:223953-HuGene_st:172743-









HuGene_st:46312-HuGene_st:11475-









HuGene_st:500169-HuGene_st








COL6A1
138884-HuGene_st:100156-
COL6A1
0.0001
1.7314
1.58
80.7
68.9-



HuGene_st:694215-HuGene_st:133534-





89.3



HuGene_st:354247-HuGene_st:737256-









HuGene_st:214200_s_at:212939_at:216904_









at:884210-HuGene_st:57954-









HuGene_st:138366-HuGene_st:175316-









HuGene_st:459478-HuGene_st:190064-









HuGene_st:914102-HuGene_st:392220-









HuGene_st:212937_s_at:125972-









HuGene_st:214513-HuGene_st:528191-









HuGene_st:858575-









HuGene_st:212938_at:212091_s_at:212940_









at:871472-HuGene_st








FNDC1
194684-HuGene_st:358155-
FNDC1
0.0001
1.5241
3.14
77.7
65.6-



HuGene_st:959100-HuGene_st:187071-





87



HuGene_st:449250-HuGene_st:879569-









HuGene_st:588958-HuGene_st:162623-









HuGene_st:711103-HuGene_st:30750-









HuGene_st:34787-HuGene_st:260399-









HuGene_st:418036-HuGene_st








AEBP1
479622-HuGene_st:192126-
AEBP1
0.0002
1.4786
2.11
77
64.8-



HuGene_st:209682-HuGene_st:285969-





86.4



HuGene_st:1041745-HuGene_st:668627-









HuGene_st:913865-HuGene_st:944753-









HuGene_st:446850-HuGene_st:118310-









HuGene_st:342980-HuGene_st:845095-









HuGene_st:185307-HuGene_st:901268-









HuGene_st:494284-









HuGene_st:201792_at:51739-









HuGene_st:262459-HuGene_st








MMP11
203878_s_at:213602_s_at:203877_at:324921-
MMP11
0.0002
1.6993
1.28
80.2
68.3-



HuGene_st:718792-HuGene_st:514533-





89



HuGene_st:720030-HuGene_st:935371-









HuGene_st:844472-HuGene_st:548687-









HuGene_st:519881-HuGene_st:858774-









HuGene_st:943793-HuGene_st:671549-









HuGene_st:127919-HuGene_st:670295-









HuGene_st:235908_at:203876_s_at:986917-









HuGene_st:155442-HuGene_st:1036101-









HuGene_st








IGFBP5
532497-HuGene_st:823295-
IGFBP5
0.0002
1.5676
3.96
78.3
66.4-



HuGene_st:323206-HuGene_st:941332-





87.5



HuGene_st:723182-HuGene_st:301318-









HuGene_st:1007784-HuGene_st:503864-









HuGene_st:492730-HuGene_st:370183-









HuGene_st:867094-HuGene_st:965814-









HuGene_st:778210-









HuGene_st:203425_s_at:692986-









HuGene_st:1006982-HuGene_st:807775-









HuGene_st:1035577-HuGene_st:158302-









HuGene_st:73598-









HuGene_st:1555997_s_at:231985-









HuGene_st:203424_s_at:211958_at:203426_









s_at:334486-HuGene_st:383523-









HuGene_st








PLAU
611756-HuGene_st:246040-
PLAU
0.0003
1.4846
2.11
77.1
64.8-



HuGene_st:783863-HuGene_st:1027344-





86.5



HuGene_st:186016-HuGene_st:31176-









HuGene_st:692506-HuGene_st:52541-









HuGene_st:205479_s_at:471777-









HuGene_st:156254-HuGene_st:1085903-









HuGene_st:211668_s_at:131855-









HuGene_st:585614-HuGene_st:1076162-









HuGene_st:323438-HuGene_st:410729-









HuGene_st








CTHRC1
647908-HuGene_st:235232-
CTHRC1
0.0003
1.4612
3.41
76.7
64.5-



HuGene_st:86783-HuGene_st:756615-





86.2



HuGene_st:779928-HuGene_st:385407-









HuGene_st:978256-HuGene_st:607929-









HuGene_st:426340-HuGene_st








FN1
1002635-HuGene_st:585884-
FN1
0.0003
1.4907
2.87
77.2
  65-



HuGene_st:338536-HuGene_st:586400-





86.6



HuGene_st:445068-HuGene_st:395670-









HuGene_st:19848-HuGene_st:443264-









HuGene_st:662053-HuGene_st:144815-









HuGene_st:103145-HuGene_st:372804-









HuGene_st:652840-HuGene_st:935697-









HuGene_st:484350-HuGene_st:422572-









HuGene_st:814551-HuGene_st:235724-









HuGene_st:214701_s_at:692191-









HuGene_st:132330-









HuGene_st:210495_x_at:639087-









HuGene_st:216442_x_at:211719_x_at:









214702_at:212464_s_at:1558199_at








RAB31
784521-HuGene_st:805481-
RAB31
0.0003
1.4857
2.08
77.1
  65-



HuGene_st:936297-HuGene_st:576193-





86.6



HuGene_st:321915-HuGene_st:282618-









HuGene_st:930765-HuGene_st:397177-









HuGene_st:861778-HuGene_st:411822-









HuGene_st:240571_at:816751-









HuGene_st:1028297-HuGene_st:291722-









HuGene_st:722575-HuGene_st:904649-









HuGene_st:991710-HuGene_st:1032281-









HuGene_st:217764_s_at:252384-HuGene_st








LGALS1
540889-HuGene_st:882911-
LGALS1
0.0004
1.4863
1.61
77.1
64.8-



HuGene_st:289133-HuGene_st:775286-





86.5



HuGene_st:179375-HuGene_st:877452-









HuGene_st:697650-HuGene_st:1720-









HuGene_st:107624-HuGene_st:810235-









HuGene_st:190535-HuGene_st:529287-









HuGene_st:725969-HuGene_st:976579-









HuGene_st:1075722-HuGene_st:453861-









HuGene_st:216405_at:624673-









HuGene_st:724499-HuGene_st








ELOVL5
559433-HuGene_st:422981-
ELOVL5
0.0004
1.542
1.86
78
65.8-



HuGene_st:211457-HuGene_st:551828-





87.2



HuGene_st:412588-HuGene_st:912245-









HuGene_st:287185-HuGene_st:103066-









HuGene_st:399004-HuGene_st:528360-









HuGene_st:938564-HuGene_st:1000247-









HuGene_st:620190-HuGene_st:336885-









HuGene_st:165821-









HuGene_st:214153_at:731356-









HuGene_st:601072-HuGene_st:755480-









HuGene_st:8873-









HuGene_st:1567222_x_at:208788_at:









1093316-HuGene_st








ANTXR1
203217-HuGene_st:501276-
ANTXR1
0.0005
1.5167
2
77.6
65.4-



HuGene_st:799524-HuGene_st:85875-





86.9



HuGene_st:12099-HuGene_st:230429-









HuGene_st:368173-HuGene_st:369297-









HuGene_st:227660_at:86683-









HuGene_st:682518-HuGene_st:129277-









HuGene_st:827509-HuGene_st:901442-









HuGene_st:408237-HuGene_st:414321-









HuGene_st:330209-









HuGene_st:234430_at:241549_at:755570-









HuGene_st:220093_at








ACTA2
479447-HuGene_st:183075-
ACTA2
 6.00E−04
1.4242
1.75
76.2
63.8-



HuGene_st:1070983-HuGene_st:548186-





85.8



HuGene_st:529704-HuGene_st:530590-









HuGene_st:630797-HuGene_st:404109-









HuGene_st:237159-HuGene_st:90357-









HuGene_st:293590-HuGene_st:1078299-









HuGene_st:120087-HuGene_st:855050-









HuGene_st:757648-HuGene_st:980364-









HuGene_st:785232-HuGene_st:313690-









HuGene_st:670805-HuGene_st








IGFBP3
242422-HuGene_st:1046998-
IGFBP3
0.0006
1.552
1.38
78.1
  66-



HuGene_st:585931-HuGene_st:145671-





87.3



HuGene_st:71362-HuGene_st:719466-









HuGene_st:412306-HuGene_st:922332-









HuGene_st:491408-HuGene_st:929740-









HuGene_st:276131-HuGene_st:201952-









HuGene_st








VIM
1093618-HuGene_st:398387-
VIM
0.0008
1.4804
1.48
77
64.9-



HuGene_st:837477-HuGene_st:1079757-





86.5



HuGene_st:339807-HuGene_st:302722-









HuGene_st:139661-HuGene_st:436158-









HuGene_st:564251-HuGene_st:234475-









HuGene_st:770617-HuGene_st:155888-









HuGene_st:319318-HuGene_st:527110-









HuGene_st:994975-HuGene_st:192324-









HuGene_st








ASPN
720939-HuGene_st:96944-
ASPN
0.0009
1.4011
2.75
75.8
63.5-



HuGene_st:224396_s_at:640448-





85.6



HuGene_st:1055545-HuGene_st:447994-









HuGene_st:835521-HuGene_st:567513-









HuGene_st:546047-









HuGene_st:219087_at:673620-HuGene_st








HNT
291569-HuGene_st:1099035-
HNT
0.001
1.425
2.26
76.2
63.8-



HuGene_st:237480-





85.8



HuGene_st:222020_s_at:959054-









HuGene_st:941200-HuGene_st:715332-









HuGene_st:761810-HuGene_st:673027-









HuGene_st:653559-









HuGene_st:241934_at:403764-









HuGene_st:719722-HuGene_st:227566_at








GJA1
210697-HuGene_st:348617-
GJA1
0.0013
1.4083
1.63
75.9
63.7-



HuGene_st:100706-HuGene_st:202715-





85.6



HuGene_st:817684-HuGene_st:851453-









HuGene_st:317083-HuGene_st:852817-









HuGene_st:150947-HuGene_st:491742-









HuGene_st:612542-HuGene_st:352375-









HuGene_st:684816-HuGene_st








MSN
77554-HuGene_st:103225-
MSN
 1.40E−03
1.4927
1.36
77.2
65.1-



HuGene_st:1038630-HuGene_st:555838-





86.7



HuGene_st:250445-HuGene_st:770842-









HuGene_st:240960_at:905037-









HuGene_st:693942-HuGene_st:788076-









HuGene_st:102934-HuGene_st:686613-









HuGene_st








SFRP4
965138-HuGene_st:512201-
SFRP4
0.0015
1.407
2.2
75.9
63.5-



HuGene_st:321583-HuGene_st:784119-





85.5



HuGene_st:4568-HuGene_st:1073348-









HuGene_st:606783-HuGene_st:203475-









HuGene_st:779727-HuGene_st:236875-









HuGene_st:674172-









HuGene_st:204051_s_at:1084814-









HuGene_st








CTGF
418229-HuGene_st:547481-
CTGF
0.0015
1.334
1.78
74.8
62.4-



HuGene_st:661089-HuGene_st:338622-





84.6



HuGene_st:353624-HuGene_st:466254-









HuGene_st:691815-HuGene_st:156933-









HuGene_st:1031177-HuGene_st:265466-









HuGene_st:1079612-HuGene_st:1073900-









HuGene_st:1080114-HuGene_st








FCGR3B
775320-HuGene_st:483078-
FCGR3B
0.0026
1.232
2.14
73.1
60.5-



HuGene_st:897088-HuGene_st:891504-





83.3



HuGene_st:288407-HuGene_st:367930-









HuGene_st:512343-HuGene_st:524627-









HuGene_st:290249-









HuGene_st:204007_at:993144-









HuGene_st:1084295-HuGene_st:606544-









HuGene_st:160442-HuGene_st:974942-









HuGene_st:582410-HuGene_st:117174-









HuGene_st








LOXL1
244262-HuGene_st:240421-
LOXL1
0.0027
1.4045
1.33
75.9
63.7-



HuGene_st:999775-HuGene_st





85.5


LUM
253522-HuGene_st:646969-
LUM
0.0029
1.3426
2.18
74.9
62.5-



HuGene_st:566007-HuGene_st:629878-





84.7



HuGene_st:346266-HuGene_st:749731-









HuGene_st:848594-HuGene_st:781980-









HuGene_st:838285-HuGene_st:594339-









HuGene_st:1095278-HuGene_st:450762-









HuGene_st:205322-HuGene_st:130751-









HuGene_st:183047-HuGene_st:15672-









HuGene_st








SERPINF1
837342-HuGene_st
SERPINF1
0.0031
1.2108
1.76
72.8
60.2-









83


MXRA5
319799-HuGene_st:432137-
MXRA5
0.0034
1.2959
1.62
74.1
61.6-



HuGene_st:408065-HuGene_st:291182-





84.1



HuGene_st:549236-HuGene_st:217706-









HuGene_st:260019-HuGene_st:1079370-









HuGene_st:216837-HuGene_st:607674-









HuGene_st:829671-HuGene_st:348569-









HuGene_st:357055-HuGene_st:394366-









HuGene_st:192313-HuGene_st:124763-









HuGene_st








POSTN
954838-HuGene_st:153510-
POSTN
0.005
1.301
2.58
74.2
61.7-



HuGene_st:538299-HuGene_st:649547-





84.3



HuGene_st:779754-HuGene_st:106590-









HuGene_st:636479-HuGene_st:874100-









HuGene_st:13993-HuGene_st:417058-









HuGene_st:724846-HuGene_st:588010-









HuGene_st:608772-









HuGene_st:210809_s_at:743877-









HuGene_st:713459-HuGene_st:713707-









HuGene_st:753556-HuGene_st:776445-









HuGene_st:388659-HuGene_st








TAGLN
613243-HuGene_st:823959-
TAGLN
0.0051
1.1811
2.19
72.3
59.6-



HuGene_st:898711-HuGene_st:505391-





82.6



HuGene_st:26929-HuGene_st:458482-









HuGene_st:66114-HuGene_st:304704-









HuGene_st:543865-









HuGene_st:226523_at:270642-









HuGene_st:179049-HuGene_st:279405-









HuGene_st:902958-HuGene_st:931316-









HuGene_st








NNMT
231559_at:588888-HuGene_st:160284-
NNMT
0.0054
1.2225
1.44
72.9
60.5-



HuGene_st:591616-HuGene_st:968910-





83.2



HuGene_st:789017-HuGene_st:218836-









HuGene_st:775762-









HuGene_st:202238_s_at:95357-









HuGene_st:1098599-HuGene_st:793701-









HuGene_st








IL8
471213-HuGene_st:373132-HuGene_st
LOC731467:
0.0062
1.6808
1.33
80
68.1-




C6orf142:




88.7




CCDC42:









IFI6:









TRBV21-









1:H2AFZ:









RNF20:









TRBV5-









4:TRBC1:









TRBV3-









1:TRBV19:









TRBV7-









2:IL23A







GREM1
651822-HuGene_st:546941-
GREM1
0.007
1.3044
1.31
74.3
61.8-



HuGene_st:639839-HuGene_st:326978-





84.2



HuGene_st:593695-HuGene_st:127360-









HuGene_st:407017-HuGene_st:1081939-









HuGene_st:345681-HuGene_st:292333-









HuGene_st:864620-HuGene_st:2445-









HuGene_st:556201-HuGene_st:569365-









HuGene_st:411208-HuGene_st:330742-









HuGene_st








C1S
947234-HuGene_st:962144-
C1S
0.0088
1.3551
1.77
75.1
62.8-



HuGene_st:567397-HuGene_st:490300-





84.9



HuGene_st:459367-HuGene_st:1059233-









HuGene_st:915378-HuGene_st:682561-









HuGene_st:881984-HuGene_st:332123-









HuGene_st:37033-HuGene_st:433793-









HuGene_st:564959-HuGene_st:240802-









HuGene_st:245571-HuGene_st:156493-









HuGene_st:186313-HuGene_st:866948-









HuGene_st:661278-HuGene_st:665064-









HuGene_st:615340-HuGene_st:981405-









HuGene_st:127169-HuGene_st:224321-









HuGene_st:426716-HuGene_st:905688-









HuGene_st:1009344-HuGene_st:184395-









HuGene_st








TIMP2
310783-HuGene_st:526357-
TIMP2
0.0097
1.1623
1.72
71.9
59.4-



HuGene_st:965142-HuGene_st:463158-





82.3



HuGene_st:563754-HuGene_st:914626-









HuGene_st:106688-HuGene_st:1087828-









HuGene_st:740790-HuGene_st:799495-









HuGene_st








SPP1
87046-HuGene_st:904296-
SPP1
0.0109
1.0677
3.91
70.3
57.6-



HuGene_st:809583-HuGene_st:44881-





80.9



HuGene_st:1568574_x_at:459132-









HuGene_st:963342-HuGene_st:909306-









HuGene_st:1070547-HuGene_st:31302-









HuGene_st:975259-HuGene_st:743585-









HuGene_st:530424-HuGene_st:709614-









HuGene_st:1022539-HuGene_st:575437-









HuGene_st:809262-HuGene_st:259921-









HuGene_st








SCD
214388-HuGene_st:1054693-
SCD:
 1.27E−02
1.073
2.33
70.4
57.7-



HuGene_st:433956-HuGene_st:1088784-
LOC651109:




81



HuGene_st:1019041-HuGene_st:698268-
LOC645313








HuGene_st:64902-HuGene_st:749928-









HuGene_st:713000-HuGene_st:562893-









HuGene_st








MYL9
206106-HuGene_st:608837-
MYL9
0.013
11.1754
1.37
72.2
59.6-



HuGene_st:706186-HuGene_st:874422-





82.4



HuGene_st:543240-HuGene_st:676360-









HuGene_st:117460-HuGene_st:404703-









HuGene_st:979054-









HuGene_st:244149_at:467647-









HuGene_st:925187-HuGene_st:173220-









HuGene_st:923797-HuGene_st








CD163
967100-HuGene_st:180883-
CD163
0.0146
1.1667
2.19
72
59.4-



HuGene_st:900552-HuGene_st:662901-





82.3



HuGene_st:217692-HuGene_st:74082-









HuGene_st:620892-HuGene_st:899841-









HuGene_st:97726-HuGene_st








S100A8
508168-HuGene_st:306748-
S100A8
0.0148
1.1001
3.17
70.9
58.3-



HuGene_st:473960-HuGene_st:98947-





81.3



HuGene_st:777038-HuGene_st:233365-









HuGene_st:671798-HuGene_st:214328-









HuGene_st:214370_at:368299-









HuGene_st:16960-HuGene_st:627642-









HuGene_st:669207-HuGene_st:75346-









HuGene_st:521635-HuGene_st:215650-









HuGene_st:618819-HuGene_st








CYR61
709380-HuGene_st:788428-
CYR61
0.015
1.093
1.69
70.8
58.2-



HuGene_st:385534-HuGene_st:924057-





81.3



HuGene_st:951763-HuGene_st:48239-









HuGene_st:462225-HuGene_st:789527-









HuGene_st:673588-HuGene_st:306375-









HuGene_st








MAFB
883249-HuGene_st
MAFB
0.0182
1.1589
1.48
71.9
59.3-









82.3


APOE
555956-HuGene_st:99757-HuGene_st
APOE
0.0285
1.1117
1.43
71.1
58.6-









81.5


DCN
570449-HuGene_st:1067446-HuGene_st
DCN
0.0364
1.0819
1.29
70.6
58-









81.1


G0S2
888942-HuGene_st:346957-
G0S2
0.0383
0.9923
1.53
69
56.3-



HuGene_st:62728-HuGene_st:334340-





79.9



HuGene_st:897401-HuGene_st








CDH11
60296-HuGene_st:609892-
CDH11
0.0384
1.01
1.98
69.3
56.7-



HuGene_st:167614-HuGene_st:184349-





80



HuGene_st:546348-HuGene_st:960949-









HuGene_st:583244-HuGene_st:599824-









HuGene_st:626011-HuGene_st:96018-









HuGene_st:217538-HuGene_st:180379-









HuGene_st








SQLE
861626-HuGene_st:198540-
SQLE
0.041
1.0133
2.15
69.4
56.7-



HuGene_st:1010566-HuGene_st:895693-





80.1



HuGene_st:967759-HuGene_st:894379-









HuGene_st:827097-HuGene_st








GPNMB
NA
GPNMB
0.0623
1.0155
1.52
69.4
56.8-









80.1


KIAA1913
NA
KIAA1913
0.1061
0.9593
1.2
68.4
55.7-









79.3


SFRP2
NA
SFRP2
0.1336
0.9696
1.24
68.6
  56-









79.4


SMOC2
NA
SMOC2
0.2175
0.6581
2.06
62.9
  50-









74.4


SERPING1
NA
SERPING1
 2.64E−01
0.7805
1.26
65.2
52.5-









76.5


EFEMP1
NA
EFEMP1
0.4911
0.6831
1.27
63.4
50.5-









74.9


TYROBP
NA
TYROBP
0.4923
0.7065
1.23
63.8
51.1-









75.2


PLOD2
NA
PLOD2
0.5151
0.7775
1.51
65.1
52.3-









76.3


















TABLE 9





SEQ




ID
Probe



NO:
Set ID
Target Sequence

















1
200660_at
caaggctgggccgggaagggcgtgggttgaggagaggctccagacccgcacgccgcgc




gcacagagctctcagcgccgctcccagccacagcctcccgcgcctcgctcagctccaa




catggcaaaaatctccagccctacagagactgagcggtgcatcgagtccctgattgct




gtcttccagaagtatgctggaaaggatggttataactacactctctccaagacagagt




tcctaagcttcatgaatacagaactagctgccttcacaaagaaccagaaggaccctgg




tgtccttgaccgcatgatgaagaaactggacaccaacagtgatggtcagctagatttc




tcagaatttcttaatctgattggtggcctagctatggcttgccatgactccttcctca




aggctgtcccttcccagaagcggacctgaggaccc





2
200665_s_at
gttggttcaaacttttgggagcacggactgtcagttctctgggaagtggtcagcgcat




cctgcagggcttctcctcctctgtcttttggagaaccagggctcttctcaggggctct




agggactgccaggctgtttcagccaggaaggccaaaatcaagagtgagatgtagaaag




ttgtaaaatagaaaaagtggagttggtgaatcggttgttctttcctcacatttggatg




attgtcataaggtttttagcatgttcctccttttcttcaccctcccctttgttcttct




attaatcaagagaaacttcaaagttaatgggatggtcggatctcacaggctgagaact




cgttcacctccaagcatttcatgaaaaagctgcttcttattaatcatacaaactctca




ccatgatgtg





3
200832_s_at
aaaagcgaggtggccatgttatgctggtggttgccagggcctccaaccactgtgccac




tgacttgctgtgtgaccctgggcaagtcacttaactataaggtgcctcagttttcctt




ctgttaaaatggggataataatactgacctacctcaaagggcagttttgaggcatgac




taatgctttttagaaagcattttgggatccttcagcacaggaattctcaagacctgag




tattttttataataggaatgtccaccatgaacttgatacgtccgtgtgtcccagatgc




tgtcattagtctatatggttctccaagaaactgaatgaatccattggagaagcggtgg




ataactagccagacaaaatttgagaatacataaacaacgcattgccacggaaacatac




agaggatgccttttctgtgattgggtgggattttttccctttttatgtgggatatagt




agttacttgtgacaagaataattttggaataatttctattaatatcaactctgaagct




aattgtactaatctgagat





4
200903_s_at
gcagcgggaacagagtaccctcttcaagccccggtcatgatggaggtcccagccacag




ggaaccatgagctcagtggtcttggaacagctcactaagtcagtccttccttagcctg




gaagccagtagtggagtcacaaagcccatgtgttttgccatctaggccttcacctggt




ctgtggacttatacctgtgtgcttggtttacaggtccagtggttcttcagcccatgac




agatgagaaggggctatattgaagggcaaagaggaactgttgtttgaattttcctgag




agcctggcttagtgctgggccttctcttaaacctcattacaatgaggttagtactttt




agtccctgt





5
201014_s_at
agtgttgatgggctctacttctgatcttggtcactgtgaaaaaatcaagaaggcctgt




ggaaattttggcattccatgtgaacttcgagtaacatctgcgcataaaggaccagatg




aaactctgaggattaaagctgagtatgaaggggatggcattcctactgtatttgtggc




agtggcaggcagaagtaatggtttgggaccagtgatgtctgggaacactgcatatcca




gttatcagc





6
201112_s_at
agatctgtgcggttggcataaccaacttactaacagaatgtcccccaatgatggacac




tgagtataccaaactgtggactccattattacagtctttgattggtctttttgagtta




cccgaagatgataccattcctgatgaggaacattttattgacatagaagatacaccag




gatatcagactgccttctcacagttggcatttgctgggaaaaaagagcatgatcctgt




aggtcaaatggtgaataaccccaaaattcacctggcacagtcacttcacatgttgtct




accgcctgtccaggaagggttc





7
201195_s_at
tcagaaggtaggggccgtgtcccgcggtgctgactgaggcctgcttccccctccccct




cctgctgtgctggaattccacagggaccagggccaccgcaggggactgtctcagaaga




cttgatttttccgtccctttttctccacactccactgacaaacgtccccagcggtttc




cacttgtgggcttcaggtgttttcaagcacaacccaccacaacaagcaagtgcatttt




cagtcgttgtgcttttttgttttgtgctaacgtcttactaatttaaagatgctgtcgg




caccatgtttatttatttccagtggtcatgctcagccttgctgctctgcgtggcgcag




gtgccatgcctgctccctgtctgtgtcccagccacgcagggccatccactgtgacgtc




ggccgaccaggctggacaccctctgccgagtaatgacgtgtgtggctgggaccttctt




tattctgtgttaatggctaacctgttacactgggctgggttgggtagggtgttctggc





8
201261_x_at
tctctctttctgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtcttgtgctt




cctcagacctttctcgcttctgagcttggtggcctgttccttccatctctccgaacct




ggcttcgcctgtccctttcactccacaccctctggccttctgccttgagctgggactg




ctttctgtctgtccggcctgcacccagcccctgcccacaaaaccccagggacagcggt




ctccccagcctgccctgctcaggccttgcccccaaacctgtactgtcccggaggaggt




tgggaggtggaggcccagcatcccgcgcagatgacaccatcaaccgccagagtcccag




acaccggttttcctagaagcccctcacccccactggcccactggtggctaggtctccc




cttatccactggtccagcgcaaggaggggctgatctgaggtcggtggctgtattccat




taaagaaacacc





9
201292_at
tacagatactctactacactcagcctcttatgtgccaagtattattaagcaatgagaa




attgctcatgacttcatcactcaaatcatcagaggccgaagaaaaacactaggctgtg




tctataacttgacacagtcaatagaatgaagaaaattagagtagttatgtgattattt




cagctcttgacctgtcccctctggctgcctctgagtctgaatctcccaaagagagaaa




ccaatactaagaggactggattgcagaagactcggggacaacatttgatccaagatct




taaatgttatattgataaccatgctcagcaatgagctattagattcattagggaaatc




tccataatttcaatagtaaactagttaagacctgtctacattgttatatg





10
201328_at
agcatcggagccattcattcggagaaaacgattgatcaaaatggagacttagtagtcg




atcaaaagagcacctgagtcatgtgtattcccggcnnnattataaatgacccggtcaa




gaggatcaaagtncgacaggcagtctgatactagctgcgtggccaggacgggtggctg




acatctgtaaagaatcctcctgtgatgaaactgaggaatcgggtggccgggcaagctg




ggaagagcaaagccagnagctgcgctgcctcaatacccacaaaagaccattcccagta




tacataagcacaggatgatactcaagagggatgtatttatcacttggacatctgatat




aatataaacagacatgtgactgggaacatcagctgccaaaagaatcctaggcagtggc




tcattgtatgtgaggagaaccacgtgaaattgccaatattaggctggcattatctaca




aagaaggagtacatggggacagcctaacagttatggaaactacagtccttataaacca




ttggcatg





11
201338_x_at
gatgtatgtcgctgtccaagagaaggctgtggaagaacctatacaactgtgataatct




ccaaagccatatcctctccaccatgaggaaagccgccatagtgtgtgaacatgctggc




tgtggcaaaacatttgcaatgaaacaaagtctcactaggcatgctgagtacatgatcc




tgacaagaagaaaatgaagctcaaagtcaaaaaatctcgtgaaaaacgggagtaggcc




tctcatctcagtggatatatcctcccaaaaggaaacaagggcaaggcttatctagtgt




caaaacggagagtcacccaactgtgtggaagacaagatgctctcgacagagcagtact




tacccaggctaagaactgcactgattgataaaggactgcagaccaaggagtcgagctt




tctctca





12
201341_at
ggtctgacttgaatcctctattaattactgtgtgtgagccagagggagctgtggtaag




ggagggcccccagcctgtagggaactactggactcccactattgaatcgatataggca




taggtctcactacttgaccattctcaccctgtgaaacgtcccacactagaagcaaata




caattcacagcacagtacacacaaaaaccaggcataagacagagaaggacttcttatt




agtgggctggagctgtagaaacatataacaaagggcagccctccacactggtataatt




gtgtagcccatttctagggcttgacacctgtcttgaataagagtgattagagctgcat




aatgtccctctctt





13
201416_at
gaggtcagataggagatctcattgcacgcggagattattattgcatcgggaccaagcc




aatgggaagcccgggggaggggtaggcatgaggaagcgaggttacagcagctgattgg




ctgcagccaagactgtgaaaggataaagaggcgcgaggcggaattggggtctgctcta




agctgcagcaagagaaactgtgtgtgaggggaagaggcctgatcgctgtcgggtctct




agacttgcacgctattaagagtctgcactggaggaactcctgccattaccagctccat




cttgcagaagggagggggaaacatacatttattcatgccagtctgagcatgcaggcta




nnggatcctaccagcaacaaaataattgcaccaactccttagtgccgattccgcccac




agagagtcctggagccacagtcttttttgctttgcattgtaggagagggactaagtgc




tagagactatgtcgctttcctgagctaccgagagcgctcgtgaactggaatcaact





14
201417_at
gtaaaccacatatattgcacttatttataagcaaaaacgtgccgataaaccactggat




ctatctaaatgccgatttgagttcgcgacactatgtactgcgtattcattcagtattt




gactatttaatcattctacttgtcgctaaatataattgattagtcttatggcatgatg




atagcatatgtgacaggatatagctgagtgataaaaattgaaaaaagtggaaaacatc




tagtacatttaagtctgtattataataagcaaaaagattgtgtgtatgtatgataata




taacatgacaggcactaggacgtctgccatttaaggcagttccgttaagggtttttgt




ttttaaacttttttttgccatccatcctgtgcaatatgccgtgta





15
201468_s_at
gatgacttaccatgggatggggtccagtcccatgaccaggggtacaattgtaaaccta




gagattatcaactaggtgaacagattggcataatagtcaatactacactggaagtcat




ctcattccactgaggtattatataattcaaggagaatatgataaaacactgccctcag




tggtgcattgaaagaagagatgagaaatgatgaaaaggagcctgaaaaatgggagaca




gcctcttacttgccaagaaaatgaagggattggaccgagctggaaaacctcattacca




gatgctgactggcactggtggtattgctctcgacatatccacaatagctgacggctgg




gtgatcagtagcaaaatattagagcatcatatcactgcaattagtgta





16
201479_at
ttcagacccagtaactgtccgcagctgtctgctagtggagtcttaacatcgtagtcct




agtagcattattaaatcccctctgtttaaaaggtagtaaaacaaaaacaaaaaactaa




gtctgctcagtgaaatgctgtagaaccctaaataagtggtagaagagtgtcactgaat




tttgtctctgaattcagtataactgagttttgtccatgctggtgtctgggttataggc




ctgatgggcctggtagattccatcttgactggcctagaggtcagtcattgcacttcct




caaagatgtgtacagtgctcacctaaatccatctgactacttgacctgtgccctcttg




attaggcctcgatactataaaaaatgaaattgacattgctgggagaagaatgagtaat




tatacttattaaagtcaacttgttaagttttttatgtattcctgttgggttttcttgt




tg





17
201506_at
acaggaggaatgcaccacggcagctctccgccaatactctcagataccacagagactg




atgaatgattcaaaaccaagtatcacactttaatgtacatgggccgcaccataatgag




atgtgagccagtgcatgtgggggaggagggagagagatgtactattaaatcatgaccc




cctaaacatggctgttaacccactgcatgcagaaacttggatgtcactgcctgacatt




cacttccagagaggacctatcccaaatgtggaattgactgcctatgccaagtccctgg




aaaaggagcttcagtattgtggggctcataaaacatgaatcaagcaatccagcctcat




gggaagtcctggcacagtattgtaaagccatgcacagctggagaaatggcatcattat




aagctatgagttgaaatgactgtcaaatgtgtctcacatctacacgtggcttggaggc




attatggggccctgtccaggtagaaaagaaatggtatgtagagcttagatttccctat




tgtgacagagcc





18
201563_at
aggaaactgctacttgtggacctcaccagagaccaggagggtttggttagctcacagg




acttcccccaccccagaagattagcatcccatactagactcatactcaactcaactag




gctcatactcaattgatggttattagacaattccatactactggttattataaacaga




aaatctacctcactcattaccagtaaaggctatggtatattctgaggaatgatttcta




tgaacttgtcttatataatggtgggattattctggtaagatttagacctaaatcgcat




catgccaacttgtgactagagactattcatcaagaatgaggatatagtagccatgaca




tagcttgagctatagcattaattccttactaggctatgggtggagggtgagatgaaga




ggttctgattttcttgtaacctggga





19
201577_at
gattccgccttgaggtctgaaattcatgcaagatccgaagatcactcaaggaacacta




cgttgacctgaaggaccgtccattattgccggcctggtgaaatacatgcactcagggc




cggtagagccatggtctgggaggggctgaatgtggtgaagacgggccgagtcatgctc




ggggagaccaaccctgcagactccaagcctgggaccatccgtggagacactgcataca




agaggcaggaacattatacatggcagtgattctgtggagagtgcagagaaggagatcg




gcagtggatcaccctgaggaactggtagattacacgagctgtgctcagaactggatct




atgaatgacaggagggcagaccacattgatttcacatccatttcccctccacccatgg




gcagaggaccaggctgtaggaaatctagttatttacaggaacttcatcataataggag




ggaagctcttggagctgtgagttctccctgtacagtgttaccatc





20
201601_x_at
agaaaaccacacactcataccacactcaacacttcatccccaaagccagaagatgcac




aaggaggaacatgaggtggctgtgctgggggcaccccccagcaccatccttccaaggt




ccaccgtgattaacatccacagcgagacctccgtgcccgaccatgtcgtctggtccct




gacaacaccctcacttgaactggtgctgtctgggcttcatagcattcgcctactccgt




aaagtctagggacaggaagatggaggcgacgtgaccggggcccaggcctatgcctcca




ccgccaagtgcctgaacatctgggccctgattctgggcatcctcatgaccattggatt




catcctgttactggtattcggctctgtaacagtctaccatattatgaacagataatac




aggaaaaacggggttactagtagccgcccatagcctgcaaccatgcactccactgtgc




aatgctggcc





21
201656_at
gtagtgccactgagattggggggggctattactattccggaaaatccttaaaccttaa




gatactaaggacgttgattggttgtacttggaattcttagtcacaaaatatattagat




acaaaaatactgtaaaacaggttataacagtgataaagtctcagatcttgatggggaa




cttgtgtccctaatgtgttagattgctagattgctaaggagctgatacttgacagtta




ttagacctgtgaactaaaaaaaagatgaatgtcggaaaagggtgagggagggtggtca




acaaagaaacaaagatgttatggtgatagacttatggagttaaaaatgtcatctcaag




tcaagtcactggtctgatgcatttgatacatttagtactaactagcattgtaaaatta




tttcatgattagaaattacctgtggatatagtataaaagtgtgaaataaattattata




aaagtgacattgatcgtaacacagcatt





22
201666_at
tcagggccaagttcgtggggacaccagaagtcaaccagaccaccttataccagcgtta




tgagatcaagatgaccaagatgtataaagggaccaagccttaggggatgccgctgaca




tccggacgtctacacccccgccatggagagtgtctgcggatacttccacaggtcccac




aaccgcagcgaggagtactcattgctggaaaactgcaggatggactatgcacatcact




acctgcagatcgtggctccctggaacagcctgagcttagctcagcgccggggcttcac




caagacctacactgaggctgtgaggaatgcacagtgatccctgatatccatcccctgc




aaactgcagagtggcactcattgatgtggacggacc





23
201925_s_at
gtgattataccacaagatctgtaatgttatttccacttataaaggaaataaaaaatga




aaaacattatttggatatcaaaagcaaataaaaacccaattcagtctcactaagcaaa




attgctaaagagagatgaaccacattataaagtaatctaggctgtaaggcattacata




ttcatcgggaggcaaaatatataaaggtaaaacatgctggtgaaccaggggtgagatg




gtgataagggaggaatatagaatgaaagactgaatatcattgagcacaaatagagtag




gaaaaagcctgtgaaaggtgtatattgacttaatgtattaaaagtatccagagatact




acaatattaacataagaaaagattatatattatactgaatcgagatgtccatagtcaa




atttgtaa





24
201926_s_at
gagagcactctatttattgtactgtgaataatgatgaaggagagtggagtggcccacc




acctgaatgcagaggaaaatctctaacttccaaggtcccaccaacagttcagaaacct




accacagtaaatgaccaactacagaagtctcaccaacttctcagaaaaccaccacaaa




aaccaccacaccaaatgctcaagcaacacggagtacacctgatccaggacaaccaagc




attacatgaaacaaccccaaataaaggaagtggaaccacttcaggtactacccgtcac




tatctgggcacacgtgatcacgttgacaggatgcagggacgctagtaaccatgggctt




gctgacttagccaaagaagagttaagaagaaaatacacacaagtatacagactgttcc




tagtttcttagactta





25
202286_s_at
gtatgacaacccgggatcgtagcaagtaactgaatccattgcgacattgtgaaggctt




aaatgagatagatgggaaatagcgagttatcgccagggataaattatttgatgagacc




acttgtatcatggcctacccgaggagaagaggagtagttaactgggcctatgtagtag




cctcatttaccatcgtagtattactgaccacatatgatgtcactgggaaagaagcctg




atcagctgcctgaacgcagtaggatgtattgaggacagacattgcccggaaactcagt




ctatttattatcagcttgccc





26
202310_s_at
tggcctacatggaccagcagactggcaacctcaagaaggccctgctcctccagggctc




caacgagatcgagatccgcgccgagggcaacagccgcttcacctacagcgtcactgtc




gatggctgcacgagtcacaccggagcctggggcaagacagtgattgaatacaaaacca




ccaagacctcccgcctgcccatcatcgatgtggcccccaggacgaggtgccccagacc




aggaattcggcttcgacgaggccctgtctgatcctgtaaactccctccatcccaacct




ggctccctcccacccaaccaactttccccccaacccggaaacagacaagcaacccaaa




ctgaaccccctcaaaagccaaaaaatgggagacaatttcacatggactaggaaaatat




tatttcattgcattcatctctcaaacttagatttatattgaccaaccgaacatgacca





27
202311_s_at
gctccccattatataccaaaggtgctacatctatgtgatgggtggggtggggagggaa




tcactggtgctatagaaattgagatgcccccccaggccagcaaatgaccatttgacaa




agtctattatattccagatattattntantattattattagtggatggggacttgtga




atttactaaaggtgctatttaacatgggaggagagcgtgtgcggctccagcccagccc




gctgctcacatccaccctctctccacctgcctctggatctcaggcctctgctctccga




cctctctcctctgaaaccctcctccacagctgcagcccatcctcccggctccctccta




gtctgtcctgcgtcctctgtccccgggtttcagagacaacttcccaaagcacaaagca




gtttttncccctaggggtgggaggaagcaaaagactctgtacctattttgt





28
202403_s_at
aacctgaaaacatcccagccaagaactggtataggagctccaaggacaagaaacacgt




ctggctaggagaaactatcaatgctggcagccagatgaatataatgtagaaggagtga




cttccaaggaaatggctacccaacttgcatcatgcgcctgctggccaactatgcctct




cagaacatcacctaccactgcaagaacagcattgcatacatggatgaggagactggca




acctgaaaaaggctgtcattctacagggctctaatgatgagaacttgagctgagggca




acagcaggttcacttacactgacttgtagatggctgctctaaaaagacaaatgaatgg




ggaaagacaatcattgaatacaaaacaaataagccatcacgcctgcccaccttgatat




tgcacctaggacatcggtggtgctgaccaggaattctagtggacattggcccagtctg




a





29
202404_s_at
actacccatgagtgtgatccacattgttaggtgctgacctagacagagatgaactgag




gtccttgattgattgacataatacaaaggtgctaattaatagtatttcagatacttga




agaatgagatggtgctagaagaatttgagaagaaatactcctgtattgagagtatcgt




gtggtgtattattaaaaaatttgatttagcattcatattaccatcttattcccaatta




aaagtatgcagattatttgcccaaagagtcctatatcagattcagcatttgactagcc




agtctcattacatatatccatggaccacagaagctagtttcttgggca





30
202431_s_at
gcaacaaccgaaaatgcaccagccccaggtcctcggacaccgaggagaatgtcaagag




gcgaacacacaacgtcttggagcgccagaggaggaacgagctaaaacggagcttattg




ccctgcgtgaccagatcccggagaggaaaacaatgaaaaggcccccaaggtagttatc




cttaaaaaagccacagcatacatcctgtccgtccaagcagaggagcaaaagctcatac




tgaagaggacttgagcggaaacgacgagaacagttgaaacacaaacttgaacagctac




ggaactcagtgcgtaaggaaaagtaaggaaaacgattccactaacagaaatgtcctga




gcaatcacctatgaacttgatcaaatgcatgatcaaatgcaacctcacaaccttggct




gagtc





31
202504_at
ggaaacctctcagtgtcttgacatcaccctacccaggcggtgggtctccaccacagcc




actttgagtctgtggtccctggagggtggcactcctgactggcaggatgaccttagcc




aagatattcctctgaccctctgctgagataaagaattcccttaacatgatataatcca




cccatgcaaatagctactggcccagctaccatttaccatttgcctacagaatttcatt




cagtctacactttggcattctctctggcgatggagtgtggctgggctgaccgcaaaag




gtgccttacacactgcccccaccctcagccgagccccatcagaggctgcctcctccac




tgattaccccccatgagcatatcaggg





32
202718_at
atccccaactgtgacaagcatggcctgtacaacctcaaacagtgcaagatgtctctga




acgggcagcgtggggagtgctggtgtgtgaaccccaacaccgggaagctgatccaggg




agcccccaccatccggggggaccccgagtgtcatctcttctacaatgagcagcaggag




gcttgcggggtgcacacccagcggatgcagtagaccgcagccagccggtgcctggcgc




ccctgccccccgcccctctccaaacaccggcagaaaacggagagtgcttgggtggtg





33
202779_s_at
ccgaacgtgggcgccaatggcgagatctgcgtcaacgtgctcaagagggactggacgg




ctgagctgggcatccgacacgtactgctgaccatcaagtgcctgctgatccaccctaa




ccccgagtctgcactcaacgaggaggcgggccgcctgctcaggagaactacgaggagt




atgcggctcgggcccgtctgctcacagagatccacgg





34
202831_at
ctacccttatgatgacccattaccctcatgaccgatcccaagctcatcataggagccc




tgtgcgccgctcagatgtggcctggaactagagaagacctcatagggccggagggaga




gccatccgacgctacagccgcaccacccaaccatcaacattgagcctgacatcaagcg




cctccttaaagttgccatatagatgtgaactgctcaacacacagatctcctactccat




ccagtcctgaggagccttaggatgcagcatgccttcaggagacactgctggacctcag




cattcccttgatatcagtccccttcactgcagagccttgcctttcccctctgcctgtt




tccttttcctctcccaaccctctggttggtgattcaacttgggctccaagacttgggt




aagctctgggccttcacagaatgatggcaccttcctaaaccctcatgggtgg





35
202833_s_at
gaagcgataggcatgataacatccagcactgtaagaagctgtccagctgggtactgct




aatgaaatacctgggcaatgccaccgccatatcacctacctgatgaggggaaactaca




gcacctggaaaatgaactcacccacgatatcatcaccaagttcctggaaaatgaagac




agaaggtctgccagcttacatttacccaaactgtccattactggaa





36
202859_x_at
gtacccagttaaattacatttcagataaacaacaaataattattagtataagtacatt




attgatatctgaaagattaattgaactaacaatcctagatgatactcccagtcagtca




ttgccagctgtgaggtagtgctgtgagaattacggaataatgagttagaactattaaa




acagccaaaactccacagtcaatattagtaatacttgctggagaaacttgatattatg




tacaaatagattcttataatattatttaaatgactgcattataaatacaaggattata




ttataacataagatgatttatgtgctctccaaattatatactgtttctgattgtat





37
202935_s_at
gagaggaccaaccagaattccctaggacatagtgatattgattatattagattgatta




cttatatatatccttaaagacatttaagctaaaggcaactcgtacccaaatttccaag




acacaaacatgacctatccaagcgcattacccacttgtggccaatcagtggccaggcc




aaccaggctaaatggagcagcgaaatcaacgagaaactggactattaaaccctcacag




agcaagcgtggaggatgatggagaatcgtgtgatcagtgtgctaaatctctctgcctg




taggactagtaattattatttagcagtaattaaagaaaaaagtcctctgtgaggaata




ttctctatataaatattatagtatgtactgtgtatgattcattaccattagaggggat




ttatacatattatagataaaattaaatgctcttattatccaacagctaaactactctt




agttgaacagtgtgccctagcttttcttgcaaccagagta





38
202936_s_at
gtagtgtatcactgagtcatttgcagtgattctgccacagacctagggctgccttata




ttgtgtgtgtgtgtgggtgtgtgtgtgattgacacaaaaacaatgcaagcatgtgtca




tccatatactctacatcactcaggagtgagggaggctacctggaggggatcagcccac




tgacagaccttaatcttaattactgctgtggctagagagatgaggattgctattaaaa




aagacagcaaacttattattatttaaaaaaagatatattaacagattagaagtcagta




gaataaaatcttaaagcactcataatatggcatccttcaatactgtataaaagcagat




catttaaaaaagatacttctgtaacttaagaaacctggcatttaaatcatattagtat




taggtaaaagctaggtagtgacgtgattgatgatcacttgatccctcccagccccaaa




ccattgactctccgtgaaacttaccttt





39
202954_at
gccaccctgaatcagacaaccattcaaatgggtagggaccatccatggagcagctgga




acagtatatgaagacctgaggtataagctctcgctagagttccccagtggctaccctt




acaatgcgcccacagtgaagttcctcacgccctgctatcaccccaacgtggacaccca




gggtaacatatgcctggacatcctgaaggaaaagtggtctgccctgtatgatgtcagg




accattctgctctccatccagagccactaggagaacccaacattgatagtcccttgaa




cacacatgctgccgagctctggaaaaaccccacagatttaagaagtacctgcaagaaa




cctactcaaagcaggtcaccagccaggagccctgacccaggctgcccagcctgtcctt




gtgtcgtctttttaatttttccttagatggtctgtcctttttgtgattt





40
202998_s_at
gccagtcttgaccgggatgaggcccacagacaggagtcatcagatgtcccattcaagc




caccgagctcaccacagacacagtggagccgcgctcactccagtgacacgtggacaaa




tgcgggctcatcagcccccccagagagggtcaggccgaaccccatactcctcctctta




ggtcattacagcaaacttgaatatctagacctctatccaatgaaaccctccagtctat




tatagtcacatagataatggtgccacgtgattctgataggtgagctcagacttggtga




tccctctccacaacccccaccccttgtttttcaagatactattattatattacacaga




cattgaagcacaaatttattggcatttaatattggacatctgggcccaggaagtacaa




atctaaggaaaaaccaacccactgtgtaagtgactcatcacctgagaccaattctgtg




ggtattgattcaacggtgctataaccagggtcctgggtgacagggcgctcactgagca




ccatgtgtcatcacagaca





41
203083_at
caggaaatagtcactcatcccactccacataaggggatagtaagagaagtctgtctgt




ctgatgatggatagggggcaaatattacccctactgttaatagtcatcacatttctat




gccaaacaggaacgatccataactttagtcttaatgtacacattgcaattgataaaat




taattagttgatcattgaggagatcgagtgagattgctgcactattacttattgcgtg




tggagctgtattcccgagacaacgaagcgagggatacttcattaaatgtagcgactgt




caacagcgtgcaggattctgatctgtgagtggggtcaaccgtacaatggtgtgggaat




gacgatgatgtgaatatttagaatgtaccatattattgtaaattatttatgatactaa




acaaatttatcgtataggagatgaaacgtcatgtgattgccaaagactgtaaatattt




atttatgtgacacatggtcaaaatttcaccactgaaaccctgcacttagctagaacct





42
203124_s_at
atggtaacatgtatattgccctgggtctgggtgggtccagtcagtctcagatttacaa




gcatttaggagcctaggtaaaagctgctagtattcattaaaagttatatttatgactt




gcaatgatagaaaactccaccaattaaatggcatatataatattatgtgtgtacttca




cagtgttaaaaataccctcatacgttattgcatttgatatcacagaaagtgcatataa




ccagtactctgggtgcaataaataatatgtagaaatttaagtcctccaattccagcat




atccagtgagattgacagtgtgatatgtggaatgataaggatatacaattgtacttta




tataaattggacttgacacttaaatgtgacatgaaataattgtgctgctacattatac




tggaaattaacaggggaaaagggaagagctcaggctcccttgaggactgctagtggtg




ttaggagtggttacaactgagatttagtaaccatttaaccg





43
203213_at
tgctaagttcaagatcgtaatgattgaagtattatatgctctgaatgataaatgactc




atcagatcttgccatgagttaactatacaacctggctaaagatgaatatttactactg




gtatataatattgacctaaatgataagcattcggaatgagaaaactatacagatttga




gaaatgatgctaaatttataggagattcagtaacttaaaaagctaacatgagagcatg




ccaaaatttgctaagtcttacaaagatcaagggctgtccgcaacagggaagaacagat




tgaaaatttatgaactatcttattataggtaggattgaaagctattgtctaagtgaat




tcttatgccaggtcagagtaataactgaaggagntgcttatcaggattcgagtctgag




tttaaaactacacattttgacatagtgtttattagcagccatc





44
203256_at
gtggccgtagcaacttggcggagacaggctatgagtctgacgttagagtggagatcct




tagccatcaggatggaggaatgtgggcagatgacttcagcactgaaaacctctccacc




tgggccagggagcctcagaggccaagtaccagaagcctcttacctgccgtaaaatgct




caaccctgtgtcctgggcctgggcctgctgtgactgacctacagtggactactctctg




gaatggaaccttcttaggcctcctggtgcaacttaatttttttttttaatgctatctt




caaaacgttagagaaagttcttcaaaagtgcagcccagagctgctgggcccactggcc




gtcctgcatactggtaccagaccccaatgcctcccattcggatggatctctgcgtatt




atactgagtgtgcctaggagccccttattattattaccctgagcgttgctatagatg





45
203313_s_at
agagtggtcattcaacactcctccccctactccaccggacctcaaccaggacttcagt




ggatttcagatctagtggatgagcactcaaacgggctgcagagatggagcttcaggca




aaacttacagcttaacccattacaagcaaaacagactcagaaatgtcatgattgccgg




ggtgaaggcaagagatgaattgcattatatatatattattattaatatttgcacatgg




gattgctaaaacagatcctgttactgagatgtatcaatggaatacagtcattccaaga




actataaacttaaagctactgtagaaacaaagggattcttattaaatgatcaggtaga




ttattcataatgtgagatggacccaatatcatgtgattatttattcctcccatccctt




tattgttattattcagactgtgcaatacttagagaacctatagcatcactcattccca




tgtggaacaggatgcccacatactgtctaatta





46
203510_at
gaagccaagggttaacccagcaagctacaaagagggtgtgtcacactgaaactcaata




gttgagtaggctgagagcaggaaaatgattataactaaaagctctctgatagtgcaga




gacttaccagaagacacaaggaattgtactgaagagctattacaatccaaatattgcc




gatcataaatgtaataagtaatactaattcacagagtattgtaaatggtggatgacaa




aagaaaatctgctctgtggaaagaaagaactgtctctaccagggtcaagagcatgaac




gcatcaatagaaagaactcggggaaacatcccatcaacaggactacacacttgtatat




acattcttgagaacactgcaatgtgaaaatcacgtagctatttataaacttgtcctta




gattaatgtgtctggacagattgtgggagtaagtgattcactaagaattagatacttg




tcactgcctatacctgcagctgaactgaatggtacttcgtatg





47
203860_at
gaagcaggtggaaacatgagcattcagatcaggtacagtgtacaaggtgaatatctta




accagacttgccgcagaattgaacaaatttatgctggaaaaagtgactgaggacacaa




gcagtgactgcgaccccgatgcccggagtggtggtggccgtctctgtcaagcctggag




acgcggtagcagaaggtcaagaaatagtgtgattgaagccatgaaaatgcagaatagt




atgacagctgggaaaactggcacggtgaaatctgtgcactgtcaagctggagacacag




aggagaaggggatctgctcgtggagctggaatgaaggatttataaccatcagtcatca




cccaatttaattagccatttgcatgatgattcacacacaattgattcaagcattatac




aggaacacccctgtgcagctacgtttacgtcgtcatttattccacagagtcaagacca




atattctgccaaaaaatcaccaatggaaattttcatgatataaatacttgtactatag




atgtacttctgctgtg





48
203878_s_at
tgccagcgactgtctcagactgggcagggaggctaggcatgacttaagaggaagggca




gtcagggacccgctatgcaggtcctggcaaacctggctgccctgtctcatccctgtcc




ctcagggtagcaccatggcaggactgggggaactggagtgtccttgctgtatccctgt




tgtgaggttccttccaggggctggcactgaagcaagggtgctggggccccatggcctt




cagccctggctgagcaactgggctgtagggcagggccacttcctgaggtcaggtcttg




gtaggtgcctgcatctgtctgccttctggctgacaatcctggaaatctgactccagaa




tccaggccaaaaagttcacagtcaaatggggaggggtattatcatgcaggagacccca




ggccctggaggctgcaacatacctcaatcctgtcccaggccggatcctcctgaagccc




attcgcagcactgctatcctccaaagccattgtaaatgtgtgtacagtgtgtataaac




cttcttcttctt





49
203895_at
gactaatccatacacagttaacctaatgccaaataaatactggttaaataaatgtatg




gcacagaatataatttgactatcaagacattagcataatgaaaaaccctctctctata




tatatatgtgtatatgaattatgtgggcattcttgatacttcaagactagatgaaaaa




aatacataactaatttaatatacacaaaaatatttatgcagattacagaatttcatat




caggaaatgaccatttatgtctgttaaatatcaaaacaatttgctacagtgttaatct




gcatggtattaagcctgctgtagttgagagcagacagtgcatgaaaaagtattccgct




gggaattgagccatgccaccaaagccaagaggagcgcatggaaacccggtagtctaga




actaatcagattactgatatagggcacagcaccagatgaattgagtatatgatgtaaa




aattgattctgtgtgacctctgaacaaagcgg





50
203896_s_at
gtccagcttgaacatctagaattcctagagaaacagaatgagcaggcgaaggagatgc




agcagatggtgaaattggaagccgagatggaccgcagaccagcaacagtagtatgaaa




ctccaaaatgcaaactgaagcagcaaacccacaaagcatcaaaagactcactcacaaa




acactgaacacaaactccatggatgaaagctgatattagatcattatgtgtaaacaag




atgatatctgaaaccagagagacttggaatgtctgactgacactatttaacagcttga




gtattgcatttccaggccaaacaaaaatagctacaaatccacaaaaatttactattcc




agtaaggcagagtccaaccattgataatacaacttaaacatgatgctataaaatacca




tcacaagtaaatgagcttggtgtgaacaactcttcctttgtgatgccttagg





51
203961_at
ggactagagcaacatcgtgctgcccaaaggactaacctatgcaaactagttcacatat




agtggatgtcgcagttaatgtgtaataagacattatacccctgcataatgtacaacag




cattgaaatgacacattaagcctagcatcacattgtatagtacagtcactcacaaacc




atcaaggctaccctaatcattaacattaatatttgataaaagcaaatcaccgatttat




ctattgaaactacttaaatgacggcaaaccaggaatgacagatggctgtgtcagcaat




ggattaatgtgaccctgcaagtggtctcctatgantagaactgcgactcaaatgcact




ctatcagggtcttaatattctgtgattctctctgtatagtaaaacattataacacatt




aatacctatctctacacatagg





52
203962_s_at
gtcaaggcattgtatgagatctgtggttattattctgtgatgcttagactacttgaac




ccataaacttggaagaatattgagcaaattactcagagtctgtatgacttcagtatat




tcctgggaatgccataggattattgtgcttgatacatggtatccagtagcatagtatc




acactagtaatccagagctgttaagaatgatgtactttaaaggaaaagagaaaactgc




atcacagtcccattctccagtgtccatgcaatgaattgctgagcatttaggaagcagc




accaagtctattacaggcatggtgtgaaacttgatgatgacctgtgatcaaaattgaa




ccattgtacagtaggcactgatgcttcaaaatatgtagaattgtggagatgattaatt




tgcgagactaactagagagtgtaacagattgaagaaaacattgaatgattacaaatga




aggggcttcacggaatgttacaa





53
204051_s_at
aaccagccagtcccaagaagaacattaaaactaggagtgcccagaagagaacaaaccc




gaaaagagtgtgagctaactagtaccaaagcggagacttccgacttccttacaggatg




aggctgggcattgcctgggacagcctatgtaaggccatgtgcccatgccctaacaact




cactgcagtgctatcatagacacatcttgcagcattatcttaaggctatgcttcagat




ttattgtaagccatcacaagccatagtggtaggtttgccctttggtacagaag





54
204127_at
agtgattgtcattagctctgccatataattaaatattaggacatggaccaaagggata




cttgacaaatttgtgtgacagactccgaacaattcattactacgaagtataatttata




aaataaaatatacccatataagggtacagatgatattgaccagtgaaactatgatccc




aatcaaggtatagatgccgtcaccccaaaaagaccctccatatccattgcagtcagtt




catccctaccctggcccagatgatcactgatcagtcattatagatgagattgccagtt




caagaatttaatggaatcagatattgtaagcattcagtgtaatacttcattctctctc




attattgagattcatccatattgagaatgatcactagttaatgatattgacaatattt




agtatatacttttaaagcctattcacttgctgatggatctt





55
204170_s_at
cgctctcgatcattactgcagcgcgccacgaggatggcccacaagcagatctactact




cggacaagtacttcgacgaacactacgagtaccggcatgttatgttacccagagaact




accaaacaagtacctaaaactcatctgatgtctgaagaggagtggaggagacttggtg




tccaacagagtctaggctgggacattacatgattcatgagccagaaccacatattatc




tattagacgacctcaccaaaagatcaacaaaaatgaagatatctggggatcgtcaaat




attacaaatttaatgtatatgtgtatataaggtagtattcagtgaatacttgagaaat




gtacaaatattcatccatacctgtgcatgagctgtattatcacagcaacagagctcag




ttaaatgcaactgcaagtaggttactgtaagatgataagataaaagttcaccagtcag




atttctcttaagtgcct





56
204259_at
ctcatggggactcctacccatttgatgggccaggaaacacgctggctcatgcattgcg




cctgggacaggtctcggaggagatgctcacttcgatgaggatgaacgctggacggatg




gtagcagtctagggattaacttcctgtatgctgcaactcatgaacttggccattctag




ggtatgggacattcctctgatcctaatgcagtgatgtatccaacctatggaaatggag




atccccaaaatataaactacccaggatgatattaaaggcattcagaaactatatggaa




agagaagtaattcaagaaagaaatagaaacacaggcagaacatccattcattcattca




ttggattgtatatcattgagcacaatcagaattgataagcactgacctccactccatt




tagcaattatgtcacccttattattgcagaggtattgaatgtattcactcatttattg




gttaaactcattatggtgtgactgtgtcttattccatctatgagctttgtcagtgcgc




gtagatgt





57
204320_at
gaaaatgtaccaggtgccaccaacccattagtgccacatgcaagattgaataaggatg




tatggaaaacaacgctgcatatacaggtaccatttaggaaataccgatgcctagtggg




ggcagaatcacagacaaaagctagaaaatcataaagatataagttggtgtggctaaga




tggaaacagggctgattcttgattcccaattctcaactctccttttcctatttgaatt




tctttggtgctgtagaaaacaaaaaaagaaaaatatatattcataaaaaatatggtgc




tcattctcatccatccaggatgtactaaaacagtgtgataataaattgtaattattag




tgtacagactatactgttatctgtgtccataccaaaacttgcacgtgtccctgaattc




cgctgactctaatttatgaggatgccgaactctgatggcaataatatatgtattatga




aaatgaagttatgataccgatgaccctaagtcc





58
204351_at
gggtctgaatctagcaccatgacggaactagagacagccatgggcatgatcatagacg




tatacccgatattcgggcagcgagggcagcacgcagaccctgaccaagggggagctca




aggtgctgatggagaaggagctaccaggcacctgcagagtggaaaagacaaggatgcc




gtggataaattgctcaaggacctggacgccaatggagatgcccaggtggacttcagtg




agttcatcgtgacgtggctgcaatcacgtctgcctgtcacaagtactagagaaggcag




gactcaaatgatgccctggagatgtcacagattcctgcagagccatggtcccaggcac




ccaaaagtgatgaggcaattattcccctaggctgagcctgctcatgtacc





59
204401_at
gtagctggacccacgaggaggaaccaggctactaccccagtactgaggtggtggacat




cgtctctgccactcctgacccagccctgaacaaagcacctcaagtgcaaggaccaaag




ggggccctggcaggagtgggaggcttgctgatggctgctggaggggacgctggctaaa




gtgggtaggccttggcccacctgaggccccaggtgggaacatggtcacccccactctg




cataccctcatcaaaaacactctcactatgctgctatggacgacctccagctctcagt




tacaagtgcaggcgactggaggcaggactcctgggtccctgggaaagagggtactagg




ggcccggatccaggattctgggaggcttcagttaccgctggccgagctgaagaactgg




gtatgaggctggggcggggctggaggtggcgccccctggtgggacaacaaagaggaca




ccatttttccagagctgc





60
204404_at
agaccaagacataccggcagatcaggttaaatgagttattaaaggaacattcaagcac




agctaatattattgtcatgagtctcccagagcacgaaaaggtgctgtgtctagtgctc




tctacatggcatggttagaagctctatctaaggacctaccaccaatcctcctagttcg




tgggaatcatcagagtgtccttaccactattcataaatgactatacagtggacagccc




tccagaatggtacttcagtgcctagtgtagtaacctgaaatatcaatgacacattaac




atcacaatggcgaatggtgacattattcacgatttcattaatttgaaagcacacagga




aagcttgctccattgataacgtgtatggagacttcggattagtcaattccatatc





61
204470_at
tatgattaactctacctgcacactgtcctattatattcattctattgaaatgtcaacc




ccaagttagttcaatctggattcatatttaatttgaaggtagaatgattcaaatgact




ccagtcattatgttaatatactgaggagcctgcaacatgccagccactgtgatagagg




ctggcggatccaagcaaatggccaatgagatcattgtgaaggcaggggaatgtatgtg




cacatctgattgtaactgatagatgaatgtcagagttatttattgaaatgatttcaca




gtgtgtggtcaacatactcatgagaaactttaagaactaaaatgactaaatatcccag




gacatatatgtattcagtaaggcatactgccttgataatggtagattacagtgatctg




gcttagaaca





62
204475_at
gaagaactgtctattactcagtcattataacctctagagtcactgatacacagaatat




aatcttatttatacctcagtagcataattatactatttagaatgtagccattagtact




gatataatttagaccacaaatggtgggtacaaaaagtcaagtagtggcttatggattc




atataggccagagagcaaagatcattccagagtatgcaactctgacgttgatcccaga




gagcagcttcagtgacaaacatatcattcaagacagaaagagacaggagacatgagta




ttgccggaggaaaagcagctcaagaacacatgtgcagtcactggtgtcaccctggata




ggcaagggataactcactaacaca





63
204580_at
agatgatggaccctggttatcccaaactgattaccaagaacttccaaggaatcgggcc




taaaattgatgcagtcactattctaaaaacaaatactactatttcaccaaggatctaa




ccaatttgaatatgacttcctactccaacgtatcaccaaaacactgaaaagcaatagc




tggtaggagttagaaatggtgtaattaatggtattgttagttcacttcagcttaataa




gtatttattgcatatttgctatgtcctcagtgtaccactacttagagatatgtatcat




aaaaataaaatctgtaaaccataggtaatgattatataaaatacataatattatcaat




tagaaaactctaattgtccattatgcttgactctactattaagatgaaaatagttacc




acaaagcaagataattctatttgaagcatgctctgtaagttgatcctaacatccagga




ctgagaaattatacttacactggcataactaaa





64
204620_s_at
tgccgtgctcccaaaacatataaatgaaagtattggcattcaaaaagacagcagacaa




aatgaaagaaaatgagagcagaaagtaagcataccagcctatctaatttattagattc




tatttgcctccagtgcagtccatacctaatgtataccagcctactgtactatttaaaa




tgctcaatttcagcaccgatggccatgtaaataagatgatttaatgagatataatcct




gtatataaaataaaaagtcacaatgagtagggcatatttaatgatgattatggagcct




tagaggtattaatcattggacggctgatttatgtagataggctggaaatggatcactt




gctattgactgtcagcaagactgaagatggcattcctggacagctagaaaacacaaaa




tcagtaggtcattgcacctatctcagccataggtgcagatgatctacatgatgctaaa




ggctgcgaatgggatcctgatggaactaaggactccaatgtcgaactcttctttgctg




c





65
204702_s_at
tgctctccagtgtacccatgatggaagtatcttgatagtacccaaagaactggtggcc




tcaggccacaaaaaggaaacccaaaagggaaagagaaagtgagaagaaactgaagatg




gactctattatgtgaagtagtaatgacagaaactgattatttggatcagaaaccattg




aaactgcttcaagaattgtatattaagtactgctacttgaataactcagttaacgctg




attgaagcttacatggacaaatgataggacttcaagatcacacttgtgggcaatctgg




gggagccacaactatcatgaagtgcattgtatacaaaattcatagttatgtccaaaga




ataggttaacatgaaaacccagtaagactaccatcaggcagccatccatttaagagta




agaggttacttcaaaaagagcaaacactggggatcaaattatataagaggtatttcag




attaaatgcaaaatagccttattttcatttagtttgttagcactatagtgagcttttc




aaacactattttaatc





66
204855_at
cacgttcgcagagatttcagattgtggaatgaggataaggaattatagacctctagta




gctgaaatgcaagaccccaagaggaagttcagatcttaatataaattcactacatatt




gatagctgtcccatctggtcatgtggaggcactagactggtggcaggggcactagctg




actcgcacagggattctcacaatagccgatatcagaatagtgagaaggaacttgtcta




tcatctaatatgatagcgggaaaaggagaggaaactactgcattagaaaatataagta




aagtgattaaagtgctcacgttaccttgacacatagtattcagtctatgggatagtta




ctttagatggcaagcatgtaacttatattaatagtaatagtaaagagggtggataagc




tatccctgagccggacatggattacttctctataaaaaatatatatttaccaaaaaat




tagtgacattccactcccatctcttccttgacatgcattgtaaataggttcttcttgt




tctgag





67
204885_s_at
taccagaacatgaacgggtccgaatacttcgtgaagatccagtccacctgggtggggc




ccccacggaggatttgaaggcgctcagtcagcagaatgtgagcatggacttggccacg




ttcatgaagctgcggacggatgcggtgctgccgttgactgtggctgaggt





68
205174_s_at
gtctggcacaccatggatgacaatgaagaaaataggatgaatcaaccattgacaatct




aaacaaaatcctacaagtattgtgaggaatatatcatagtaatactctgatttagata




ggataattggactagaattgaattcaaaagtcaaggcatcatttaaaataatctgatt




tcagacaaatgctgtgtggaaacatctatcctatagatcatcctattcttatgtgtct




aggttatcagatcaattacagaataattgtgagtgatattgtgtcctaaattgctcat




taatattatttacagattgaaaaagaggcaccgtgtaaagaaaatggcaaaataaata




tctaccaaggatcatcatcacgatagctaaacagtacttaaatagcggaggaactagg




tagcattcgaatatatgattattcatatgtggaaatctattacatgtaatacaaaaca




aacatgtagatgaaggcggtcagatttctttgag





69
205361_s_at
aaggcggctgcagaagatgtcaatgttactacgaagatcaacaaaagataaacaaatt




tgcacggaatacaagtagaatcacagagctgaaggaagaaatagaagtaaaaaagaaa




caactccaaaacctagaagatgatgtgatgacatcatgcttgcagatgatgattgctt




aatgataccttatcaaattggtgatgtaatcattagccattctcaagaagaaacgcaa




gaaatgagaagaagcaaagaaaaatttgcaagaagaaattgacgccttagaatccaga




gtggaatcaattcagcgagtgttagcagatttgaaagttcagttgtatgcaaaattcg




ggagcaacataaaccttgaagctg





70
205366_s_at
cctcagcctgatcaggcacctggtgagaactgaggagcggactcacttgatgatcctg




gaagcagagcaaaagactcttgtccctgtcgcgtctcattagtccatgtcccccgtgc




acggttcaatggtagattcgctgtcctcagcgggggccttgaagactccctgatccca




gacctggtcgtctctcccaccccctccccaaagccactggaaggagcacatactacct




agaagtaagaagaggagcctcagaagaaaacaaagactatatattaattactatgtga




gtgatgtagtatgtcttagctctggacg





71
205470_s_at
gccaacatcaccatcattgagcaccagaagtgtgagaacgcctaccccggcaacatca




cagacaccatggtgtgtgccagcgtgcaggaagggggcaaggactcctgccagggtga




ctccgggggccctctggtctgtaaccagtctcttcaaggcattatctcctggggccag




gatccgtgtgcgatcacccgaaagcctggtgtctacacgaaagtctgcaaatatgtgg




actggatccaggagacgatgaagaacaattagactggacccacccaccacagcccatc




accctccataccacttggtgatggacctgacactctgttaataagaaaccctaagcca




agaccctctacgaacattctagggcctcctggactacaggagatgctgtcacttaata




atcaacctggggacgaaatcagtgagacctggattcaaattctgccttgaaatattgt




gactctgggaatgacaacacctggatgactctgagtatccccagccccaaagacagct




cctggccatatatca





72
205476_at
ttcacacggcagctggccaatgaaggctgtgacatcaatgctatcatattcacacaaa




gaaaaagagtctgtgtgcgcaaatccaaaacagacttgggtgaaatatattgtgcgtc




tcctcagtaaaaaagtcaagaacatgtaaaaactgtggcttttctggaatggaattgg




acatagcccaagaacagaaagaaccagctggggaggaggatcacttgcacatcatgga




gggatagtgcttatctaatagtgcctcactggacttgtccaattaatgaagttgattc




atattgcatcatagtagctagataagcatcacattaaagttaaactgtatatatgtta




tttatagctgtaggattctgtgatagctatttaatactaattaccataagctattagg




atagtgcaaagtataaaattatatagggggggaataagattatatggactacttgcaa




gcaacaa





73
205479_s_at
cccgaccggtgggcatagtgaggcccatggagagaaatgaataatttcccaattagga




agtgtaagcagctgaggtctcttgagggagcttagccaatgtgggagcagcggtaggg




gagcagagacactaacgacttcagggcagggctctgataaccatgaatgtatcaggaa




atatatatgtgtgtgtatgatgcacacttgagtgtgggctgtgagtgtaagtgtgagt




aagagctggtgtctgattgttaagtctaaatataccttaaactgtgtggactgtgatg




ccacacagagtggtattctggagaggttataggtcactcctggggcctcagggtcccc




cacgtgacagtgcctgggaatgtacttattctgcagcatgacctgtgaccagcactgt




ctcagatcactacacatagatgtccattcaggccagttatccatccattagcctagtt




catccaatcctcactgggtgggg





74
205513_at
aacaaagactcacttgcgtctctgcttcaggtaacttcaacatctccgctgatgagcc




tataactgtgacacctcctgactcacaatcatatatctccgtcaattactctgtgaga




atcaatgaaacatatttcaccaatgtcactgtgctaaatggactgtcttcctcagtgt




gatggagaaagcccagaaaatgaatgatactatataggatcacaatggaggagcgctc




atgggggccctatatcacctgtattcagggcctatgtgccaacaataatgacagaacc




tactgggaacttctgagtggaggcgaaccactgagccaaggagctggtagttacgagt




ccgcaatggagaaaacttggaggacgctggagcaaatactaataagcccaaactttcc




tcagctgcataaaatccatttgcagtggagttccatgtttattgtccttatgccttct





75
205713_s_at
caaacgtattggcaggcgaacccatccgtgctgtggccgagcctggcatccaactcaa




ggctgtgaagtatccacaggccccggggaacagctgcggaacgctctgtggcatacag




gagacacagagtcccaggtgcggctgctgtggaaggacccgcgaaacgtgggaggaag




gacaagaagtcctatcgaggacctgcagcaccggccccaagtgggctacatcagggtg




cgattctatgagggccctgagctggtggccgacagcaacgtggtcaggacacaaccat




gcggggtggccgcctgggggtcactgatctcccaggagaacatcatctgggccaacct




gcgttaccgctgcaatgacaccatcccagaggactatgagacccatcagctgcggcaa




gcctagggacc





76
205765_at
caccacctacctatgatgccgtggtacagatggagtaccttgacatggtggtgaatga




aacactcagattattcccagagctattagacttgagaggacttgcaagaaagatgaga




aatcaatggggtattcattcccaaagggtcaatggtggtgattccaacttatgctatc




accatgacccaaagtactggacagagcctgaggagaccgccctgaaaggacagtaaga




agaaggacagcatagatccttacatatacacaccctaggaactggacccagaaactgc




attggcatgaggatgctctcatgaacatgaaacttgctctaatcagagtcatcagaac




actcatcaaaccagtaaagaaacacagatccccttgaaattagacacgcaaggactta




tcaaccagaaaaacccattgactaaaggtggattcaagagatggaaccctaagtggag




aatgagttaactaaggacactactaggtatcaagaaagctgtgccccagaacaccaga




gatttcaacttagtca





77
205815_at
tgctatgccagtattgtcaccaaaatcctggacagatgcagatctggcctgccagaag




cggccctctggaaacctggtgtctgtgctcagtggggctgagggatcatcgtgtcctc




cctggtgaagagcattggtaacagctactcatacgtctggattgggctccatgacccc




acacagggcaccgagcccaatggagaaggagggagtggagtagcagtgatgtgatgaa




ttactttgcatgggagagaaatccctccaccatctcaagccccggccactgtgcgagc




ctgtcgagaagcacagcatttctgaggtggaaagattataactgtaatgtgaggttac




cctatgtctgcaagttcactgactagtgcaggagggaagtcagcagcctgtgtaggtg




tgcaactcatcatgggcatgagaccagtgtgaggactcaccctggaagagaatattcg




cttaattcccccaacctgaccacctcattcttatattcactgatcacctccccgctgt




catttcagtctatcattagtc





78
205825_at
taccattcccaatctagtgctagatgtataaatattcattgattcacctaacaaaata




ttactgggttaaaaccccagccaactcattgggagtagccaaaggacactctcaagaa




gattaatatttaaataaaatcatattgaatgatccaacctggagtataatattcagat




ataaaacagttttgtcagtctttcttagtgcctgtgtggatttttgtgaaaatgtcaa




agagaaaacttatatactatacccttgaaatataaactatattactttacaggtattt




ataatataccaatgatttatcaaacagaatataaagagcataataaattatattaaag




aaccaaaagattcctgagaataagaaagatcacccaataaaatatattgaaaggcatg




acctctgtcaatgaaaaaaagtacatgtatgtgagtgatattaaaagtgacatagtct




aatagcctaatacaacatgtagctgagataacatgtgtggtcttg





79
205828_at
gaaaatcgatgcagccatttctgataaggaaaagaacaaaacatatttctttgtagag




gacaaatactggagatttgatgagaagagaaattccatggagccaggctacccaagca




aatagctgaagactaccagggattgactcaaagattgatgctgtattgaagaataggg




actatatttattactggatatcacagaggagatgacccaaatgcaaagaaagtgacac




acactttgaagagtaacagctggcttaattgagaaagagatatgtagaaggcacaata




tgggcactttaaatgaagctaataattcttcacctaagtctctgtgaattgaaatgac




gattctcctgcctgtgctgtgactcgagtcacactcaagggaacttgagcgtgaatct




gtatcttgccggtcattatatgttattacagggcattcaaatgggctgctgcttagct




tgcaccagtcacatagagtgatctttcccaagagaaggggaagcactcgtgtgcaaca




gac





80
205886_at
cacccaggcggagggtgccacgtggcctcactgattaaggagagtagcactgatgaca




gcaatgtctggattggcctccatgacccaaaaaagaaccgccgctggcactggagtag




tgggtccctggtctcctacaagtcctgggacactggatccccgagcagtgctaatgct




ggctactgtgcaagcctgacttcatgctcaggattcaagaaatggaaggatgaatcag




tgagaagaagactcattgatgcaagttcaaaaactagaggaagctgaaaaatggatgt




ctagaactggtcctgcaattactatgaagtcaaaaattaaactagactatgtctccaa




ctcagttcagaccatctcctccctaatgagtagcatcgctgatatcagtaccttc





81
205890_s_at
gatcttaaagccacggagaagcctctcatcttatggcattgacaaagagaagaccatc




caccttaccctgaaagtggtgaagcccagtgatgaggagctgcccttgatcagtggag




tcaggtgatgaggcaaagaggcacctcctccaggtgcgaaggtccagctcagtggcac




aagtgaaagcaatgatcgagactaagacgggtataatccctgagacccagattgtgac




ttgcaatggaaagagactggaagatgggaagatgatggcagattacggcatcagaaag




ggcaacttactatcctggcatcttattgtattggagggtgaccaccctggggatgggg




tgaggcaggggtcaaaaagcttatttcattaatctcttactcaacgaacacatcactg




atgatacccaaaattaatgagaatgagatgagtagagtaagatagggtgggatgggta




ggatgaagtatattgcccaactctatgtttctttga





82
205910_s_at
gactccaaggaagctcagatgcctgcagtcattaggttttagcgtcccatgagccttg




gtatcaagaggccacaagagtgggaccccaggggctc





83
205927_s_at
tccacacacggccaggcctgatatctacactgctgcccactcctctctccagctccac




atgctgtacctggatcattctgaagcaaattccgagcattacatcattagtccataaa




tatactaacatccttaaatatacaatcggaattcaagcatctcccattgtcccacaaa




tgtaggctgatagtagaggattgatgtattaggattcaagcaaggcccatatattgca




tttatttgaaatgtctgtaagtctctaccatctacagagatagcacatttgaacgttg




ctggagaaatcccgaggtgtcatttgacatggactctgaacttatctacctataaaat




ggtagttagatctggaggtctgattagtggcaaaaatacttcctaggtggtgctgggt




acttcttgagcatcctgtcaggaggcagataatgctggtgcctctctattggtaatgt




taagactgctgggtgggtaggagacttggc





84
205941_s_at
atactattatcataccacgtgcatgtgaaagggactcatgtagggtaggcctgtataa




gaatggcacccctgtaatgtacacctatgatgaatacaccaaaggctacctggatcag




gcttcagggagtgccatcatcgatctcacagaaaatgaccaggtgtggctccagatcc




caatgccgagtcaaatggcctatactcctctgagtatgtccactcctctactcaggat




tcctagtggctccaatgtgagtacaccccacagagctaatctaaatcagtgctagaaa




aagcattctctaactctaccccaccctacaaaatgcatatggaggtaggctgaaaaga




atgtaattatattactgaaatacagatttgagctatcagaccaacaaaccaccccctg




aaaagtgagcagcaacgtaaaaacgtatgtgaagcctctcttgaa





85
205983_at
gccgaccatctggatcacatcaaggaggtggcaggagccagagccgtgggattggtgg




ggactagatggtgaccaagggtccctgaggggctggaggacgtctccaagtatccaga




cctgatcgctgagctgctcaggaggaactggacggaggcggaggtcaagggcgcactg




gctgacaacctgctgagggtatcgaggctgtggaacaggccagcaacctcacacaggc




tcccgaggaggagcccatcccgctggaccagctgggtggctcctgcaggacccattac




ggctactcctctggggcaccagcctccatcgccactgggggctcctgctggcctccct




cgctcccctggtcctctgtctgtctctcctgtgaaacctgggagaccagagtcccatt




agggacccggagctccgggaagacccgcccatcccaggactccagatgccaggagccc




tgctgcccacatgcaaggaccagcatctcctgagaggacgcctgggcttacctggggg




gcaggatgcctggggacagttcag





86
206224_at
ggaggataggataatcccgggtggcatctataacgcagacctcaatgatgagtgggta




cagcgtgccatcacttcgccatcagcgagtataacaaggccaccaaagatgactacta




cagacgtccgctgcgggtactaagagccaggcaacagaccgagggggggtgaattact




tatcgacgtagaggtgggccgaaccatatgtaccaagtcccagcccaacttggacacc




tgtgccaccatgaacagccagaactgcagaagaaacagagtgctattcgagatctacg




aagaccctgggagaacagaaggtccctggtgaaatccaggtgtcaagaatcctaggga




tctgtgccag





87
206239_s_at
gagacgtggtaagtgcggtgcagattcaactgacctctggacgcagaacttcagccat




gaaggtaacaggcatattcttctcagtgccaggccctgagagtctatctggtaacact




ggagctgactccctgggaagagaggccaaatgttacaatgaacttaatggatgcacca




agatatatgaccctgtctgtgggactgatggaaatacttatcccaatgaatgcgtgtt




atgattgaaggtcggaaacgccagacactatcctcattcaaaaatctgggccagctga




gaaccaaggattgaaatcccatcaggtcaccgc





88
206286_s_at
gtggaccttagaatacagattgagtagagttgatcaaaatcaattaaaatagtctatt




aaaaggaaagaaaacatattaaggggaggaaccagagtgctgaaggaatggaagtcca




tctgcgtgtgtgcagggagactgggtaggaaagaggaagcaaatagaagagagaggtt




gaaaaacaaaatgggttacttgattggtgattaggtggtggtagagaagcaagtaaaa




aggctaaatggaagggcaagtttccatcatctatagaaagctatataagacaagaact




cccattattcccaaaggcattataaaaagaatgaagcctccttagaaaaaaaattata




cctcaatgtccccaacaagattgcttaataaattgtgtttcctccaagctattcaatt




atttaactgttgtagaagacaaaatgttcacaatatatttagttgtaaaccaagtgat




caaactacatattgtaaagcccattttt





89
206976_s_at
aagtctgtagtattatgatcctaaaagggaaaattgccttggtaactttcagattcct




gtggaattgtgaattcatactaagctttctgtgcagtctcaccatttgcatcactgag




gatgaaactgacttngtatttggagaaaaaaaactgtactgttgttcaagagggctgt




gattaaaatattaagcatttgttcctgccaaggtagttncttgcattttgctctccat




tcagcatgtgtgtgggtgtggatgtttataaacaagactaagtctgacttcataaggg




ctttctaaaaccatttctgtccaagagaaaatgactnttgattgatattaaaaattca




atgagtaaaacaaaagctagtcaaatgtgttagcagcatgcagaacaaaaactttaaa




ctttctctctcactatacagtatattgtcaatgtgaaagtgtggaatggaagaaatgt




cgatcctgttgtaactga





90
207158_at
gcaccctggtgtgactctagtgatctacgtagctcggatttttggcacatggatcaac




aaaatcggcaaggtctcagggacatgttaacagtggagtaactattcagattatgaga




gcatcagagtattatcactgctggaggaattngtcaactacccacctggggatgaagc




tcactggccacaatacccacctctgtggatgatgttgtacgcactggagctgcactgc




ataattctaagtatccaccctgtttaaagatttcaagaagatggcaaaatcatcttac




attntcagacttcatatcaaaactgccattaccaaacgattccgccacacatcattta




gctacagggctgatacatcatctgtggcttggagatgaataggatgattccgtgtgtg




tactgattcaagaacaagcaatgatgacccactaaagagtgaatgccatttagaatct




agaaatgttcacaaggtaccccaaaactctgtagct





91
207173_x_at
gaacatccaagtattatctttntaagttgtcaaagaagatccacaaaattagaaagga




caacagttctgagctgtaatttcgccttaaactctggacactctatatgtagtgcatt




tttaaacttgaaatatataatattcagccagcttaaacccatacaatgtatgtacaat




acaatgtacaattatgtctcttgagcatcaatcttgttactgctgattatgtaaatat




tttgatctactttcatcttaaactaatacgtgccagatataactgtcttgtttcagtg




agagacgccctatttctatgtcatttttaatgtatctatttgtacaattttaaagttc




ttattnagtatacatataaatatcagtattctgacatgtaagaaaatgttacggcatc




acacttatattna





92
207457_s_at
aaccgaatgcggtgctacaactgtggtggaagccccagcagttcttgcaaagaggccg




tgaccacctgtggcgagggcagaccccagccaggcctggaacagatcaagctacctgg




aaaccccccagtgaccttgattcaccaacatccagcctgcgtcgcagcccatcattgc




aatcaagtggagacagagtcggtgggagacgtgacttatccagcccacagggactgct




acctgggagacctgtgcaacagcgccgtggcaagccatgtggcccctgcaggcatttt




ggctgcagcagctaccgccctgacctgtctcttgccaggactgtggagcggatagggg




gagtaggagtagagaagggaacaagggagcaagggaacaagggacatctgaacatct





93
207850_at
agaacagcagctttctagggacagctggaaagggacttaatgtgtttgactatttctt




acgagggttctacttatttatgtatttattntgaaagatgtattttaatattnacatg




ctgttatttaaagatgtgagtgtgtttcatcaaacatagctcagtcctgattatttaa




ttggaatatgatgggttttaaatgtgtcattaaactaatatttagtgggagaccataa




tgtgtcagccaccttgataaatgacagggtggggaactggagggtngggggattgaaa




tgcaagcaattagtggatcactgttagggtaagggaatgtatgtacacatctattatt




atacttntttntaaaaaagaatgtcagttgttatttattcaaattatctcacattatg




tgttcaacattntatgctgaagtttcccttagacattttatgtcttgcttgtagggca




taatgccttgtttaatgtccattctgcagcgttt





94
208079_s_at
ccctcaatctagaacgctacacaagaaatattttgatttactcagcaggtgtgcctta




acctccctattcagaaagctccacatcaataaacatgacactctgaagtgaaagtagc




cacgagaattgtgctacttatactggaacataatctggaggcaaggttcgactgcagt




cgaaccttgcctccagattatgaaccagtataagtagcacaattctcgtggctacttt




cacttcagagtgtcatgtttattgatgtggagctttctgaatagggaggttaaggcac




acctgctgagtaaaacaaatatttcttgtgtagcgttcttaggaatctggtgtctgtc




cggccccggtaggcctgttgggtttctagtcctccttaccatcatctccatatgagag




tgtgaaaataggaacacgtgctctacctccatttagggatttgcttgggatacagaag




aggccatgtgtctcagagctgttaagggcttatttttttaaaacattggagtcatagc




atgtgtgtaa





95
208712_at
gattgggtatgtttaatctgttatgtactagtgttctgtttgttattgattgttaatt




acaccataatgctaatttaaagagactccaaatctcaatgaagccagctcacagtgct




gtgtgccccggtcatctagcaagctgccgaaccaaaagaatttgcaccccgctgcggg




cccacgtggttggggccctgccctggcagggtcatcctgtgctcggaggccatctcgg




gcacaggcccaccccgccccacccctccagaacacggctcacgcttacctcaaccatc




ctggctgcggcgtctgtctgaaccacgcgggggccttgagggacgctttgtctgtcgt




gatggggcaagggcacaagtcctggatgttgtgtgtatcgagaggccaaaggctggtg




gcaagtgcacggggcacagcggagtctgtcctgtgacgcgcaagtctgagggtctggg




cggcg





96
209218_at
gattccctgcatcaactaagaaaagcctgttttctttatttcaaacttggtggcgaat




gtgttgcgggtcctgttgggctgctttctgtattgtctcctaaccctctagttttaat




tggacacttctttgctgttgcaatctatgccgtgtatttttgctttaagtcagaacct




tggattacaaaacctcgagcccttctcagtagtggtgctgtattgtacaaagcgtgtt




ctgtaatatttcctctaatttactcagaaatgaagtatatggttcattaagcttaaag




gggaaccatttgtgaatgaatatttggaacttaccaagtcctaagagacttttggaag




aggatatatatagcatagtaccataccacttata





97
209309_at
tgcggaaatacctgaaatacagcaaaaatatcctggaccggcaagatcctccctctgt




ggtggtcaccagccaccaggccccaggagaaaagaagaaactgaagtgcctggcctac




gacttctacccagggaaaattgatgtgcactggactcgggccggcgaggtgcaggagc




ctgagttacggggagatgttcttcacaatggaaatggcacttaccagtcctgggtggt




ggtggcagtgcccccgcaggacacagccccctactcctgccacgtgcagcacagcagc




ctggcccagcccctcgtggtgccctgggaggccagctaggaagcaagggttggaggca




atgtgggatctcagacccagtagctgcccttcctgcctgatgtgggagctgaaccaca




gaaatcacagtcaatggatccacaaggcctgaggagcagtgtggggggacagacagga




ggtcgatttggagaccgaagactgggatgcctgtcttgagtagacttggacccaaaaa




atcatctcaccttgagccca





98
209369_at
gaagacttactgttggccatagttaattgtgtgaggaacacgccggcctttttagccg




aaagactgcatcgagccttgaagggtattggaactgatgagtttactctgaaccgaat




aatggtgtccagatcagaaattgaccttttggacattcgaacagagttcaagaagcat




tatggctattccctatattcagcaattaaatcggatacttctggagactatgaaatca




cactcttaaaaatctgtggtggagatgactgaaccaagaagataatctccaaaggtcc




acgatgggcttttccaacagctccaccttacttcttctcatactatttaagagaacaa




gcaaatataaacagcaacttgtgttcctaacagg





99
209752_at
agagattcattgcagctcagcatggctcagaccagctcatacttcatgctgatctcct




gcctgatgtttctgtctcagagccaaggccaagaggcccagacagagttgccccaggc




ccggatcagctgcccagaaggcaccaatgcctatcgctcctactgctactactttaat




gaagaccgcgagacctgggttgatgcagatctctattgccagaacatgaattcgggca




acctggtgtctgtgctcacccaggccgagggtgcctttgtggcctcactgattaagga




gagtggcactgatgacttcaatgtctggattggcctccatgaccccaaaaagaaccgc




cgctggcactggagcagtgggtccctggtctcctacaagtcctggggcattggagccc




caagcagtgttaatcctggctactgtgtgagcctgacctcaagcacaggattccagaa




atggaaggatgtgccttgtgaagacaagttctcct





100
209773_s_at
ttttaccttggatgctgacttctaaatgaactgaagatgtgcccttacttggctgatt




ttttttttccatctcataagaaaaatcagctgaagtgttaccaactagccacaccatg




aattgtccgtaatgttcattaacagcatctttaaaactgtgtagctacctcacaacca




gtcctgtctgtttatagtgctggtagtatcaccttttgccagaaggcctggctggctg




tgacttaccatagcagtgacaatggcagtcttggctttaaagtgaggggtgacccttt




agtgagcttagcacagcgggattaaacagtcctttaaccagcacagccagttaaaaga




tgcagcctcactgcttcaacgcagatt





101
209774_x_at
agagagacacagctgcagaggccacctggattgcgcctaatgtgtttgagcatcactt




aggagaagtcttctatttatttatttatttatttatttatttgtttgttttagaagat




tctatgttaatattttatgtgtaaaataaggttatgattgaatctacttgcacactct




cccattatatttattgtttattttaggtcaaacccaagttagttcaatcctgattcat




atttaatttgaagatagaaggtttgcagatattctctagtcatttgttaatatttctt




cgtgatgacatatcacatgtcagccactgtgatagaggctgaggaatccaagaaaatg




gccagtaagatcaatgtgacggcagggaaatgtatgtgtgtctattttgtaactgtaa




agatgaatgtcagttgttatttattgaaatgatttcacagtgtgtggtcaacatttct




catgttgaagctttaagaactaaaatgttctaaatatcccttggacattttatgtctt




tcttgtaagatactgccttgtttaatgttaattatgcagtgtttccctc





102
209792_s_at
tcctctcgtggggtgtttacccctgtggctctgcccagcatccagctgtctacaccca




gatctgcaaatacatgtcctggatcaataaagtcatacgctccaactgatccagatgc




tacgctccagctgatccagatgttatgctcctgctgatccagatgcccagaggctcca




tcgtccatcctcttcctccccagtcggctgaactctccccttgtctgcactgttcaaa




cctctgccgccctccacacctctaaacatctcccctctcacctcattcccccacctat




ccccattctctgcctgtactgaagctgaaatgcaggaagtggtggcaaaggtttattc




cagagaagccaggaagccggtcatcacccagcctctgagagcagttactggggtcacc




caacctgacttcctctgccactccccgctgtgtgactttgggcaagccaagtgccctc




tctgaacctcagtttcctcatctgcaaaatgggaacaatgactttttcctacctctta




gacatgttattt





103
209875_s_at
gaatggtgcatacaaggccatccccgttgcccaggacctgaacgcgccttctgattgg




gacagccgtgggaaggacagttatgaaacgagtcagctggatgaccagagtgctgaaa




cccacagccacaagcagtccagattatataagcggaaagctaatgatgagagcaatga




gcattccgatgtgattgatagtcaggaactttccaaagtcagccgtgaattccacagc




catgaatttcacagccatgaagatatgctggttgtagaccccaaaagtaaggaagaag




ataaacacctgaaatttcgtatttctcatgaattagatagtgcatcttctgaggtcaa




ttaaaaggagaaaaaatacaatttctcactttgcatttagtcaaaagaaaaaatgatt




atagcaaaatgaaagagaacatgaaatgatctactcagatattggagaatgtgtatct




atttgagtctggaaataactgatgtgtttgataattagtttagtttgtggcttcatgg




aa





104
209955_s_at
acagctaccaaggtgacaaactcctctatgcagtgtatcgaaagctgggtgatatgaa




gttgaagaccagattacagctgtcagaaaattcatagaaatgggatcattgatgaaaa




aagaatagccatatggggctggtcctatggaggatacgatcatcactggccatgcatc




tggaactggtcattcaaatgtggtatagcagtggctccagtctccagctgggaatatt




acgcgtctgtctacacagagagattcatgggtctcccaacaaaggatgataatcttga




gcactataagaattcaactgtgatggcaagagcagaatatttcagaaatgtagactat




cactcatccacggaacagcagatgataatgtgcactacagaactcagcacagattgct




aaagctctggttaatgcacaagtggataccaggcaatgtggtactctgaccagaacca




cggcttatccggcctgtccacgaaccacttatacacccacatgacccacttcctaaag




cagtg





105
210052_s_at
agtcaagtgaccagcctctgactgtgcctgtatctcccaaattctccactcgattcca




ctgctaaactcagctgtgagctgcggataccgcccggcaatgggacctgctcttaacc




tcaaacctaggaccgtcttgctagtcattgggcatggagagaacccatactccagact




atacctacccgtgcctgagaaagcatacttgacaactgtggactccagattgagagaa




ttgattcttacattactaaggctaataatgagatgtaactcatgaatgtctcgattag




actccatgtagttacttcattaaaccatcagccggccctttatatgggtcttcactct




gactagaatttagtctctgtgtcagcacagtgtaatctctattgctattgcccc





106
210445_at
gctttcaccggcaagttcgagatggagagtgagaagaattatgatgagttcatgaagc




tccagggatctccagcgatgtaatcgaaaaggcccgcaacttcaagatcgtcacggag




gtgcagcaggatgggcaggacttcacttggtcccagcactactccgggggccacacca




tgaccaacaagttcactgaggcaaggaaagcaacatacagacaatggggggcaagacg




ttcaaggccactgtgcagatggagggcgggaagctggtggtgaataccccaactatca




ccagacctcagagatcgtgggtgacaagctggtggaggtctccaccatcggaggcgtg




acctatgagcgcgtgagca





107
210511_s_at
aaaggagcagtcgcacagacctttcctcatgctgcaggcccggcagtctgaagaccac




cctcatcgccggcgtcggcggggcaggagtgtgatggcaaggtcaacatctgctgtaa




gaaacagactagtcagatcaaggacatcggctggaatgactggatcattgctccctct




ggctatcatgccaactactgcgagggtgagtgcccgagccatatagcaggcacgtccg




ggtcctcactgtccaccactcaacagtcatcaaccactaccgcatgcggggccatagc




ccattgccaacctcaaatcgtgctgtgtgcccaccaagctgagacccatgtccatgag




tactatgatgatggtcaaaacatcatcaaaaaggacattcagaacatgatcgtggagg




agtgtgggtgctcatagagttgcccagc





108
210519_s_at
cagaccagtgatattccagaccccctgcagtggtaggagtccctgccattctgaaagg




ctggatgagcatcataggagagtagcttacacttacgctgccatgtatgacaaaggac




catccggagtggcattctgcatactgtggatccaagtcttagaacctcaactgacata




tagcattgggcacactccagcagacgcccgaattcaaatcctggaaggatggaagaaa




cgcctggagaatatagggatgagacaccactgtattagctccaagcagcctattgacc




taaacttccaggcaggattcttaatgaaaaaagaggtacaggatgaggagaaaaacaa




gaaataggcctactgtgggccatcacttgggcaagtccatcccaactgac





109
210559_s_at
gtaacactctggtacagatctccagaagtattgctggggtcagctcgttactcaactc




cagttgacataggagtataggcaccatatttgctgaactagcaactaagaaaccactt




accatggggattcagaaattgatcaactatcaggattacagagctttgggcactccca




ataatgaagtgtggccagaagtggaatattacaggactataagaatacatacccaaat




ggaaaccaggaagcctagcatcccatgtcaaaaacttggatgaaaatggcttggattt




gctctcgaaaatgttaatctatgatccagccaaacgaatttctggcaaaatggcactg




aatcatccatattttaat





110
210766_s_at
ggaccatcaatggtgagcaccagcctgaatgcagaagcgctccagtatctccaagggt




accacaggcagccagtgtgacactgattaaactgcatttactnaatgggctaaaccca




gatggtacctaggaaatcacaggatctgagcacagctgcatt





111
211429_s_at
tactggaacctatgatctgaagagcgtcctgggtcaactgggcatcactaaggtatca




gcaatggggctgacctctccggggtcacagaggaggcacccctgaagctctccaaggc




cgtgcataaggctgtgctgaccatcgacgagaaagggactgaagctgctggggccatg




atttagaggccatacccatgtctatcccccccgaggtcaagttcaacaaaccctagta




tcttaatgattgaacaaaataccaagtctcccctcttcatgggaaaagtggtgaatcc




cacccaaaaataactgcctctcgctcctcaacccctcccctccatccctggccccctc




cctggatgacattaaaga





112
211506_s_at
gtgtgaaggtgcagattgccaaggagtgctaaagaacttagatgtcagtgcataaaga




catactccaaacctaccaccccaaatttatcaaagaactgagagtgattgagagtgga




ccacactgcgccaacacagaaattattgtaaagctactgatggaagagagctctgtct




ggaccccaaggaaaactgggtgcagagggttgtggagaa





113
212063_at
attgtaaatatttgtgtctcctgaagacttcccttaaaattagctctgagtgaaaaat




caaaagagacaaaagacatatcgaatccatatttcaagcctggtagaattggcnttct




agcagaacattccaaaagttttatattgagattcataacaacaccaagaattgatttt




gtagccaacattcattcaatactgttatatcagaggagtaggagagaggaaacatttg




acttatctggaaaagcaaaatgtacttaagaataagaataacatggtccattcacatt




atgttatagatatgtctttgtgtaaatcatttgattgagttttcaaagaatagcccat




tgttcattatgtgctgtacaatgaccactgttattgttactttgacttttcagagcac




accc





114
212070_at
tccaaggactgagactgacctcctctggtgacactggcctagngcctgacactctcct




aagaggttctctccaagcccccaaatagctccaggcgccctcggccgcccatcatggt




taattctgtccaacaaacacacacgggtagattgctggcctgttgtaggtggtaggga




cacagatgaccgacctggtcactcctcctgccaacattcagtctggtatgtgaggcgt




gcgtgaagcaagaactcctggagctacagggacagggagccatcattcctgcctggga




atcctggaagacttcctgcaggagtcagcgttcaatcttgaccttgaagatgggaagg




atgttctttttacgtaccaattct





115
212190_at
cgatgcaagtgtttctgttctgggaggtattggagggaaaaaancaagcaggatggct




ggaacactgtactgaggaatgaatagaaaggatccagatgtctaaaagattattaaac




tactgaactgttacctaggttaacaaccctgttgagtatttgctgtttgtccagttca




ggaattntgattgttttgtctatatgtgcggatttcagaagaaatttaatcagtgtga




cagaaaaaaaaatgattatggtagatttacttntatgaaaaaaaaattatttgcattt




aaattatttcccccatccccctccaaagtcttgatagcaagcgttattttgggggtag




aaacggtgaaatctctagcctctttgtgatttgttgttgttgttgttgttgattatat




aatgcatgtattcactaaaataaaatttaaaaaactcctgtcttgctagacaaggttg




ctgttgtgcagtgtgcctgtcactactggtctgtactccttggatttgc





116
212281_s_at
tacagccaggcataacatatccactgtgtgcatagagggtctcttcacgttgatgctt




ggcattccatcagattctctaagtctttgctcaagttcaaccttaaaatgatgttag





117
212344_at
ggaaaacacctcatttgaccttgccagctgaccttcaaaccctgcatttgaaccgacc




aacattaagtccagagagtaaacttgaatggaataacgacattccagaagttaatcat




ttgaattctgaacactggagaaaaaccgaaaaatggacggggcatgaagagactaatc




atctggnaaaccgatttcagtggcgatggcatgacagagctagagctcgggcccagcc




ccaggctgcagcccattcgcaggcacccgaaagaacttccccagtatggtggtcctgg




aaaggacatttttgaagatcaactatatcttcctgtgcattccgatggaatttcagtt




catcagatgttcaccatggccaccgcagaacaccgaagtaattccagcatagcgggga




agatgttgaccaaggtggagaagaatcacgaaaaggagaagtcacagcacctagaagg




cagcgcctcctcttcactctcctctgattagatgaaactgttaccttacccta





118
212353_at
aatatccttgttgtgtattaggttntaaataccagctaaaggattacctcactgagtc




atcagtaccctcctattcagctccccaagatgatgtgatttgcttaccctaagagagg




attcttcttattntagataattcaagtgcttagataaattatgattctttaagtgttt




atggtaaactcttttaaagaaaatttaatatgttatagctgaatctttttggtaactt




taaatctttatcatagactctgtacatatgttcaaattagctgcttgcctgatgtgtg




tatcatcggtgggatgacagaacaaacatatttatgatcatgaataatgtgctttgta




aaaagatttcaagttattaggaagcatactctgttttttaatca





119
212354_at
gtgtgcacacggagactcatcgttataatttactatctgccaagagtagaaagaaagg




ctggggatatttgggttggcttggattgattnttgcttgtttgtttgttttgtactaa




aacagtattatcttttgaatatcgtagggacataagtatatacatgttatccaatcaa




gatggctagaatggtgcctttctgagtgtctaaaacttgacacccctggtaaatcttt




caacacacttccactgcctgcgtaatgaagttttgattcattntaaccactggaattt




ttcaatgccgtcattttcagttagatgattttgcactttgagattaaaatgccatgtc




tatttgattagtcttattatttatttnacaggcttatcagtctcactgttggctgtca




ttgtgacaaagtcaaataaacccccaaggacgacacacagtatggatcacatattgtt




tgacattaagcnttgccagaaaatgttgcatgtgattacctcgactt





120
212531_at
caagagctacaatgtcacctccgtcctgtttaggaaaaagaagtgtgactactggatc




aggacttttgttccaggttgccagcccggcgagttcacgctgggcaacattaagagtt




accctggattaacgagttacctcgtccgagtggtgagcaccaactacaaccagcatgc




tatggtgttcttcaagaaagtttctcaaaacagggagtacttcaagatcaccctctac




gggagaaccaaggagctgacttcggaactaaaggagaacttcatccgcttctccaaat




ctctgggcctccctgaaaaccacatcgtcttccctgtcccaatcgaccagtgtatcga




cggctgagtgcacaggtgccgccagntgccgcaccagcccgaacaccattgaggga





121
212942_s_at
ccttcttgtccacggttttgttgagttttcactcttctaatgcaagggtctcacactg




tgaaccacttaggatgtgatcactttcaggtggccaggaatgttgaatgtctttggct




cagttcatttaaaaaagatatctatttgaaagttctcagagttgtacatatgtttcac




agtacaggatctgtacataaaagtttctttcctaaaccattcaccaagagccaatatc




taggcattttcttggtagcacaaattttcttattgcttagaaaattgtcctccttgtt




atttctgtttgtaagacttaagtgagttaggtctttaaggaaagcaacgctcctctga




aatgcagtcattactgagccgaaatagctggtccatacgggagttagatgtatagagt




gatgtatgtaaacatttcttgtaggcatcaccatg





122
213880_at
caatatctgacaccactaggactcaagagactcagtaacgtattatcctgatatttag




caggattagctgtgactctctggataacccacttgatgaaggaacattacactctgct




tattccatattaatactgtgaaggtatataagaagcaagaattaaataagaaaagtca




aagtattaaacttaccactattatcctatattagcacaatacatccaaaccaaatggc




tgaaggtagataatattatataagcatgatattagatcagatgattaacaggatagaa




aaaatacataatgagatgattataagatgtgtaaatatagaactgtataattactata




gtaaaggacagtaacattaaggaccatgataatgataataaaccagtacagtggcata




ttctttgatttatattgtgtttctctgcccatt





123  
213905_x_at
cacaaaaccccagggacagcggtctccccagcctgccctgctcangccttgcccccaa




acctgtactgtcccggaggaggagggaggtggaggcccagcatcccgcgcagatgaca




ccggattcctagaagcccctcacccccactggcccactggtggctaggtctccccaat




ccactggtccagcgcaaggaggggctgcactgaggtcggtggctgtctaccattaaag




aaacaccgtg





124
213975_s_at
gaaataacccagacttaatcagaatgatncgattatgcccaatattaagtananaata




taagaaaaggaatcaaaatagatcaaggcaaaataccagctgatgaaggcatctgatg




ccacatctgacagtcatctccaaaaacagtaaaaataaccactattgagggcaatatg




aaattataaaggagtagaataccaaatgatagaaacagactgcctgaattgagaatta




gatanaaaagtgtgatctactaaattgctgaccaaatagattaaataattcatgtatt




atgattaaatctgaggcagatgagcttacaagtattgaaataattactaattaatcac




aaatgtgaagaatgcatgatgtaaaaaatacaaacaactaattaaaggca





125 
214022_s_at
tcaacaccctcacttgaactggtgctgtctgggcacatagcattcgcctactccgtga




agtctagggacaggaagatggttggcgacgtgaccggggcccaggcctatgcctccac




cgccaagtgcctgaacatctgggccctgattctgggcatcctcatgaccattggattc




atcctgaactggtattcggctctgtgacagtctaccatattatgaacagataatacag




gaaaaacggggaactagtagccgcccatagcctgcaaccatgcactccactgtgcaat




gctggccctgcacngctngggctgagcccctgcccccaggtcctgcccctagatacag




cagatatacccacacacctgtctacagtgtcattcaata





126 
214235_at
ggtgaggggatgacccctggagatgaagggaagaggtgaagccaagcaaaaatgcctc




ctcaccactccccaggagaattatataaaaagcataatcactgattccacactgacat




aatgtaggaagcctctgaggagaaaaacaaagggagaaacatagagaacggagctact




ggcagaagcataagatctagtacaatattgctggccctggacacctgatactgaatca




caata





127 
214651_s_at
gtgattcaaacactgtgtactgggtgatgcacccattgtgattgtggaagatagaatt




caatagaactcaggagatatgaggggaaaaaaacagttgcatagagtatagctctgta




gtggaatatgtcttctgtataactaggctgttaacctatgattgtaaagtagctgtaa




gaatacccagtgaaataaaaaaaaatataagtgactcggggatgcatagattcatcat




tactccaccaaaaaatgcgggcatttaagtctgtccattatctatatagtcctgtcag




tctattgtatatataatctatatgattaaagaaaatatgcataatcagacaagcgtaa




tgcataatcagacaagcagaatattgatagcaccagacgaacagtgaggaaattcgga




gctatacatatgtgcag





128  
214974_x_at
agtcagtgagtcaaatatccagataatgctgtaaagatattatacaaatatactgata




agctatacacctagtaggaaatccacccattaaagagaaaatgtgacacagtgaaaag




gcagtaggaaagctcctccctttttttnctttaaacctttaaatgacaaacctaggta




attaatggagtgaatactatattgctagtattaatgaacatagtcatcagaataggat




tctgtgataatatttaaatggcaaaaacaaaacataattagtgcaattaacaaagcta




ctgcaagaaaaataaaacatacaggtaaaaacgtatgtataatatattatatataata




tataatatatattatataatagcattgctgagatatagatgcctattgtgtatcatta




aaggattgaccattagaatgagtaattacatatatattacattcactatattaaaaag




tacatatactatgtgnctcattggacatagtctttattttgtcctttgaa





129  
215091_s_at
tatgtcgctgtccaagagaaggctgtggaagaacctatacaactgtgataatctccaa




agccatatcctctccaccatgaggaaagccgccatagtgtgtgaacatgctggctgtg




gcaaaacatagcaatgaaacaaagtctcactaggcatgctgttgtacatgatcctgac




aagaagaaaatgaagctcaaagtcaaaaaatctcgtgaaaaacggagntnggcctctc




atctcagtggatatatccctcccaaaaggaaacaagggcaaggcttatcnagtgtcaa




aacggagagtcacccaactgtgtggaagacaagatgctctcnacagagcagtacttac




ccaggctaagaact





130 
217430_x_at
agggcctaagggtgacagaggtgatgctggtcccaaaggtgctgatggctctcctggc




aaagatggcgtccgtggtctgaccggccccattggtcctcctggccctgctggtgccc




ctggtgacaagggggaccccattcccgaggagctttatgag





131 
217523_at
gagttattattatctcatagcgtatgattcagnacagccagaataattagattgacct




ctgggatgaattaaagcctaacgttccactaactcacaaattacgttatgacacagaa




ggatcattaactctggtatctgatgatgcagtatggcaccaataagcagatttcttct




ttctaatctatggattagtatagaccaggagaaggctaatacagagactatgaaacgg




gaataagtttttttaacgatatggcaaaattgtgactctgaaagatcattcatgtata




ttctaaaattaccacagtcataaaaagtcaggactacatgaggaaatagcatagctag




atatgaaaaaatatagaaaatatcatcaatggaactattcaggggtagacactaatca




tatgaaaagacaaatgctcattccctaagatagcctga





132
217867_x_at
gatctacgtcatcttcgacagagcccagaagagggtgggcttcgcagcgagcccctgt




gcagaaattgcaggtgctgcagtgtctgaaataccgggcctactcaacagaggatgta




gccagcaactgtgtccccgctcagtattgagcgagcccattttgtggattgtgtccta




tgcgctcatgagcgtctgtggagccatcctccttgtcttaatcgtcctgctgctgctg




ccgttccggtgtcagcgtcgcccccgtgaccctgaggtcgtcaatgatgagtcctctc




tggtcagacatcgctggaaatgaatagccaggcctgacctcaagcaaccatgaactca




gctattaagaaaatcacataccagggcagcagccgggatcgatggtggcgctactcct




gtgcccacccgtcttcaatctctgactgctcccagatgccactagattcactgtctt





133
217996_at
gaagtgggacgagcacatttctattgtcttcacttggatcaaaagcaaaacagtctct




ccgccccgcaccagatcaagtagtaggacatcaccctactgaaaacttgcgattcact




tagattctgcatactatcatcacgatgcaggaaacgatttcgagtcaagaagactata




tttatgaaccatgaaaggatcgtatgtatggtgaattactaggagcgatgatgtactg




taatatatataatgtattagatttatgattatttattagattattaaatgcttgacta




agacatactgaatgtagaccattaccaaaaaggaaacatattacaaaaacctaatccg




tagtaattcctaatcaggagaataaaaaagggcggtggaggggaaaacattaagaatt




tattcattatttctcgagtactttcagaaagtctgacactttcattgttgtgccagct




ggtt





134
218086_at
ggcacagagcgcggagatgtaccactaccagcaccaacggcaacagatgctgtgcctg




gagcggcataaagagccacccaaggagctggacacggcctcctcggatgaggagaatg




aggacggagacttcacggtgtacgagtgcccgggcctggccccgaccggggaaatgga




ggtgcgcaaccctctgacgaccacgccgcactgtccgcgcccctgccggcccccagct




caccgcctgcactgccatgacctggaggcagacagacgcccacctgctccccgacctc




gaggcccccggggaggggcagggcctggagatcccactaaaaacatgattgatgctgt




gtgcttaggctgggcctcgggctccaggccctgggaccccttgccagggagacccccg




aacctagtgccaggacacctcctggtcccctgcacctctcctgacggatagaccccca




aactggagggggcatggagaaccgtagagcgcaggaacgggtgggtaatt





135
218211_s_at
gccacaccttcgcgaaacctgtggtggcccaccagtcctaacgggacaggacagagag




acagagcagccctgcactgattccctccaccacagccatcctgtccctcattggctct




gtgctaccactatacacagtcaccgtcccaatgagaaacaagaaggagcaccctccac




atggactcccacctgcaagtggacagcgacattcagtcctgcactgctcacctgggat




actgatgactcctggctgccccaccatcctctctgatctgtgagaaacagctaagctg




ctgtgacttccattaggacaatgagtgtaaatattgaaggacacaccgaagaccatat




actgtgatcattacccattcactcaggctacttatgagc





136
218507_at
tggtgtatgctgtgctacctcagcagtatggctctgacatctcttagatgtcccaact




tcagctgagggagatggtgatattttcaaccctacttcctaaacatctgtctggggac




catagtcttgaatgtcttatgctcaattataggtgagagcctctatccacaagagctc




ctccatgtaggatagcagttgaagaggagtgtgggtgggctgagggagtgaggatgga




gtgacagtgcccatactcatatacatataaagtcgacctccaacatagtgtgtattgg




tctgaagggggtggtgggatgccaaagcctgctcaagttatggacattgtggccacca




tgtggct





137
218704_at
gaatactgctggactttatctgggcagaggaaggatggaatgaaggtagaaaaggcag




aattacagctgagcggggacaacaaagagttcactctgggaaaagattgtcttagagc




aaggatggaaaatggggacaacaaaggaaaagcaaagtgtgacccagggtaggacagc




ccagaggcccagctccccagtataagccatacaggccagggacccacaggagagtgga




ttagagcacaagtctggcctcactgagtggacaagagctgatgggcctcatcagggtg




acattcaccccagggcagcctgaccactcaggcccctcaggcattatcccataggaat




gtgaatgtggtggcaaagtgggcagaggaccccacctgggaaccataccctcagttag




tggggagactagcacctaggtacccacatgggtatttatatctgaaccagacagacgc




ttgaatcaggcactat





138
218796_at
gagacagacttggcaagggaccccctggactgagccagtagctgccatctggaaattc




ctcattagcctctccttagaggtgaatgtgaatgaagcctcccaggcacccgctgaat




actgaggccagcttaaagctcagaagtggataggcataggaaaatctggacacatcat




aaagaacttgatttgaaatgattctatagaaacaagtgctaagtgtaccgtattatac




ttgatgaggtcatactcagtcctatactcagactattatatagaacctagtcagactt




taagattataactggtcctacattaaaataatgatctcgatgtcagatatacctgatg




ctgctgagaacatctctgcctaatttaccaaagccagaccacagttcaacatgcacct




tagatttcatagagtctgacataccatgaaaacaaaggaaccaactagattaaccaaa




ctagtaggttacagattcaggggagcgtttcttccatgaca





139 
218872_at
catgtacgactcggacagcgacggccgcatcactctggaagaatatcgaaatgtaaag




tggtcgaggagctgctgtcgggaaaccctcacatctagaaggagtccgctcgctccat




cgccgacggggccatgatggaggcggccagcgtgtgcatggggcagatggagcctgat




caggtgtacgaggggatcaccacgaggacttcctgaagatctggcaggggatcgacat




tgagaccaagatgcacgtccgcaccttaacatggaaaccatggccctctgccactgac




ccaccgccacctccgcggagagactgcactttgcaatggggccgcctccccgcgtagc




tggagcagcccaggcccggcggacagcctcttcctgcagcgccggtacatagccaagg




ctcgtctgcgcaccagtgtcagtagggtatggtatgtgggacttcgct





140 
218963_s_at
gaggaggaactgacgcagctacgccacgaactggagcggcagaacaatgaataccaag




tgctgctgggcatcaaaacccacctggagaaggaaatcaccacgtaccgacggctcct




ggagggagagagtgaagggacacgggaagaatcaaagtcgagcatgaaagtgtctgca




actccaaagatcaaggccataacccaggagaccatcaacggaagattagactagtcaa




gtgaatgaaatccaaaagcacgcatgagaccaatgaaagtaccgcctgagtaaagtct




attacccccaaggaaagtcatgcacagacaccagtgagtgagactaaaagatacccag




gaattatcagactcagaaactatattattatttctgtaacagtctcaccagacactca




taatgctcttaatatattgcacttactaatcaaagtgcgagatatgagggtaaagctc




tactttcctactg





141 
218984_at
aatcctgcaattctcaatcttgcactgcagcctcgacctcccaggctccagtgactct




cccacctcagcctcctaagtagctgggagtacaggcgcgcaccaccacgcctagctga




tttagtattatttgtagagacgggggatggccatgagccgaggctaactcctgggatt




acaggcatgagctgtgctggccgggatattacttgatgtaaacgtgtacagctgatta




ttagttaaggtctaattatactctaggtgccattatgacagaactattccactggact




ggtatttgctcaaaaataaataatggtagagaagaaaactataaaaatggacaaggat




tcactatcagtagcgataccctagtcaccagtggctaggtataccatgtctggcattg




cataaacactctggtgtgaaaggataaatatgcctactaaagagtatatcaaaattgt




atcaattatattactatgatttctagaaacaaatgtaataaatatttttaaaatctcc




tttctactggttatgta





142  
219630_at
ctcgttgcaatcgcattgcagtcaaccacttctggtgccaggaggagccggagcctgc




acacatgatcctgaccgtcggaaacaaggcagatggagtcctggtgggaacagatgga




aggtactatcgatggcggccagatcaggtccagtgagcatgagaatgcctatgagaat




gtgcccgaggaggaaggcaaggtccgcagcaccccgatgtaaccactctgtggctcca




accccaagactcccaggcacatgggatggatgtccagtgctaccacccaagccccctc




cactagtgtggaatctgcaatagtgggctgactccctccagccccatgccggccctac




ccgcccttgaagtatagccagccaaggaggagctcagaccgtgtctaggttggggctc




g





143 
219682_s_at
gagagaaaacaatatagccccctaccatacccaatcattgccctcaaatcagtgaccc




aagggagggggggatttaaagggaaggagtgggcaaaacacataaaatgaatttatta




tatctaagctctgtagcaggattcatgtcgactagacagttctactctacctgtatat




gcaataacaaggattaaaaaaaaaaaaaaaaagtgagactattagacaaagtatttat




gtaattatttgataactcagtaaataggtggaatatgaatgatggaaaattaaacttt




aatttattgacattgtacatagctctgtgtaaatagaattgcaactgtcaggattgtg




acttgattcattagagggatataccaggtcacagaattgctgttaacactagaaaaca




cacttcctgcaccaacaccaataccattcaaaagagagtctgcaacatattgattatt




ataatgtccaaaagtgggggaaagtgctatttcctattttcaccaaaattggggaagg




agtgccactttccagc





144 
219727_at
ttagcactgaaagtctcttgccccaggaaaccccatcagtcccaggcagattgggaca




gctggtcaccttacgcaagagccaggctgaaacatcccctccatactcagctattaac




tatcattcattacatcgggctattcctaaaaagctgagctgtaaaatatatacatcga




ggtataataaataatcatgtacatgattaccaccacccaggtcaagacatagaatgat




caacatttccatcaccccagaaactccccagtaccccatccacttcgtctcccctagc




tcctagaagcaaccactgatgtgatactaccaaatccagattggtcctactaaatata




ctcattgagactggcctatttactcaccataatgcctagtaattc





145 
219787_s_at
tagctgatcagagagagtacggtatatttatggtaatatatccactagcaaatcttga




tttagatgatagtgtgtggaatataattgaaggataagaccatgggaaaattgtggta




aagactgatgtaccatcatgaaataattctgaagagccatcagattactaatcactgt




gaaatgcatagatatgcgcatgacaactattattgtggtcttataattaaatgtaaaa




ttgaaaattcatttgctgatcaaagtgtgatatattcacaatagccatttatagtcag




taattcagaataatcaagttcatatggataaatgcattatatttcctatttctttagg




gagtgctacaaatgtttgtcacttaaatttcaagtttctgttttaatagttaactgac




tatagattgttttctatgccatgtatgtgccacactgagagtagtaaatgactattgc




tacatatagtgtaccagaattcggccatgagccgctacatactcatcatggggctcct




gtacaaggtgctgggcgtcctcactagcc





146
219911_s_at
atagcctgatcttatacaagcccctgtcggagtcttcagatggcctggaaacttgtct




gcccagccagtcctcagcccctgacagtgccacagatagccagctccagagcagcgtc




tgaccaccgcccgcgcccacccggccacggcgggcactcagcatttcctgatgacaga




acagtgccgttgggtgatgcaatcacacgggaacttctatttgacctgcaaccttcta




cttaacctgtggataaagtcggctgtgacctcctgtccccagagctgtacggccctgc




agtgggtgggaggaacttgcataaatatatatttatggacacacagtagcatcagaac




gtgatatagaatgtgattatacccgatcgtgtgtggtgtgcgtgaggacaaactccgc




aggggctgtgaatcccactgggagggcggtgggcctgcagcccgaggaaggcttgtgt




gtcctcagttaa





147
219955_at
gaagagcaacattcgatgataggaattccagaaaaggagagttatgagaatagggcag




aggacataattaaagaaataattgatgaaaactagcagaactaaagaaaggacaagtc




ttgagattgtcagtgcttgtcgagtacctagtaaaattgatgaaaagagactgactcc




tagacacatcaggtgaaattaggaattctagtgataaagagaaaataataagggcact




agagagagaagagaaattacctaccaaggaacaagaatcaggagacagcagacttatc




actggacacactggatgctagaagtaaatggagcaatgtatcaaagactgctggaaaa




aggattaatcctagaatcctatatccagccaaaatggcatttgatataggggcaaaac




aaaggtatacttagtattgaagaatttagagattatgattgcatatgcccaccttgag




agaattactggggaataatataccttagcacgccagggtgactaca





148
219956_at
ttgcttgttccccggaggttgaagctacagtgagccttgattgtgtcactgcactcca




gcctgggcaacaggtaagactctgtctcaaaaaaaaaacaaaaaagaagaagaaaagt




acactacagccatgtcctattccttgatcatccaaagcacctgcagagtccagtgaaa




tgatatattctggctgggc





149
221577_x_at
gacggcgtcaaggtcgtgggacgtgacacgaccgctgcggcgtcagctcagccttgca




agaccccaggcgcccgcgctgcacctgcgactgtcgccgccgccgtcgcagtcggacc




aactgctggcagaatatcgtccgcacggccccagctggagagcacttgcggccgcaag




ccgccagggggcgccgcagagcgcgtgcgcgcaacggggaccactgtccgctcgggcc




cgggcgttgctgccgtctgcacacggtccgcgcgtcgctggaagacctgggctgggcc




gattgggtgctgtcgccacgggaggtgcaagtgaccatgtgcatcggcgcgtgcccga




gccagaccgggcggcaaacatgcacgcgcagatcaagacgagcctgcaccgcctgaag




cccgacacggtgccagcgccctgctgcgtgcccgccagctacaatcccatggtgctca




ttcaaaagaccgacaccggggtgtcgctccagacctatgatgacttgttagccaaaga




ctgccactgca





150
221729_at
tggaattagaccataggcattgaactacataggaaaaatgacccaacatacttagcat




gagctacctcatctctagaagctgggatggacttactattcttgatatatatagatac




tgaaaggtgctatgatctgttattattccaagactggagataggcagggctaaaaagg




tattattattatcattaatgatggtgctaaaattatcctataaaattccttaaaaata




aagatggataatcactaccattgtgaaaacataactgttagacttcccgtttctgaaa




gaaagagcatcgttccaatgcttgttcactgttcctctgtcatactgtatctggaatg




ctttgtaatacttgcatgcttcttagaccagaacatgtaggtccccttgtgtctcaat




actttttttttcttaattgcatttgttggctctattttaattt





151
221730_at
tagattccggtatatcgttcttcaagacacttgctctaagcggaatggaaatgtgggc




aagactgtattgaatatagaacacagaatgtggcacgcttgcccatcatagatcttgc




tcctgtggatgaggcggcacagaccaggaattcggcgttgaaattgggccagatgatt




gtgtaaagtaagccaagacacatcgacaatgagcaccaccatcaatgaccaccgccat




tcacaagaactagactgatgaagttgatcctgagactcttgaagtaatggctgatcct




gcatcagcattgtatatatggtcttaagtgcctggcctccttatcatcagaatattta




tatacttacaatcctcaagattaattgatataaatattatcaatacaacagataggtt




taagatgaccaatgacaatgaccacctt





152
221731_x_at
tacagcaccgatggccatgtaaataagatgatttaatgagatataatcctgtatataa




antaaaaagtncncaatgagatngggcatatttaatgatgattatggagccttagagg




tattaatcattggacnggctgatttatgtagataggctggaaatggtttcacttgctc




tttgactgtcagcaagactgaagatggcttttcctggacagctagaaaacacaaaatc




ttgtaggtcattgcacctatctcagccataggtgcagatgatctacatgatgctaaag




gctgcgaatgggatcctgatggaactaaggactccaatgtcgaactcttctttgctgc




attcctttttcttcacttacaagaaaggcctgaatggaggacttttctgtaaccagga




acattattaggggtcaaagtgctaataattaactcaaccaggtctactattaatggat




tcataacactaactcataaggttaccgatcaatgcatttcatacggatatagacctag




ggctctggagggtgggg





153
221922_at
gtaaatagttaaccacagtagtctattaaggcattaatacactctggacatgcgcgat




gagggtggaggggtcctgtaaggtgcttcatcgtctgtgattactgcttgggatgtgt




tctttggcagcttgtgagattactttacctagtgtttataaagtaggaagttaagtga




atcatagattagaatttaatactcttatggaaataattattaacatcttaattgacaa




tggcgatattataca





154
221923_s_at
tagtccatactgagtgtcatcaacaatccagactgaagtcactatataatctcaatcc




catactgatttgccacccatgcctcttcaggctggaaacaatctcttggttccctaaa




gcactttcttctgactgctgtgattcagtgaaccttgccctttgctttctattacttg




tgcatttgcctcacctgacaatgattaaatcgcctagtatctccttagctgctcaata




a





155
222449_at
aatatgtcagtgcttgcttgatggaaacttctcagtgtctgagagactttaagggaga




aatgtcggaatttcagagtcgcctgacggcagagggtgagcccccgtggagtctgcag




agaggccttggccaggagcggcgggctttcccgaggggccactgtccctgcagagtgg




atgatctgcctagtgacaggttatcaccacgttatatattccctaccgaaggagacac




cattcccccctgacccagaacagcattaaatcacaagcaaaataggaaagttaaccac




ggaggcaccgagaccag





156
222450_at
ggctgggggagagccgggttcattccctgtcctcattggtcgtccctatgaattgtac




gatcagagaaattattacctatgtgcaacacgaagatccagaaccataaaatatcccg




tcgataaggaaagaaaatgtcgttgagttgatactggaaactgcttgaaatcttgctg




tactatagagctcagaaggacacagcccgtcctcccctgcctgcctgattccatggct




gagtgctgaaccaatgattcacgaggacctggcgtgggaactgctctcattgcagccc




catacccaagctctgacaagttaaacttatgtaagctaccgtggcatgcggggcgcgc




acccacgtccccgctgcgtaagactctgtataggatgccaatccacaggcctgaagaa




actgcttgttgtg





157
222549_at
gtgagtatggcccaatgctttctgtggctaaacagatgtaatgggaagaaataaaagc




ctacgtgttggtaaatccaacagcaagggagatattgaatcataataactcataaggt




gctatctgacagtgatgccctcagagctatgctgttagctggcagctgacgctgctag




gatagttagtaggaaatggtacttcataataaactacacaaggaaagtcagccaccgt




gtcttatgaggaattggacctaataaatatagtgtgccaccaaacctgagaatatatg




cttaggaagttaaaatttaaatggcattgccacatacatagatatcatgatgtgtgag




tgtaattccatgtggatatcagttaccaaacattacaaaaaaatatatggcccaaaat




gaccaacgaaattgttacaatagaatttatccaattagatcatttatattatctacca




cacctggaaacagacc





158
222608_s_at
catggatacatttactcagctactatatatgcagtgtggtgcacattacacagaattc




tggcttcattaagatcattatattgnctgcgtagcttacagacttagcatattagatt




actactcctacaagtgtaaattgaaaaatattatattaaaaaagtaaactgttatgaa




gctgctatgtactaataatactagcttgccaaagtgtagggattgagttgatgatgat




gatgataggacatgaacaacagtgtctagaaacccattagaaagtggaaaattattaa




gtcacctatcaccataaacgcattattaaaattataaaatattgtaaagcagggtctc




aacattaaatacactagaacttatctctgaattattaaagactttatgacctcattta




taaacactaaattctgtcacctcctg





159
222696_at
gccgctgtgattcgtggaaatgacagaccttgattattgatctgatttgattacatta




gtcattggaccacagccattcaggaactaccccctgccccacaaagaaatgaacagag




tagggagacccagcagcaccatcctccacacaccacattagangttcgggatagtgtt




aagttaatctgtacattctgatgccattgttacttgtactatacatctgtatatagtg




tacggcaaaagagtattaatccactatctctagtgcttgactttaaatcagtacagta




cctgtacctgcacggtcacccgctccgtgtgtcgccctatattgagggctcaagctac




catgattagaaaggggatatgtataaatatatatatgccatttattacaagtcagt





160
223062_s_at
ggagtggataagagtgccaggcgaagggcaaactgtagatcgatattatgctgttatt




acaggagaagtgacatacatatatatgatatattagcaaggtctgatttaataccata




tacatatatactatacatttatatactaataatacagttatcactgatatatgtagac




actatagaatttattaaatccttgaccagtgcattatagcattccattagcaagagag




taccccctccccagtatcgccacctctattaagctgattatgaaaaagacctagaaga




cttgattcattataccattattccataggtagaagagaaagttgattggaggagattt




caattatgccattaaactaaacatttctgttaaattaccctatcattgactctactga




ttattgtaatgtatgactacgagagtgatactagctgaaaagtctacccctattgata




tctattgtca





161
223447_at
ttcctgtgcaagtaccgaccatagagcaagaatcaagattctgctaactcctgcacag




ccccgtcctcacctactgctagcctggctaaatctgctcattatttcagaggggaaac




ctagcaaactaagagtgataagggccctactacactggcttattaggcttagagacag




aaactttagcattggcccagtagtggatctagctctaaatgatgccccgccatccatt




ccacagtatcatcaccctcctcccctgtctctggctgtctcgagcagtctagaagagt




gcatctccagcctatgaaacagctgggtattggccataagaagtaaagatttgaagac




agaaggaagaaactcaggagtaagatctagacccatcagatctacacccttctgccct




ctctccattgcctgcaccccaccccagccactcaactcctgcttgatacctaggccat




agg





162
223970_at
ggagctcagagatctaagctgctaccatcattctcccagccccaggacactgactctg




tacaggatggggccgtcctcttgcctccactcatcctaatcccccactccagctgatc




aacccggggagtactcagtgaccttagactccgttatggataagaagatcaaggatga




ctcaacagtctagagtacagtccctctcctataagcaagaagctctcgtgtgctagtg




tcaaaagccaaggcagaccgtcctcctgccctgctgggatggctgtcactggctgtgc




ttgtggctatggctgtggttcgtgggatgttcagctggaaaccacctgccactgccag




tgcagtgtggtggactggaccactgcccgctgctgccacctgacctgacagggaggag




gctgagaactcagattgtgaccatgacagtaatgaaaccagggtcccaaccaagaaat




ctaactcaaacgtcccact





163
224428_s_at
gcaaagatatttcagttcacatgtaaggtattgcaaataaattcaggacaattagtat




ggaaacttgatattaaaaactagtctgtggactagcagtacttgtaaatttataaacc




aggcacaaggacaagatagatataagcactatataacaatgataagtgcattaggaga




tgtaactatagcagtagttaacctgacatctctgccagtctagatctgggcaggatcc




tgtgtcagtattccccctcctattgcattaatcaaggtataggtagaggtggaatcta




agtgatgtatgtccaatttacttgcatatgtaaaccattgctgtgccattcaa





164 
224646_x_at
agacggccttgagtctcagtacgagtgtgcgtgagtgtgagccaccttggcaagtgcc




tg





165 
224915_x_at
ggagtgtggtacttctcctagttgcagtcaggcttcatacgctnttgtcctgcccgtt




agagcagccagcgggtacagaatggattttggaagagggagtcaccactggacctcca




aggaagccacgtgcagacatctacaaccttcgatctcctgacgagtttattgaggcca




aaaccaggattgattgaaccaggatgaatgcgggtgaggaagtagaatatatatatac




atataaaattggttgggagccacgtgtaccagtgtgtgttgatcttggcttgattcag




tctgccttgtaacagaaactggcgatggaatatgagaggagccctctggaaagaaaag




gacagaccctgtgctttcatgaaagtgaagatctggctgaaccagttccacaaggtta




ctgtatacatagcctgagtttaaaaggctgtgcccacttcaagaatgtcattgttaga




ctttgaaatttctaactgcctacctgca





166 
225295_at
agggctgtaacagttgctgctagtattagggttccacatcattctaatgtatagtttc




aagtcttaatagacaatctgaattccactacatttatttggctccaacattccttnag




cttgaccagtctaatttaaaatgtgtttgttggaggtcattaacgttacttgtacaat




gctgtcactgtgtgacatccatatgaattttggtatatatcaatcaatcaatcaatca




nnnncattgcattcaatcaatcagctgtgattgattnnnnatgcttagaaatactata




gtaactagatgcagtgtgaattattccattaacaaacaaacaagtcagtggcttaaat




gtgattatggtcctgcaaggtgattcttgctaaaatatctaaacttttgattgattaa




ctgaatcattattaacttaaaaagctggaaaatatcaaatgctgatttntttnncatt




gtcaacagtggtgtgtcattttatgtatgttcctaatgcttatggaactcctcca





167 
225520_at
ggaacgatgagcaccatgccaggactgcccacccggccctgcttttatgacatagatc




ttgataccgaaacagaacaagttaaaggcttgttctaagtggacaaggctctcacagg




acccgatgcagactcctgaaacagactactctttgcctttttgctgcagttggagaag




aaactgaatttgaaaaatgtctgttatgcaatgctggagacatggtgaaataggccaa




agatttatcttcgttcaagatgaattctgttcacagtggagtatggtgttcggcaaaa




ggacctccaccaagactgaaagaaactaatttatttctgtttctgtggagtttccatt




atttctactgcttacactttagaatgtttattttatggggactaagggattangagtg




tgaactaaaaggtaacattttccactctcaagttttctactttgtctttgaactgaa





168 
225541_at
gaaacacaaccaagacgcgaggatcnnnnnctntnnnnnnnnnnnnnctngcaagatg




gcgccgcagaaagacaggaagcccaagaggtcaacctggaggtttaatttggacctta




ctcatccagtagaagatggaatttttgattctggaaattttgagcaatttctacggga




gaaggttaaagtcaatggcaaaactggaaatctcgggaatgttgttcacattgaacgc




ttcaagaataaaatcacagttgtttctgagaaacagttctctaaaaggtatttgaaat




accttaccaagaaataccttaagaagaacaatcttcgtgattggcttcgagtggttgc




atctgacaaggagacctacgaacttcgttacttccagattagtcaagatgaagatgaa




tcagagtcggaggactaggcaaaggctccccttacagggctttgcttatt





169 
225664_at
ggaacccagagctgctgtgtatttcgagcgggcagtttatcttttgctatacttattt




tcaattcaattacaccacgattcaaataattcccctcctaaaaccaaaaaggagggaa




acgtcaactccattgcaattacttatcttcctcttctatctctgttatacgccggggc




atagaatgctcgtatacatctctttaacaaccacaaaccttaagccatgtagatgaag




ttagtgcatcaacgggatacagttccatattgccttaaacctccttgttttagacaca




ctaacatttataccaaattgcagattattctgcagagagggaattgcatgtttgtgtt




gta





170 
225681_at
aattaatattcatcgcacttcttctgtggaaggactttgtgaaggaattggtgctgga




ttagtggatgttgctatctgggttggcacttgttcagattacccaaaaggagatgctt




ctactggatggaattcagtttctcgcatcattattgaagaactaccaaaataaatgct




ttaattttcatttgctacctcttntttattatgccttggaatggttcacttaaatgac




attttaaataagtttatgtatacatctgaatgaaaagcaaagctaaatatgtttacag




accaaagtgtgatttcacactgatttaaatctagcattattcattttgcttcaatcaa




aagtggtttcaatattnttttagttggttagaatactttcttcatagtcacattctct




caacctataatttggaatattgttgtggtatttgttattctcttagtatagcattnta




aaaaaatataaaagctaccaatctttgtacaatttg





171 
225767_at
ccgtgtgagcgatcgcggtgggttcgggccggtgtgacgcgtgcgccggccggccgcc




gaggggctgccgttctgcctccgaccggtcgtgtgtgggttgacttcggaggcgctct




gcctcggaaggaaggaggtgggtggacgggggggcctggtggggttgcgcgcacgcgc




gcaccggccgggcccccngccctgaacgcgaacgctcgaggtggccgcgcgcaggtgt




ttcctcgtaccgcagggccccctcccttccccaggcgtccctcggcgcctctgcgggc




ccgaggaggagcggctggcgggtggggggagtgtgacccaccctcggtgagaaaagcc




ttctctagcgatctgagaggcgtgccttgggggtac





172
225799_at
aaatgactggatggtcgctgctattaagtttcaaattgacattccagacaagcggtgc




ctgagcccgtgcctgtcttcagatcttcacagcacagttcctgggaaggtggagccac




cagcctctccntgaataactgggagatgaaacaggaagctctatgacacacttgatcg




aatatgacagacacngaaaatcacgactcanccccctccagcacctctacctgagccc




gccgatcacagccggaatgcagctgaaagattccctggggcctggaccaaccgcccac




tgtggactctgaggcctctgcatttgcgggtggtctgcctgtgatattttggtcatgg




gctggtctg





173 
225806_at
tcttctcaggtcacttgtacacttggtttcctagtagaagctcacttgccacctctca




ggggggtcccggattgcatccatcacaatcccaaaactngagaggggggaactggagg




gagcaaaacactgatttgatactagtcagtagcttgaaactagttcacctaaagctag




atctcttaaaaccaatttactgaaaacttgatgcttaaagttaatgacttaatgacta




atttgccaaaagctcaattcctattaggtgtgatatatccatttaggtgtcctattca




ttagtcatgctaggatatttcaaggatttatatctattcatccaagagtacactgagn




tattatcagcaacataaatttatcaaatttgcagcactagtaaatgatgagattgatc




ctaccatatggatgtcttt





174 
225835_at
aatgcattactacacttaacactagacaccaggtcgaaaattacaaggttatagtact




tatttcaacaattcttagagatgctagctagtgagaagctaaaaatagattatttatg




ctgaattgtgattatttatgccaaantatatagactaatcattgatgatagcaggaaa




taaataattatgccatggcatttgacagttcattattcctataagaattaaattgaga




tagagagaatggtggtgagagctgattattaacagttactgaaatcaaatatttatag




ttacattattccatagtatataggatccattacattctattatatgcattctgacatt




acatattattaagactatggaaataatttaaagatttaagctctggtggatgattatc




tgctaagtaagtctgaaaatgtaatattagataatactgtaatatacctgtcacacaa




atgatactaatgattaaccttgagtattgcagagctgctttgtacagaggtt





175 
226227_x_at
gtacttctcctagagcagtcaggcttcatacgctattgtcctgcccgttagagcagcc




agcgggtacagaatggattaggaagagggagtcaccactggacctccaaggaagccac




gtgcagacatctacaaccacgatctcctgacgagatattgaggccaaaaccaggattg




attgaaccaggatgaatgcgggtgaggaagtagaatatatatatacatataaaattgg




agggagccacgtgtaccagtgtgtgagatcaggcttgattcagtctgccagtaacaga




aactggcgatggaatatgagaggagccctctggaaagaaaaggacagaccctgtgatt




catgaaagtgaagatctggctgaaccagaccacaaggttactgtatacatagcctgag




ataaaaggctgtgcccacttcaagaatgtcattgttagactagaaatactaactgcct




acctgca





176 
226237_at
gaagaggagcaacatctatgccaaatactgtgcattctacaatggtgctaatctcaga




cctaaatgatactccatttaatttaaaaaagagattaaataattatctatgtgcctgt




ataccatttgagtgctgcacaacatgttaacatattagtgtaaaagcagatgaaacaa




ccacgtgactaaagtctagggattgtgctataatccctatttagttcaaaattaacca




gaattcaccatgtgaaatggaccaaactcatattattgttatgtaaatacagagatta




atgcagtatgacatcccacaggggaaaagaatgtctgtagtgggtgactgttatcaaa




tatatatagaatacaatgaacggtgaacagactggtaacttgatgagacccatgacag




atttgagacttg





177 
226311_at
aaacgacgcaaatctctgagctggggaccacttggagaaccggcttagtaacagtcct




gatcttcgcaagccagcttcttctgcatctgaggggctcctggcgcccagaggaggca




gacagatgtcactagctgagtactaaccgcatgatgagactcagaccaccgctgcact




agaaaatctgcaacagtgtccctgagtcacttctccttagtgggcagactcgtgttag




atagtggaacccagctctctgatttactccattggaaaacccatggaatttcatgtat




aaggattcatagtatataaggatttctgatgattgagtatatacatggtgctcaatag




caacatcttagcagatgaagcagatatgattccactccctcctgtatgacaggtagcc




actatactgaatcaaggtgctgaactcaaatcacaaaattctggcttaccgatacaac




aaccaatac





178 
226360_at
gtcccactgctcacatacttatgtgctgctagtctctactcgaagttcgtgcaggact




aatgatttaaaatgaggtctaaaaaataattactagtcgagactattattattaaaca




gaactgcattactactattatgtaaactctactattgtgaggtctaacnaggcactat




ataaaattattaattatcccatagcacttaaaagagattagtaaagaccagctgtaaa




gattagtaataaaatggtctaagggctattaccaacattaccattataaaaaatgatt




aaaagctagaagacaacttatgtatattctntatatgtatagcagcacatttcattta




tggaaatatgactcagaatatttatttactaatatatttatcttaagccatgtcttat




gagagagtgtgacattgaggaataatcattgaaaatgactaacacaagaccctgtaaa




tacatgataattgcacacagatatacatatttgcagaccaaaaatgatttaaaacaag




ttgtagtcttctatggttttg





179 
226777_at
tataaggtaactattagtcctccatttagcacatataaatcctccaaagaataagtat




catgtgattatatagattacaaaaaaaaagttgaatggcgattattacatggcctata




agcaggtaccttagtagggcagatataggaaaaacaaattagagcaaaacaaatcctc




tacaaatccaaggcaggaaaagtggtggcagagtgactcattctcctgtccctcccat




caggtcaaatcaggaggctgcagtgaatgcctgactagaatgtgtagcagttgancct




gtaactattaaaacttggctataggctgatagcacagtacagattaaagatacagtta




cgtaaacagcaaagtaatatatagtgcttcatccatttatcatgctaggatgctaatt




attcacataccatactatcacagtctgagatagtacacatactcatattggggacgac




a





180
226835_s_at
ggagtgtggtacttctcctagttgcagtcaggcttcatacgctattgtcctgcccgtt




agagcagccagcgggtacagaatggattttggaagagggagtcaccactggacctcca




aggaagccacgtgcagacatctacaaccttcgatctcctgacgagtttattgttggcc




aaaaccaggctttgattgaaccaggatgaatgcgggtgttggaagtag





181
227140_at
ttaccctctatttaaatgattgaaaaacagtgcattgacaatgggttgatatttnctt




taaaagaaaaatataattatgaaagccaagataatctgaagcctgattattttaaaac




tttttatgttctgtggttgatgttgtttgtttgtttgtttctattttgttggttntta




ctttgattttgttttgttttgttttgttttgcatactacatgcagttctttaaccaat




gtctgtttggctaatgtaattaaagttgttaatttatatgagtgcatttcaactatgt




caatggtttcttaatatttattgtgtagaagtactggtaatttnttatttacaatatg




tttaaagagataacagtttgatatgattcatgtgtttatagcagaagttatttatttc




tatggcattccagcggatattttggtgtttgcgaggcatgcagtcaatattngtacag




ttagtggacagtattcagcaacgcctgatagcnctttggcctt





182
227174_at
ctggcacaaccctgacattactaagtggaaatgttaggatttttcggcatcgcatgtt




agaatctctaaaatttaaacattcctgttaaatgactaaggtttgcnttatcaatatg




aattctgaaggccaatatcataccattaactatgaaagcnttaattcctaaaaatagt




tnagagatattcaagcaatgctctcctaatatccatacgcaagtgtgtttatgacaca




aattcactagtctgtttaaaaatgaattctttatattgactggtgttccacatatttc




agtaatttctgttatgagaggacttgaaatagcaaattgccacacagttaactggata




gaccangtacgtggtgatcataaccacttggtactacacccagaaactcaaaattgtc




tttctcctgatgagatatgggtgtccttttgtacgtctaggcctaggtaaccagtgga




gtgattatattagcaaatgtgtttgtatccagagtcttcc





183
227475_at
ccaggcttcgtcttatttctactgtttttgtcgcaacttccattgatttatgtccctt




ccctcccccctaagtacatcagggaacctttccacactataaatgatatgactactgt




ttggggtttctgggcccccatccgtgtacgtatgtggcatttccaggtatgactgagt




gtgagagacatgtcagaggctcttcagtgatttcttgctattgaccgatgcttcactg




tgccaaaagagaaaaaaaatgttgggttngtaattaaattatttatatatttttgaaa




cccgaattgaaaatgttgcaggcaacgggctacagattattagtggttctctaactgt




ggtctccttgggccaagcaatttctttaaaggaaaagttgattatgtatgtggggtgc




caggaccactgccttgaaagca





184
228303_at
tagcccaaccctatcattttcatattatgaaactgagtccaggtaagtgaatctgtcc




aaggtcacccagcaaggtatcagtagccctgagggtaaggactctgataaggctcggg




agggtcctggaaagcctgaggcggcaggaagagtgtgcagagttgagcgtgtctggaa




ggctgatccactgctgggcccacatcaaagcccccatggggagcagacccgactgcac




atggctcttttgctggaagaagagcatngctgcgcagaggactaaaatttcatctggg




aaggcttcttttgactgtcagtagcaggatgtcaccagatgagggtgctatgggacca




cagctgtctttgttcccattgcaactcaaccctgcnggaggccgcctgcatccctgag




agccttctggagcctacagaggagacattggccagccaaaaggaaaggagtggccagg




gtacgacct





185
228653_at
aattatcccttatcattccaaaaatgaaatgctgtgttaaatatctccagggcaaagt




ggtatgttgactgggacaaacgttagaaattgtattgttcattgcacttgttgccctg




ttccccaagcttgtcaatgtttagagatactattcgggttgctaaagccattattcat




agaaaatttctgcccctacagaagtgtgtgcatgggccttggaaaatctacatgtgta




tatctgagtagcgaagcacagattcactctaattgaaagcagcagtttggttngtaaa




tgtaattgcaattgacactttatttccctttcagttattatttnntaaaggacgttat




gagaaggcactatgaaaagcctaattggaatagcattatgaaccatgtaatgcatgcc




catgcacactgtgatttgcaaacatatgtccgctcttcaat





186
228754_at
ggtgggtgtcactacagacatgttctggcgtgttctccgagggatggagcatcctgtt




atatatttgacttcaaattgagatgttggcttcattttttttttttacccaattaatc




tcccaatccctagcaactgtgactctgtatttagcacaagagaaagctgagaatgtgg




gtcttgcctccttccagaaatatgtctggctcatcaggacattttntaaaacttcaaa




atattntaagatattttaaacttttataaaaaaaaaatcaaccaacaagagacttnct




gaggaggaacatttgtatttgaacaagatccttggtgtgtagttcagtcttgcagtat




acaagcnttgtgtataaatgattatgatatgattccctgtnttttgcaggggttnttt




ctcttttgcntttagataaatatgtatatcaatattttaaattcatctttgcnttnta




gaggagtttgtaatcaccttataac





187
228915_at
gaaaaaagctatcagctgtatgttaagagagactcttactaacatgttgtaaatatta




caattcatgaaatgttattgtaagtctgtaacttaattattccctgattagttataca




ggttggtttggaaatttgtgattggcataaacaagtaaaatgtgcccattttatggtt




tccatgcnttgtaatcctaaaaatattaatgtctagttgttctatattataaccacat




ttgcgctctatgcaagcccttggaacagaacatactcatcttcatgtaggacctatga




aaattgtctattntatctatatatttaaagttnctaaaaatgataaaaggttattacg




aattngttgtacaaaatctgtacaaaaatctgatttacatcataatgcaagaattgga




aatttnctatggtagcctagttatttgagcctggtttcaatgtgaga





188
229215_at
gccgcggtggaaacgggcttggagctggccccataangggctngcggcttcctccgac




gccgcccctccccacagcttctcgactgcagtggggcggggggcaccaacacttggag




atttttccggaggggagaggattttctaagggcacagagaatccattttctacacatt




aacttgagctgctggagggacactgctggcaaacggagacctatttttgtacaaagaa




cccttgacctggggcgtaataaagatgacctggacccctgcccccactatctgnngnn




nnnnntgctggccaagatctggacacgagcagtccctgaggggcggggtccctggcgt




gaggcccccgtgacagcccaccctggggtgggtttgtgggcactgctgctctgctagg




gagaagcctgtgtggggcacacctcttcaagggagcgtga





189 
229802_at
gacatgattgtctataatctcgctagccttgtactgtgtgtgcatagcaattacaggg




aagtaatctagctcctgactattatgttgaactatgtcgctgcttntacaaacttgtc




ttgatccaaagcagtcacaatgataaccctgcatatctgggaatcataagtcaactat




gtatctctgtgtgtgtatatatatgtatgtatgtatctattttcaaactgtgatttaa




tatttaaatattcctactgccatttttgtgactgaaaaactacacatgaggaaacgtc




ttagaattttccaatagaggaaaaataacacttgggcaatctgtcatgtttcacaaca




gttctcatttttctcatgatttgtgtagcgtggaatgtgtttgctcaatgtgaagggt




tttcattgctcaatttctctgtgtaa





190 
231766_s_at
ggttccggctaacacattttctaagtcgccagtgctgcttacagtttgaatacatgaa




aatcctgtttctnagatgtttgcgcacgtgcttattaggaaatgagtctgtatggaaa




tctcaccacagataatggttaacgaaccgggtcgacatcacaaaggagggtggagact




cttntactaacttgaatgagacaaaagcagtggtgtcagtttataatcctgatgcatt




tcagtaataatgtagaaaaacattattttaaaaaagttccaacacacagccatgagga




gccnnnnnnnnnntcagttttgaaagaggtgcataataaaactactaaccagaggagt




ctatgccatttt





191 
231832_at
gagtttcaactttaaatgttcactatgtcatttagtgtccanctttacggataggttg




actatctaaataggcatttnagtcattaaaaaaaantctagtcaccaggaggatccct




ataactcaaaataacttgtttgtaaaagaaaatttgtttacttacccattagtaagtt




cctgcatattcattataagatggcaaatcaaacttnctaggatgaagacagcttattn




taagttgtatagtcttagttggtttagggtctcaattttaattaataaaatacttggt




tntatttgcttgtcatttgaattcctgttttaataattttaaaatgagcacaaagaan




gttgaagttcagattaatctcttctgaatgatgtttnttcctctgtgatgagttgatc




tg





192 
231941_s_at
caccaagttacgtcaaagtctcaggagcagctccggtctccatagaggctgggtcagc




agtgggcaaaacaacttcctttgctgggagctctgcttcctcctacagcccctcggaa




nncncnctcaagaacttcaccccttcagagacaccgaccatggacatcncaaccaagg




ggnccttccccaccagcanggaccctcttccttctgtccctccgactacaaccaacag




cagccganngacgaacagcacntnnnnnaagatcacaacctcagcgaagaccacgatg




aagcccc





193 
232151_at
gtacagcatgaaaggcttcctctacaagacactagtcaaagagttgagagctgcggtt




tctaatctttgtccattactcccttactccctatgagactgtggacctgtcacttggc




ctctctggtcttcagttttctcaccagtaaaacaaggaacttgaaccaaatgacctct




agtgttccccttgggtttaaatgtctataaatgttcaatgactagaannnantgcgtt




tttctttattctttttgcntgagaaaagagaatgtgatttaagagtaataatttgaat




accaattatccacattaaaattgtgtcctctatgtgtaaggcatagcacatttagcac




acatacataagcacactaagcaccttacaaatatcctcatttattctttacataatct




tttgaaatngattatgtaatacacacngttttnnaacaatnggtgacttccagctgtt




taaaacaaactacagtatggtgcttgagtactgacttaggaggtcagcatnggtttca




ctaggagcttctcaaagcacgctgcc





194 
232176_at
gggatcactgggagaagccatggcattatcttcaggcaatttagtctgtcccaaataa




aataaatccttgcatgtaaatcattcaagggttatagtaatatttcatatactgaaaa




gtgtctcataggagtcctcttgcacatctaaaaaggctgaacatttaagtatcccgaa




ttttcttgaattgctttccctatagattaattacaattggatttcatcatttaaaaac




catacttgtatatgtagttataatatgtaaggaatacattgtttataaccagtatgta




cttcaaaaatgtgtattgtcaaacatacctaactttcttgcaataaatgcaaaagaaa




ctggaacttgacaattataaatagtaatagtgaagaaaaaatagaaaggttgcaatta




tataggccatgggtggctcaaaactttgaa





195 
232252_at
ggacgatgaagccatcattgctgcttggagacgccggcaagaagaaaccaggaccaag




ctgcagaaaaggagggaggactgagctggggaaaatctgagaacactgaaagaaacca




ctcacgttagcatagggctcagggcacacgttgccaccactcatcgcaggatgaggat




acagagaggatcttccagaggggcagagccaaaatgagagntaccaagcatnngggca




nnngaggtggagtagggaggaggcaaggagggggagaaccatcaatacgaatacgagg




tccgaatgcggaccaactgataccattttctgttgctcagcgccctctaagctttggt




gtttcacttaatgtatttgacagtgttcatcacaggctagagaggtgagcttggaaaa




gcactgtagtttgtcagagactccagtttacatccagaaaggccatgaacataggaca




cgcttctgtctgtagaggcttcatatgagacccagaaagtctatcctatggcaagtct




gacctctcctggcaatgctcagttctgatt





196 
232481_s_at
gaagtccatcctttggtccaaagcatctggaagaggaagaagagaggaatgagaaaga




aggaagtgatgcaaaacatctccaaagaagtcttttggaacaggaaaatcattcacca




ctcacagggtcaaatatgaaatacaaaaccacgaaccaatcaacagaatttttatcct




tccaagatgccagctcattgtacagaaacattttagaaaaagaaagggaacttcagca




actgggaatcacagaatacctaaggaaaaacattgctcagctccagcctgatatggag




gcacattatcctggagcccacgaagagctgaagttaatggaaacattaatgtactcac




gtccaaggaaggtattagtggaacagacaaaaaatgagtattttgaacttaaagctaa




tttacatgctgaacctgactatttagaagtcctggagcagcaaacatagatggagagt




ttgagggattcgcagaaatgctgtgattctgttttaagtccataccttgtaaataagt




gccttacgtgagtgtgtcatcaatcagaacctaagc





197 
234331_s_at
accaagatggtgcaagttccctttgcagatggcgtgggcacacttgatttttattatg




agtgaatgtaatctttctgtattttaccagagttacagcaattacctgaaaagtttcc




taacattttaataatgttagggatttcgttttggttttagttgtcctcaagagacaac




aggttcacagtaatttccatgatgttgggtgtggctaagctggggattggttctgttc




cccctgctcccgtgtagagaaaagctatatttatactgcattctttctcaactttcag




gtaaaacaaactatgatttaaaaaaagaaaaaagaaaagacaggtacattacttcaaa




gagtgctttgctacattntatttaaaccaaaaatcaaataaaataaggaggggggctg




ggtatactttaaacaaaaccagtcctgaaatgctgttatt





198 
235210_s_at
ttcttgtccagctgttcacagttttatttttatatagatggtgatataaatatttcca




aatgcatttgtaaacattctaaatattctcaagtcatgttcaatgtttcctaaacctt




caattttggccaaagtccccaaacacatcattgccacactctgaagtagagaaagaaa




atttaggggccagttctcaaggaacacaggtcctttattntattttaactaagttgaa




gacccactcaaaaagctcttgtggttttatgttcttgacctttcaactggagtcctct




cattcagcaggtggcccgtgagacacagaatac





199 
235976_at
cagtgctgctgtgaactaaagtatgtcatttatgctcaaagtttaattcttcttcttg




ggatattttaaaaatgctactgagattctgctgtaaatatgactagagaatatattgg




gtttgctttatttcataggcttaattctttgtaaatctgaatgaccataatagaaata




catttcttgtggcaagtaattcacagttgtaaagtaaataggaaaaattattttattt




ttattgatgtacattgatagatgccataaatcagtagcaaaaggcacttctaaaggta




agtggtttaagttgcctcaanagagggacaatgtagctttattttacaagaaggcata




gttagatttctatgaaatatttattctgtacagttttatatanttttggttcacaaaa




gtaattattcttgggtgcctttcaa





200 
236894_at
aaagtatattgtgctagcttgtctaagaataaacttnnatactgttgggggagggctg




cacctgtcaagataacctgtcaatgtagtaggaaaacaggaggggacagtaacagaaa




agcacgggaaaagatggcaaggttagttaaaatagaaaagtgctcagttcctcatacc




tgtaatcccagcagtttagggggccaaggaaggtgggtcacttgagcccaagagttca




aggccatcctgggcaatgtggcgaaagtgtctacaaaaaaatacaaaaagaggaagaa




atgatatttcacaagtttgtatcatttgtcat





201
238017_at
caaaaccacgattgtgtgccccattttatnaaanctggnatgtttgaangttgtanta




cangctntncttctntgttgccaattctgnnacnnnnntnnnnannngaaaaaatagt




agaagctattctacaagaaaaaatgtacttgtatatgccaaagttgttatacttcatg




atgatcttaaaagattttgcccctcaagacaggactgcttatagctgactatttgggc




atccttcatgcaatggatggctttgttgaccaaaagaagaagctctaaagaccaactc




tatggctaaggtcatctgatacacagtgttacataatgcgtacttcaatgaagaaaag




tatttttgtctgacagtggaatatatctggagaccacaagtaccactcctattctgtt




atctgg





202 
238021_s_at
agccgttggtctttgaaatttcctgtgatgtgtttcaatctagatgcaaagaacatgg




aaaaatcaaagtgctcgagtggtttaaatatgattgggtattcctgtttatagactat




aatacttttccaattaaaatcctcagttgtcacgcagaagaaggttaagctgtatttg




attgccagttttactgaaaatgcttagtattttacagtatcaccaaatatattttgtt




tagccaaggtatagga





203
238984_at
acccaacaagagctgtgcggctccctgattcctcgccagtgttgctaccgcccttggc




tcttcttgcatggctggctcttgagacccctggaagctgatggaggcaacgtgagaag




cacatggacatccgnccntgagcttgagaggcagaggcctgagttctagttacagccc




cagcagtaccagttgtgtggactgggagggaggcnatcacgtacatactccaagcctc




caagcctgtttccccttctgacacaggatcttttgtggctggtatanagtgggcactc




aataaatgctgtctggtcgtctggctggcatgcctnatgggcctgagaattgaataga




attacagtgatagaagcatgctggtattgtaagtggtttgtaagtgtgaggactaaat




tattattaaatagtaatcacatctaatcttggataaattagtaaaagcaagaatggga




gcagtaaaaacctaagcaacccgaactaaaattttattgaattaattcaatttcttgt




catgtaacacaaccccaga





204
241031_at
gtttctgtttcagtcacaaattagggttattgtgatgtgtatttatgatgaccnttga




acaaatgtgaagaatactgtgaattctatgactttatcaaaatcagccacatccagga




gcttgcagttgttgaccaaatgaatgatgacatagagtagttcagatctatcatgtgc




tcttctatctaatcagtcaatatttccttggccctcaagccaacattcattnttatgt




ataaccttcttcatgattttgaaattttgatagggtaactgctaatgagttcacaaat




gtagcactttaaaaggaaaataaatggagagtgaaaacaacttggctacgtataattg




tgggt





205
37892_at
caacccattttgtgccacatgcaagttttgaataaggatggtatagaaaacaacgctg




catatacaggtaccatttaggnannancngatgcctttntgggggcagaatcacatgg




caaaagctttgaaaatcataaagatataagttggtgtggctaagatggaaacagggct




gattcttgattcccaattctcaactctccattcctatttgaatactaggtgctgtaga




aaacaaaaaaagaaaaatatatattcataaaaaatatggtgctcattctcatccatcc




aggatgtactaaaacagtgtgataataaattgtaattattagtgtacagactatactg




ttatctgtgtccataccaaaacttgcacgtgtccctgaattcc





206
60474_at
acagacttggcaagggaccccctggactgagccagtagctgccatctggaaattcctc




attnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnctcccaggnacccgctgaatact




gaggccagcttaaagctcagaagtggataggcatttggaaaatctggacacatcataa




agaacttgatttgaaatgattctatagaaacaagtgctaagtgtnaccgtattatact




tgatgaggtcatactcagtcctatactcagactattatatagaacctagtcagacttt




aagattataactggtcctacattaaaataatgatctcgangtcagatatacctgatgc




tgctgagaacatctctgcctaannnnnnnnnnnnnnnncttcagttcaacatgcttcc




ttagcttttcatagttgtctgacatttccatgaaa









BIBLIOGRAPHY



  • Affymetrix. GeneChip expression data analysis fundamentals. Affymetrix, Santa Clara, Calif. USA, 2001.

  • Alon et al., Proc. Natl. Acad. Sci. USA: 96, 6745-6750, June 1999

  • Ausubel, F. et al., “Current Protocols in Molecular Biology”, John Wiley & Sons, (1998)

  • Bonner et al (1973) J. Mol. Biol. 81:123

  • DeRisi, et al., Nature Genetics 14:457-460 (1996)

  • Germer et al., Genome Res. 10:258-266 (2000)

  • Guo et al., Nucleic Acids Res. 22:5456-5465 (1994)

  • Heid et al., Genome Res. 6:986-994 (1996)

  • Hubbell E. W., W. M. Liu, and R. Mei. Robust estimators for expression analysis. Bioinformatics, 18:1585-1592, 2002.

  • Irizarry R. W., B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed. Summaries of affymetrix genechip probe level data. Nucleic Acid Research, 31, 2003.

  • Kraus, M. and Aaronson, S., 1991. Methods Enzymol., 200:546-556

  • Maskos and Southern, Nuc. Acids Res. 20:1679-84, 1992

  • Moore et al., BBA, 1402:239-249, 1988

  • Nielsen (1999) Curr. Opin. Biotechnol. 10:71-75

  • Nielsen et al. (1991) Science 254: 1497-1500

  • Pease et al., Proc. Natl. Acad. Sci. USA 91(11):5022-5026 (1994)

  • Pevzner et al., J. Biomol. Struc. & Dyn. 9:399-410, 1991

  • Schena, et al. Science 270:467-470 (1995)

  • Smith et al., Science 258:1122-1126 (1992)

  • Smyth G. K. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer, New York, 2005.

  • Smyth G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1):Article 3, 2004.

  • T. Sano and C. R. Cantor, Bio/Technology 9:1378-81 (1991)

  • Urdea et al., Nucleic Acids Symp. Ser., 24:197-200 (1991)

  • Wedemeyer et al., Clinical Chemistry 48:9 1398-1405, 2002)

  • Weissleder et al., Nature Medicine 6:351-355, 2000


Claims
  • 1. A method of screening for the onset or predisposition to the onset of a large intestine neoplasm in an individual, said method comprising measuring the level of expression of one or more genes or transcripts selected from: (i) the gene, genes or transcripts detected by Affymetrix probeset ID: 227475_at(ii) FOXQ1in a biological sample from said individual wherein a higher level of expression of the genes or transcripts of group (i) or group (ii) relative to control levels is indicative of a neoplastic large intestine cell or a cell predisposed to the onset of a neoplastic state, wherein control levels are expression levels of the genes or transcripts of group (i) and/or group (ii) in a non-neoplastic cell.
  • 2.-6. (canceled)
  • 7. The method according to claim 1, wherein said neoplastic cell is an adenoma or an adenocarcinoma.
  • 8.-23. (canceled)
  • 24. The method according to claim 1, wherein said cell is a colorectal cell.
  • 25. The method according to claim 1, wherein said biological sample is a fecal sample, enema wash, surgical resection, tissue biopsy or blood sample.
  • 26. The method according to claim 1, wherein said level of expression is mRNA expression or protein expression.
  • 27. The method according to claim 1, wherein said individual is a human.
  • 28.-30. (canceled)
Provisional Applications (1)
Number Date Country
60982114 Oct 2007 US
Divisions (1)
Number Date Country
Parent 12739580 Jul 2010 US
Child 14540583 US