1. Field of the Invention
The present invention relates to a method of die casting spheroidal graphite cast iron.
2. Description of the Related Art
Spheroidal graphite cast iron is also called “ductile cast iron” and “nodular cast iron” and contains graphite in a spheroidal form, so is remarkably higher in strength and ductility compared with another cast iron with no spheroidal graphite and features a higher strength and toughness comparable with cast steel.
In the past, spheroidal graphite cast iron had been cast by sand molds, but due to the gradual cooling of the molten metal, the crystallized spheroidal graphite became coarse and there were limits to improvement of the mechanical properties. Further, castings made by sand molds are limited in the accuracy of their shape and dimensions.
It has therefore been demanded to obtain spheroidal graphite cast iron products improved in mechanical properties or accuracy of shape and dimensions exceeding the limits due to such sand mold casting. To meet with this demand, experiments have been conducted on die casting spheroidal graphite cast iron. If using die casting, a far faster cooling rate can be obtained compared with sand mold casting, so the spheroidal graphite finely crystallizes and the cast structure as a whole also becomes finer, so it is possible to improve the strength and ductility and also improve the accuracy of shape and dimensions.
With die casting, however, formation of chill crystals (rapidly cooled structure made of cementite) was unavoidable due to the fast cooling rate. If chill crystals are formed, the hardness of the casting becomes higher, but the toughness ends up being deteriorated and in the final analysis excellent mechanical properties cannot be obtained by die casting. Therefore, for example, as shown by the method disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2000-288716, post-treatment such as heat treating the casting to break down the cementite forming the chill crystals into ferrite and carbon etc. has been necessary.
Another important point has been that in the conventional method, there has been the major problem that formation of internal defects such as shrinkage cavities was unavoidable both when using sand molds or dies and therefore the fatigue strength declined. In general, castings are prevented from the formation of shrinkage cavities by more slowly solidifying the feeder than the product section and supplementing molten metal from the feeder to the product section.
Here, since cast iron expands in volume due to graphite crystallization at the time of solidification, the method has been proposed of constraining this expansion of volume to cause the generation of internal pressure in the cavity and using this internal pressure to prevent the formation of shrinkage cavities. Specifically, the strength of the sand mold has been increased or the sand mold backed up by a die (back metal shell) to constrain expansion of volume.
However, in these methods, since a feeder is used, the expansion of volume by the crystallization of graphite ends up being eased by the flow of molten metal to the not yet solidified feeder, so in fact not that much of an effect of generation of internal pressure due to the constraint of expansion is obtained. Further, with the back metal shell method, formation of the sand mold is difficult and the sand mold layer has to be made thicker, so cannot be effectively backed up by a die. The sand mold part ends up moving so again a sufficient effect of generation of internal pressure due to the constraint of expansion cannot be obtained.
On the other hand, as a non-feeder design, the product section and gate have been optimized in shape, but no measure has been taken to prevent the formation of casting defects by constraining the expansion of volume.
An object of the present invention is to provide a method of die casting of spheroidal graphite cast iron able to prevent formation of chill crystals (cementite) and thereby allow crystallization of fine spheroidal graphite and simultaneously to prevent the formation of internal defects.
To attain the above object, there is provided a method of die-casting spheroidal graphite cast iron, comprised of the steps of preparing a die formed with a heat insulation layer at inside walls of a cavity, filling molten metal having a composition of the spheroidal graphite cast iron through a runner into the cavity, closing the runner so as to seal the cavity right before the molten metal in the cavity starts to solidify, and allowing the molten metal to solidify by the action of the inside pressure caused by crystallization of the spheroidal graphite in the sealed cavity.
In the method of the present invention, a heat insulation layer provided at the inside walls of the die cavity prevents excess rapid cooling to prevent formation of chill crystals while allowing the crystallization of spheroidal graphite. Further, the runner is closed right before the molten metal in the cavity starts to solidify to seal the cavity and thereby constrain the expansion of volume due to the crystallization of the spheroidal graphite, thereby causing the generation of internal pressure in the cavity so that the solidification of the molten metal in the cavity proceeds under the action of this internal pressure to prevent the formation of casting defects. Due to this, it is possible to cast spheroidal graphite cast iron having an excellent spheroidal structure (preferably a spheroidal graphite rate of at least 85%).
The heat insulation layer preferably has a heat conductivity of not more than 0.25 W/mK and a thickness of not more than 600 μm. Further, the heat insulation layer preferably is substantially comprised of hollow ceramic particles, solid ceramic particles, and a binder.
These and other objects and features of the present invention will become clearer from the following description of the preferred embodiments given with reference to the attached drawings, wherein:
Preferred embodiments of the present invention will be described in detail below while referring to the attached figures.
Referring to
The cast iron molten metal 14 in the cavity crystallizes in solid phase along with the elapse of time from the solidification start time t1. In the process, spheroidal graphite 16 of a lower density than the metal phase is crystallized, whereby the metal tries to expand in volume as shown by the four solid arrows E, but since the cavity 10C is sealed, the expansion of volume is constrained and internal pressure is generated in the molten metal 14. The die 10 is provided with enough rigidity to sufficiently hold this internal pressure. The clamping force is also far greater than the internal pressure. Therefore, the internal pressure does not cause die movement, and the metal solidifies in the state with the internal pressure held. At the time t2, the entire molten metal in the cavity 10C finishes solidifying. Note that during the period from the solidification start t1 to the solidification end t2, the temperature of the molten metal in the cavity remains substantially constant as illustrated in
In this way, in the present invention, (1) a heat insulation layer is provided at the inner walls of the die cavity to control the cooling rate and stably ensure the crystallization of spheroidal graphite and (2) the internal pressure caused by constraining the expansion of volume due to the crystallization of the spheroidal graphite by sealing the die cavity is made to continually act on the molten metal until the solidification finishes.
Due to this, spheroidal graphite finer than with sand mold casting is allowed to crystallize and, simultaneously, the formation of casting defects is effectively suppressed due to the solidification under the action of the internal pressure so as to enable the production of spheroidal graphite cast iron superior in strength and toughness.
Spheroidal graphite cast iron was cast by the die/constraint casting of the present invention. Further, for comparison, castings made by sand mold casting and non-constraint die casting and HIP castings made from these under pressure were prepared. The composition of the castings was Fe-3.6C-3.0Si-0.25Mn-xMg (wt %). Here, the amount “x” of addition of the spheroidization agent Mg was made the amount most promoting spheroidization, that is, 0.025 wt % in the case of die casting and 0.04 wt % in the case of sand mold casting. The impurities were made less than 0.03 wt % of phosphorus and less than 0.01 wt % of sulfur. The pouring temperature into the casting mold was made 1400° C. The casting conditions of the example of the present invention and comparative examples are shown together in Table 1.
In Table 1, Sample (T/P) No. 1 is an example of the present invention and shows the die structure used in
Sample Nos. 2 to 5 are comparative examples. Each uses a casting design using a feeder. Sample No. 2 and Sample No. 4 are cast by open systems by a sand mold Y-block shown in
Here, in the die structure of the example of the present invention (
Heat Insulation Coating
Composition: Hollow mullite powder (particle size 50 μm)+silica powder (solid, particle size of not more than 10 μm)
During the casting according to the present invention, as shown in
As shown in
As opposed to this, the inside of the cavity given the heat insulation coating (in the figure, “T/P”) is held at a higher temperature than the solidification temperature (about 1150° C.) even after the runner finishes solidifying and is maintained in a molten state. That is, right after the runner finishes solidifying, the solidification starts in the cavity (left end in horizontal zone of T/P temperature curve in figure). Due to this, in the cavity, the entire process of solidification proceeds in the sealed state with the runner closed.
The cylindrical sample obtained by the die/constraint casting according to the present invention is illustrated by a macrosketch of the horizontal cross-section of
The thus prepared sample of the example of the present invention and samples of the comparative examples were cut, then subjected to a fatigue test. The test conditions were as follows:
Fatigue Test Conditions
Test system: Rotating bending fatigue test
As shown in
The fracture surface of a sample was observed after the above fatigue test.
As illustrated in
In the case of the die/constraint casting by the present invention, as shown in
Note that even when applying HIP treatment to an open-cast product obtained by a sand mold or die, the presence of spheroidal graphite particles of a size of about 30 μm at the fracture origin is observed, such as found in the inventive example shown in
In this way, due to the die/constraint casting according to the present invention, no large casting defect of 50 μm or more which would induce fatigue cracks is formed. Due to this, at least the formation of a fatigue crack is suppressed and the fatigue strength (fatigue limit) is greatly improved. Further, if considering the fracture mechanism of the fatigue crack proceeding through three stages of crack formation, crack growth, and unstable fracture, the absence of large casting defects also means an improvement of the resistance to crack growth and final unstable fracture and improves the fatigue characteristics as a whole.
The present invention casting (Sample No. 1) exhibits an equivalent fatigue characteristic (fatigue curve) as the comparative examples (Sample Nos. 4 and 5) of open castings by a sand mold or die with HIP treatment, so it may be considered that an effect of reduction of casting defects substantially equal to the effect of reduction of casting defects by HIP treatment was obtained by the die/constraint casting of the present invention.
Preferable Modes of Heat Insulation Layer Material
To stably obtain the effects of crystallization of spheroidal graphite and reduction of casting defects due to the die/constraint casting of the present invention, a heat insulation layer provided at the inside walls of the die cavity is extremely important.
In general, in die casting of cast iron, diatomaceous earth or another clay mineral is used as a mold coating. This clay mineral-based mold coating is used to suppress the heat shock or wear due to direct contact with the high temperature molten metal so as to improve the durability of the die. However, with such a conventional mold coating, the heat insulation property is low and even if coated to the usual thickness of 1 to 2 mm, it is not possible to stably prevent the formation of chill crystals (cementite).
As opposed to this, the hollow mullite used in this example is provided with an extremely high insulating property and is desirable as a material used for the heat insulation layer of the present invention. In practice, solid silica is blended into hollow mullite to form a coating and prevent precipitation and a binder (bentonite, water glass, etc.) is added to this for use.
A casting experiment was performed using heat insulation layers (Nos. 11 to 14) changed in ratio of hollow mullite powder and silica powder as shown in Table 2. For comparison, a similar casting experiment was performed for the case of no heat insulation layer (Comparison A) and the case of conventional coating of a mold coating (Comparison B).
As shown in
As shown in
Summarizing the effects of the invention, according to the present invention, there is provided a method of die casting of a spheroidal graphite cast iron which can prevent formation of chill crystals (cementite) to cause crystallization of fine spheroidal graphite and simultaneously prevent internal defects.
While the invention has been described with reference to specific embodiments chosen for purpose of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2003-017834 | Jan 2003 | JP | national |
Number | Date | Country |
---|---|---|
A 56-086645 | Jul 1981 | JP |
59-110455 | Jun 1984 | JP |
A 02-165859 | Jun 1990 | JP |
A 09-239513 | Sep 1997 | JP |
A 09-239514 | Sep 1997 | JP |
A 2000-45011 | Feb 2000 | JP |
A 2000-288716 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040250927 A1 | Dec 2004 | US |