1. Field of the Invention
The present invention relates to a method of driving a display panel including light-emitting elements arranged in a matrix.
2. Description of the Related Art
Recently, a plasma display panel (referred to as “PDP”) in which a number of discharge cells are arranged in a matrix has drawn attention as a two-dimensional image display panel. The PDP is directly driven by a digital image signal and the number of gradation levels (the number of luminance levels, gradation sequence) expressable by the PDP is decided by the number of bits of each pixel data included in the digital image signal.
A subfield method is known as a gradation sequence display method for the PDP. The subfield method divides a display period of one field into a plurality of subfields, and drives each discharge cell for each subfield. Each subfield includes an address period for setting each pixel in a lighting mode or a light extinguishing mode in accordance with the image data (pixel data) and an illumination maintaining (sustaining) period for only lighting a pixel in the lighting mode for a period determined by weighting of the subfield concerned. In other words, whether or not a discharge cell should be illuminated within each subfield (address period) is decided for each subfield, and only the discharge cell in the lighting mode is illuminated for a period (i.e., an illumination sustaining period) allocated to this subfield. Accordingly, one field may include one or more subfields in an illumination state and one or more subfields in a light extinguishment (extinction) state. Therefore, an intermediate (gray) luminance is created or perceived for that one field in accordance with a sum of the illumination periods of all the subfields in that one field.
One conventional method of driving a PDP is disclosed in Japanese Patent Kokai (Laid-Open Publication) No. 2001-154630.
By sampling an image signal, for example, pixel data of 8 bits can be obtained. The pixel data then undergoes a multi-gradation (grayscale) process, so that multi-gradation image data (pixel data) PDS is generated, of which the bit number is reduced to 4 bits, while maintaining the present number of gradation levels. The multi-gradation image data PDS is converted into the pixel driving data GD including first to twelfth bits in accordance with the conversion table shown in
First, in the all-reset stage RC of the subfield SF1, a reset pulse RPX having a negative polarity is applied to row electrodes X1 to Xn. In parallel with application of such a reset pulse RPX, a reset pulse RPY having a positive polarity is applied to row electrodes Y1 to Yn. As a result of application of the reset pulses RPx and RPY, all discharge cells of the PDP are reset-discharged, so that a wall electric charge of a certain amount is equally formed within each of the discharge cells. All the discharge cells are therefore initialized into the lighting mode (illumination mode).
Next, at the address stage Wc of each subfield, a pixel data pulse DP having a voltage corresponding to a logic level of a pixel driving data bit DB (DB1 to DB12) is generated. The pixel driving data bits DB1 to DB12 correspond to the first to twelfth bits of the pixel driving data GD. For example, at the address stage WC of the subfield SF1, the pixel driving data bit DB1 is first converted to a pixel data pulse having a voltage corresponding to a logic level of the pixel driving data bit DB1. Then, a pixel datapulse group DP11 having m pixel data pulses for the first display line is prepared, a pixel data pulse group DP12 having m pixel data pulses for the second display line is prepared, . . . and a pixel data pulse group DP1n having m pixel data pulses for the nth display line is prepared. These pixel data pulse groups DP11 to DP1n are sequentially applied to the column electrodes D1 to Dm.
In the address stage Wc, a scan pulse SP with a negative polarity is sequentially applied to the row electrodes Y1 to Yn at the same timing as the application timing of the pixel data pulse groups DP. As a result, discharge (selected light-extinction discharge) occurs only in those discharge cells which are located at crossings of row electrodes to which the scan pulse SP is applied and column electrodes to which the high voltage pixel data pulse is applied, and the wall electric charge remaining in these discharge cells is eliminated.
According to such selected light-extinction discharge, the selected discharge cells shift from the light emitting mode to the light extinguishing mode. On the other hand, other discharge cells, in which the selected light-extinction discharge does not occur, maintain the initial condition (i.e., the light emitting mode) because the discharge cells are initialized to the light emitting mode at the all-reset stage Rc.
At the illumination sustaining stage Ic of each subfield, as shown in
The discharge cells in which the wall electric charge remains, namely, the discharge cells set to the lighting mode at the address stage Wc only perform the illumination-sustaining-discharge upon application of the illumination-sustaining pulses IPX and IPY. Accordingly, each of the discharge cells set to the lighting mode maintains the light emitting condition (light emission sustaining discharge) for a period corresponding to the numbers of the discharging, which is allocated to the subfield concerned.
A light extinction (elimination) stage E is executed only in the subfield SF12 at the rear end of the field. At the light extinction stage E, a light extinction (elimination) pulse AP with a positive polarity is generated and applied to the column electrodes D1 to Dm. In parallel with the application of the light extinction pulse AP, another light extinction pulse EP with a negative polarity is generated and applied to each of the row electrodes Y1 to Yn. The simultaneous application of the light extinction pulses AP and EP triggers the light extinction discharge within all the discharge cells in the PDP, so that the wall electric charges remaining in the discharge cells are all eliminated. As a result of such electric-charge-elimination discharge, all the discharge cells in the PDP are set to the light extinction mode.
In the above described driving method, the selected discharge for light extinguishment in the following manner takes place at a particular subfield; only discharge cells in the light emitting state in the immediately preceding subfield are selected for light extinguishing discharge in the address stage. Thus, if the N (e.g., twelve) subfields are sequentially lit from the front (first) subfield, N+1 (thirteen)-gradation-level display is created. By summing up the numbers of the light emission sustaining discharges in the subfields, the grayscale image having luminance in accordance with the input image signal is created.
Since a characteristic of a human vision has a logarithmic property, human eyes are sensitive to variations in the gradation sequence in a dark image. In the above described PDP driving method, the luminance difference between the first gradation level, which represents the lowest luminance 0, and the second gradation level, which represents the second lowest luminance, is given (determined) by the luminance of the light obtained from the light emission sustaining discharge. Since it is difficult to decrease the luminance of the discharge to a desired level, it is not possible to create intermediate luminance which faithfully represents the input image signal when a relatively dark image (low luminance image) is displayed.
An object of the present invention is to provide a display panel driving method that can create a better gradation sequence in a low luminance image.
According to one aspect of the present invention, there is provided an improved method of driving a display panel to display a multi-gradation-level image based on an input image signal. The display panel is driven for each of a plurality of subfields. These subfields define one field of the input image signal. The display panel includes a front substrate and a back substrate which face each other across a discharge space. The display panel also includes a plurality of row electrode pairs arranged on an inner surface of the front substrate. Each row electrode has a first portion and a second portion. The display panel also includes a plurality of column electrodes arranged on an inner surface of the back substrate such that the column electrodes extend perpendicularly to the row electrode pairs and define a plurality of crossing portions of the column electrodes and row electrode pairs. A plurality of light emission elements are formed at the crossing portions of the column electrodes and row electrode pairs. Each light emission element is defined by a first discharge cell and a second discharge cell. The first discharge cell has the first portion of one row electrode and the first portion of a mating row electrode in the same row electrode pair such that these two first portions face each other over a first discharge gap in the discharge space. The second discharge cell has the second portion of one electrode in the row electrode pair belonging to the mating first discharge cell, and the second portion of one electrode belonging to an adjacent row electrode pair such that these two second portions faces each other over a second discharge gap in the discharge space. The second discharge cell also has a light-absorbing layer formed on the front substrate side. Each subfield includes an address stage for applying a scanning pulse to one electrode in each of the row electrode pairs sequentially, and applying a pixel data pulse derived from the input image signal to the column electrodes at the same timing as the scanning pulse to selectively trigger address discharge within the second discharge cell of each light emission element so as to set the second discharge cell into either a light emission condition or a light extinction condition. Wall charge exists in the second discharge cell if the second discharge cell is set to the light emission condition. Wall charge does not exist in the second discharge cell if the second discharge cell is set to the light extinction condition. Light leaking to the first discharge cell from the second discharge cell upon the address discharge is used to express low-luminance gradation.
According to a second aspect of the present invention, there is provided another improved method of driving a display panel to display a multi-gradation-level image based on an input image signal by driving the display panel for each of a plurality of subfields. These subfields defines one field of the input image signal. The display panel includes a front substrate and a back substrate which face each other across a discharge space. The display panel also includes a plurality of row electrode pairs arranged on an inner surface of the front substrate, and a plurality of column electrodes arranged on an inner surface of the back substrate. The column electrodes extend perpendicularly to the row electrode pairs and define a plurality of crossing portions of the column electrodes and row electrode pairs. A plurality of light emission elements are formed at the crossing portions of the column electrodes and row electrode pairs. Each light emission element is defined by a first discharge cell and a second discharge cell. The second discharge cell has a light-absorbing layer formed on the front substrate side. Each subfield includes an address stage for applying a scanning pulse to one electrode in each of the row electrode pairs sequentially, and applying a pixel data pulse derived from the input image signal to the column electrodes at the same timing as the scanning pulse to selectively trigger address discharge within the second discharge cell of each light emission element so as to set the second discharge cell into either a light emission condition or a light extinction condition. Wall charge exists in the second discharge cell if the second discharge cell is set to the light emission condition, and no wall charge exists in the second discharge cell if the second discharge cell is set to the light extinction condition. Light leaking to the first discharge cell from the second discharge cell upon the address discharge is used to express low-luminance gradation.
According to a third aspect of the present invention, there is provided still another method of driving a display panel to display a multi-gradation-level image based on an input image signal by driving the display panel for each of a plurality of subfields. These subfields define one field of the input image signal. The display panel includes a front substrate and a back substrate which face each other across a discharge space, a plurality of row electrode pairs arranged on an inner surface of the front substrate, and a plurality of column electrodes arranged on an inner surface of the back substrate. The column electrodes extend perpendicularly to the row electrode pairs and define a plurality of crossing portions of the column electrodes and row electrode pairs. A plurality of light emission elements are formed at the crossing portions of the column electrodes and row electrode pairs. Each light emission element is defined by a first discharge cell and a second discharge cell. The second discharge cell has alight-absorbing layer formed on the front substrate side. Each subfield includes an address stage for applying a scanning pulse to one electrode in each of the row electrode pairs sequentially, and applying a pixel data pulse derived from the input image signal to the column electrodes at the same timing as the scanning pulse to selectively trigger address discharge within the second discharge cell of each light emission element so as to set the second discharge cell into either a light emission condition or a light extinction condition. Wall charge exists in the second discharge cell if the second discharge cell is set to the light emission condition, and no wall charge exists in the second discharge cell if the second discharge cell is set to the light extinction condition. The subfield also includes a priming stage for applying a priming pulse to two electrodes in each row electrode pair so as to trigger priming discharge in only those second discharge cells which are set to the light emission condition. Light leaking to the first discharge cell from the second discharge cell upon at least one of the address discharge and the priming discharge is used to express low-luminance gradation.
Embodiments according to the present invention will be described with reference to the accompanying drawings.
Referring first to
The display apparatus 49 shown in
The PDP 50 includes column electrodes D1 to Dm, which extend in the vertical direction of the display panel. Each column electrode D has a strip shape. The PDP 50 also includes row electrodes X2 to Xn and row electrodes Y1 to Yn, which extend in the horizontal direction of the display panel. Each row electrode has a strip shape. The row electrodes are orthogonal to the column electrodes. The row electrodes X2 to Xn and the row electrodes Y1 to Yn are arranged alternately. Each pair of row electrodes form one display line of the PDP 50. In the illustrated embodiment, each of the row electrode pairs X2 and Y2 to Xn and Yn forms one display line of the PDP 50. In
As shown in
As shown in
Referring back to
In the height direction (right and left directions in
In this manner, each of the pixel cells PC1,1 to PCn−1′m of the PDP 50 includes the display discharge cell C1 and the control discharge cell C2, and the discharge space of the display discharge cell C1 is communicated with the discharge space of the control discharge cell C2.
The odd-number X electrode driver 51 supplies drive pulses (will be described) to the odd-number electrodes X3, X5, . . . , Xn−2, and Xn of the PDP 50 (see
The drive control circuit 56 first converts each pixel of the input image signal into, for example, pixel data of 8 bits which represent luminance levels, and applies an error diffusion processing and a dither processing to the pixel data. For instance, in the error diffusion processing, the upper six bits of the pixel data is defined as display data, and the remaining lower two bits thereof is defined as error data. Then, the error data of the pixel data is weighted based on the surrounding pixels, and the result is reflected on the display data of the surrounding pixels. According to such operation, the pseudo luminance for the lower two bits in an original pixel is expressed by the surrounding pixels. Therefore, the display data for six bits (not eight bits) can express the luminance gradation sequence equivalent to the 8-bit pixel data. In this manner, the error-diffusion-processed pixel data of six bits is obtained by the error diffusion processing. Then, the dither processing is applied to the 6-bit error-diffusion-processed pixel data. In the dither processing, a plurality of pixels abutting with each other are defined as one pixel unit, and dither coefficients having different coefficient values are allocated to the error diffusion processed pixel data of the pixels within this one pixel unit, respectively, and the resulting data are added to each other to obtain the dither-added pixel data. As a result of such addition of the dither coefficients, if viewed as the pixel unit, the upper four bits of the dither-added pixel data is sufficient to express the luminance equivalent to the eight-bit pixel data. Thus, the drive control circuit 56 uses the upper four bits of the dither-added pixel data as the multi-gradation (grayscale) image data PDS, and converts the 4-bit multi-gradation image data PDS into the 15-bit pixel driving data GD having the first to fifteenth bits in accordance with a conversion table shown in
DB1: group of first bits of the pixel driving data GD1,1 to GD(n−1),m
DB2: group of second bits of the pixel driving data GD1,1 to GD(n−1),m
DB3: group of third bits of the pixel driving data GD1,1 to GD(n−1),m
DB4: group of fourth bits of the pixel driving data GD1,1 to GD(n−1),m
DB5: group of fifth bits of the pixel driving data GD1,1 to GD(n−1),m
DB6: group of sixth bits of the pixel driving data GD1,1 to GD(n−1),m
DB7: group of seventh bits of the pixel driving data GD1,1 to GD(n−1),m
DB8: group of eighth bits of the pixel driving data GD1,1 to GD(n−1),m
DB9: group of ninth bits of the pixel driving data GD1,1 to GD(n−1),m
DB10: group of tenth bits of the pixel driving data GD1,1 to GD(n−1),m
DB11: group of eleventh bits of the pixel driving data GD1,1 to GD(n−1),m
DB12: group of twelfth bits of the pixel driving data GD1,1 to GD(n−1),m
DB13: group of thirteen bits of the pixel driving data GD1,1 to GD(n−1),m
DB14: group of fourteen bits of the pixel driving data GD1,1 to GD(n−1),m and
DB15: group of fifteen bits of the pixel driving data GD1,1 to GD(n−1),m.
The pixel driving data GD1,1 to GD(n−1),m define one screen, and the drive control circuit 56 divides (groups) the pixel driving data GD1,1 to GD(n−1),m in terms of bit-digit. The drive control circuit 56 performs this grouping for every screen.
The pixel driving data bit groups DB1 to DB15 correspond to the subfields SF1 to SF15, respectively. The drive control circuit 56 supplies m pixel driving data bit groups DB to the address driver 55 for one display line at a time. The pixel driving data bit groups are supplied for each of the subfields SF1 to SF15. The pixel driving data bit groups to be supplied are selected depending upon the subfield SF concerned.
In accordance with a light emitting driving sequence shown in
In the light emission driving sequence shown in
In the first subfield SF1, the odd row rest stage ROD, the odd row address stage WOOD, the even row rest stage REV, the even row address stage WOEV, and the priming stage P are sequentially performed. In each of the subfields SF2 to SF15, the odd row address stage WIOD, the even row address stage WIEV, the selective light extinction assisting stage CA, the priming stage P1, the light emission sustaining stage I, and the electric charge movement stage MR are sequentially performed. In the last subfield SF15 only, the light extinction stage E is performed after the electric charge movement stage MR.
First, in the odd row reset stage ROD of the subfield SF1, the odd Y electrode driver 53 generates the first reset pulse RPY1 having a negative polarity and supplies the first rest pulse to the odd row electrodes Y1, Y3, Y5, . . . , and Yn simultaneously. The first reset pulse RPY1 has gentle rise and fall edges, as compared with a light emission sustaining pulse (will be described). In the meanwhile, the address driver 55 generates a reset pulse RPD having a positive polarity and supplies the rest pulse RPD to the column electrodes D1 to Dn simultaneously. In response to the first reset pulse RPY1 and reset pulse RPD, first reset discharge (writing discharge) is caused in the control discharge cell C2 of each of the pixel cells PC1,1 to PC1,m, PC3,1, to PC3,m, . . . , and PCn−2,1 to PCn−2,m which belong to the odd display lines. In other words, the first reset discharge occurs between the row electrode Y and the column electrode D in the control discharge cell C2 (
As described above, in the odd row rest stage ROD, the wall charge is simultaneously eliminated from the control discharge cells C2 of the pixel cells PC1,1 to PC1,m, PC3,1 to PC3,m, . . . , and PCn−2,1 to PCn−2,m which belong to the odd display lines of the PDP 50 so that all the pixel cells PC on the odd display lines are initialized into the light extinct condition.
In the odd row addressing stage WOOD of the subfield SF1, the odd Y electrode driver 53 supplies scanning pulses SP having a negative polarity to the odd row electrodes Y1, Y3, Y5, . . . , and Yn of the PDP 50 sequentially. In the meanwhile, the address driver 55 finds those data bits in the pixel drive data bit group DB1 of the subfield SF1 which correspond to the odd display lines, and converts such data bits into pixel data pulses DP having a pulse voltage corresponding to the logic levels of these data bits. For example, the address driver 55 converts a pixel drive data bit having a logic level 1 into a high-voltage pixel data pulse PD of positive polarity, and converts a pixel drive data bit having a logic level 0 into a low-voltage (zero volt) pixel data pulse PD. The address driver 55 then supplies m pixel data pulses DP to the column electrodes D1 to Dm at a time for each display line, in synchronization with the application timing of the scanning pulses SP. In short, the address driver 55 converts the pixel drive data bits for the odd display lines DB1,1 to DB1,m, DB3,1 to DB3,m, . . . , and DBn−2,1 to DBn−2,m into the pixel data pulses DP1,1 to DP1,m, DP3,1 to DP3,m, . . . , and DPn−2,1 to DPn−2,m, and applies the pixel data pulses to the column electrodes D1 to Dm for each of the display lines.
Write address discharge is caused between the column electrode D and bus electrode Yb in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP and the high-voltage pixel data pulse DP are both applied. Accordingly, wall charge is created in the control discharge cell C2. On the other hand, the write address discharge is not caused in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP is applied and the high-voltage pixel data pulse DP is not applied. Accordingly, no wall charge is created in such control discharge cell C2. In the meantime, in order to prevent accidental (unintended) discharge from occurring between the bus electrodes Xb of the even row electrodes X2, X4, X6, . . . , and Xn−1 and the column electrodes D, the even X electrode driver 52 supplies a voltage having the same polarity as the pixel data pulse DP to each of the even row electrodes X.
As described above, in the odd row addressing stage WOOD, the write address discharge is selectively triggered and the wall charge is selectively produced in the control discharge cell C2 of each of the pixel cells PC which belong to the odd display lines of the PDP 50, in accordance with the pixel drive data bit group DB1 (group of first bits of the pixel drive data GD shown in
In the even row reset stage REV of the subfield SF1, the even Y electrode driver 54 generates the first reset pulse RPY1 having a negative polarity and supplies the first rest pulse to the even row electrodes Y2, Y4, . . . , and Yn−1 of the PDP 50 simultaneously. The first reset pulse RPY1 has gently sloped rising and falling edges, as compared with the light emission sustaining pulse. In the meanwhile, the address driver 55 generates the reset pulse RPD having the positive polarity and supplies the rest pulse RPD to the column electrodes D1 to Dn simultaneously. In response to the first reset pulse RPY1 and reset pulse RPD, the first reset discharge (writing discharge) is caused in the control discharge cell C2 of each of the pixel cells PC2,1 to PC2,m, PC4,1 to PC4,m, . . . , and PCn−1,1 to PCn−1,m which belong to the even display lines. In other words, the first reset discharge occurs between the row electrode Y and the column electrode D in the control discharge cell C2 (
As described above, in the even row rest stage REV, the wall charge is simultaneously eliminated from the control discharge cells C2 of the pixel cells PC2,1 to PC2,m, PC4,1 to PC4,m, . . . , and PCn−,1 to PCn−,m which belong to the even display lines of the PDP 50 so that all the pixel cells PC on the even display lines are initialized into the light extinct condition.
In the even row addressing stage WOEV of the subfield SF1, the even Y electrode driver 54 supplies the scanning pulses SP having the negative polarity to the even row electrodes Y2, Y4, . . . , Yn−1, of the PDP 50 sequentially. In the meanwhile, the address driver 55 finds those data bits in the pixel drive data bit group DB1 of the subfield SF1 which correspond to the even display lines, and converts such data bits into pixel data pulses DP having the pulse voltage corresponding to the logic levels of these data bits. For example, the address driver 55 converts a pixel drive data bit having a logic level 1 into a high-voltage pixel data pulse DP of positive polarity, and converts a pixel drive data bit having a logic level 0 into a low-voltage (zero volt) pixel data pulse DP. The address driver 55 then supplies m pixel data pulses DP to the column electrodes D1 to Dm at a time for each display line, in synchronization with the application timing of the scanning pulses SP. In short, the address driver 55 converts the pixel drive data bits for the even display lines DB12,1 to DB12,m, DB14,1 to DB14,m, . . . , and DBn−1,1 to DB1n−1,m into the pixel data pulses DP2,1 to DP2,m, DP4,1 to DP4,m, . . . , and DPn−1,1 to DPn−1,m, and applies the pixel data pulses to the column electrodes D1 to Dm for each of the display lines. Write address discharge is caused between the column electrode D and bus electrode Yb in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP and the high-voltage pixel data pulse DP are both applied. Accordingly, the wall charge is created in the control discharge cell C2. On the other hand, the write address discharge is not caused in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP is applied and the high-voltage pixel data pulse DP is not applied. Accordingly, no wall charge is created in such control discharge cell C2. In the meantime, in order to prevent accidental discharge from occurring between the bus electrodes Xb of the odd row electrodes X3, X5, . . . , and Xn and the column electrodes D, the odd X electrode driver 51 supplies a voltage having the same polarity as the pixel data pulse DP to each of the odd row electrodes X.
As described above, in the even row addressing stage WOEV, the wall charge is selectively generated in the control discharge cells C2 of the pixel cells PC on the even display lines of the PDP 50, in accordance with the pixel drive data bit group DB1 (first bits of the pixel drive data GD in
In the priming stage P of the subfield SF1, the odd Y electrode driver 53 intermittently generates priming pulses PPYO having a positive polarity, as shown in
As described above, in the priming stage P, the priming discharge takes place in the control discharge cells C2 of the pixel cells PC which are set to the provisional light emission condition during the odd row addressing stage WOOD or the even row address stage WOEV. As a consequence, a certain amount of wall charge which is sufficient to cause the discharge with a relatively low voltage is accumulated in the control discharge cell(s) C2.
In the odd row addressing stage WIOD of each of the subfields SF2 to SF15 (referred to as SFj; j=2 to 15), the odd Y electrode driver 53 supplies the scanning pulses SP having the negative polarity to the odd row electrodes Y1, Y3, Y5, . . . , and Yn of the PDP 50 sequentially. In the meanwhile, the address driver 55 finds those data bits in the pixel drive data bit group DBj of the subfield SFj which correspond to the odd display lines, and converts such data bits into pixel data pulses DP having pulse voltages corresponding to the logic levels of these data bits. For example, the address driver 55 converts a pixel drive data bit having a logic level 1 into a high-voltage pixel data pulse DP of positive polarity, and converts a pixel drive data bit having a logic level 0 into a low-voltage (zero volt) pixel data pulse DP. The address driver 55 then supplies m pixel data pulses DP to the column electrodes D1 to Dm at a time for each display line, in synchronization with the application timing of the scanning pulses SP. In short, the address driver 55 converts the pixel drive data bits for the odd display lines DBj1,1 to DBj1,m, DBj3,1 to DBj3,m, . . . , and DBjn−2,1 to DBjn−2,m into the pixel data pulses DP1,1 to DP1,m, DP3,1 to DP3,m, . . . , and DPn−2,1 to DPn−2,m, and applies the pixel data pulses to the column electrodes D1 to Dm for each of the display lines. Light extinction address discharge is caused between the column electrode D and bus electrode Yb in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP and the high-voltage pixel data pulse DP are both applied. Accordingly, the wall charge is eliminated in the control discharge cell C2. On the other hand, the light extinction address discharge is not caused in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP is applied and the high-voltage pixel data pulse DP is not applied. Accordingly, presence/non-presence of the wall charge in such control discharge cell C2 is maintained. If the wall charge is present in the control discharge cell C2, the wall charge is maintained. If the wall charge is not present in the control discharge cell C2, no wall charge is created in the control discharge cell C2. In the meantime, in order to prevent unintended discharge from occurring between the bus electrodes Xb of the even row electrodes X2, X4, X6, . . . , and Xn−1 and the column electrodes D, the even X electrode driver 52 supplies a voltage having the same polarity as the pixel data pulse DP to each of the even row electrodes X.
As described above, in the odd row addressing stage WIOD, the light extinction address discharge is selectively caused and the wall charge is selectively eliminated in the control discharge cells C2 of the pixel cells PC which belong to the odd display lines of the PDP 50, in accordance with the pixel drive data bit group DBj (j'th bits of the pixel drive data GD for the subfield SFj). As a result, the pixel cells PC on the odd display lines are set to either a provisional light emission condition (wall charge presents in the control discharge cell C2) or a light extinct condition (no wall charge presents in the control discharge cell C2).
In the even row addressing stage WIEV of the subfield SFj (SF2 to SF15), the even Y electrode driver 54 supplies the scanning pulses SP having the negative polarity to the even row electrodes Y2, Y4, . . . , Yn−1 of the PDP 50 sequentially. In the meanwhile, the address driver 55 finds those data bits in the pixel drive data bit group DBj of the subfield SFj which correspond to the even display lines, and converts such data bits into pixel data pulses DP having the pulse voltage corresponding to the logic levels of these data bits. For example, the address driver 55 converts a pixel drive data bit having a logic level 1 into a high-voltage pixel data pulse DP of positive polarity, and converts a pixel drive data bit having a logic level 0 into a low-voltage (zero volt) pixel data pulse DP. The address driver 55 then supplies m pixel data pulses DP to the column electrodes D1 to Dm at a time for each display line, in synchronization with the application timing of the scanning pulses SP. In short, the address driver 55 converts the pixel drive data bits for the even display lines DBj2,1 to DBj2,m, DBj4,1 to DBj4,m, . . . , and DBjn−1,1 to DBjn−1,m into the pixel data pulses DP2,1 to DP2,m, DP4,1 to DP4,m, . . . , and DPn−1,1 to DPn−1,m, and applies the pixel data pulses to the column electrodes D1 to Dm for each of the display lines. Then, the light extinction address discharge is caused between the column electrode D and the bus electrode Yb in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP and the high-voltage pixel data pulse DP are both applied. Accordingly, the wall charge is eliminated in the control discharge cell C2. On the other hand, the light extinction address discharge is not caused in the control discharge cell C2 of the pixel cell PC to which the scanning pulse SP is applied and the high-voltage pixel data pulse DP is not applied. Accordingly, presence/non-presence of the wall charge in such control discharge cell C2 is maintained. In order to prevent erroneous discharge from occurring between the bus electrodes Xb of the odd row electrodes X3, X5, . . . , and Xn and the column electrodes D, the odd X electrode driver 51 supplies a voltage having the same polarity as the pixel data pulse DP to each of the odd row electrodes X.
As described above, in the even row addressing stage WIEV, the light extinction address discharge is selectively generated in the control discharge cells C2 of the pixel cells PC on the even display lines of the PDP 50, in accordance with the pixel drive data bit group DBj (j'th bits of the pixel drive data GD of the subfield SFj). As a result, the wall charge in these (selected) control discharge cells C2 is eliminated. Thus, the pixel cells PC belonging to the even display lines are set to either the provisional light emission condition (wall charge presents in the control discharge cell C2) or the light extinct condition (no wall charge presents in the control discharge cell C2).
In the selective light extinction assisting stage CA of the subfield SFj (SF2 to SF15), the odd X electrode driver 51, even X electrode driver 52, odd Y electrode driver 53 and even Y electrode driver 54 supply cancellation pulses CP having the positive polarity (
As described above, the selective light extinction assisting stage CA forces the light extinction discharge to occur in those control discharge cells C2 which are not properly set to the light extinction condition during the odd row addressing stage WIOD and the even row addressing stage WIEV, so that those discharge cells C2 are brought into the light extinction condition.
In the priming expansion stage PI of the subfield SFj (SF2 to SF15), the even X electrode driver 52 intermittently generates priming pulses PPXE having a positive polarity, as shown in
As described above, in the priming discharge expansion stage PI, the priming discharge is repeatedly generated in the control discharge cells C2 of the pixel cells PC which are set to the provisional light emission condition during the odd row addressing stage WIOD or the even row address stage WIEV. As a consequence, the discharge gradually propagates into the display discharge cells C1 if the display discharge cells C1 are associated with those control discharge cells C2. Due to the expansion of the discharge, the wall charge is created in these display discharge cells C1, and the pixel cells PC having such display discharge cells C1 are set to the light emission condition. On the other hand, the priming discharge does not occur in other control discharge cells C2 so that the wall charge is not formed in those display discharge cells C1 which communicate with these control discharge cells C2. Therefore, the pixel cells PC having such display discharge cells C1 maintain the light extinct condition.
Next, the light emission sustaining stage I is executed in the subfield SFj (SF2 to SF15). In the light emission sustaining stage I, the odd Y electrode driver 53 produces a sustaining pulse IPYO of a positive polarity (
As described above, in the light emission sustaining stage I, only those pixel cells PC which are set to the light emission condition emit light repeatedly, for the number of times allocated to the subfield concerned.
Next, the charge movement stage MR is executed in the subfield SFj (SF2 to SF15). In the charge movement stage MR, the even X electrode driver 52 produces a charge movement pulse MPXE of a positive polarity (
As described above, the charge movement stage MR causes the discharge in the control discharge cells C2 of those pixel cells in which the light emission sustaining discharge occurs in the preceding light emission sustaining stage I, so that the wall charge formed in the display discharge cells C1 of such pixel cells PC is transferred to the associated control discharge cells C2.
The elimination stage E occurs in the last subfield SF15. In the elimination stage E, the odd X electrode driver 51, even X electrode driver 52, odd Y electrode driver 53, even Y electrode driver 54 and address driver 55 apply an elimination pulse of a positive polarity to all the row electrodes X and Y (not shown). As a result of the application of the elimination pulse, the elimination discharge occurs in all of those control discharge cells C2 which still have the wall charge, so that-the wall charge is eliminated.
As described above, the elimination stage E causes the elimination discharge in only those control discharge cells C2 in which the wall charge remains, thereby initializing all the control discharge cells C2 to the same condition in terms of presence of charge.
According to the drive scheme shown in
Consequently, the luminance which corresponds to the total number of discharging occurred in one field is perceived by a viewer. When the sixteen patterns of light emission are created by the first to sixteenth gradation driving shown in
Each of the subfields SF1 to SF15 is assigned luminance, which is determined by the weight of the subfield. In the illustrated embodiment, the subfield SF1 is assigned the lowest luminance, and the subfield SF15 is assigned the highest luminance. In each of the subfields SF2 to SF15, the number of discharge-light-emission by the sustaining discharge during the sustaining stage I determines the luminance of the subfield. However, the subfield SF1 does not have the sustaining stage I. In the subfield SF1, the light leaking from the control discharge cell C2 to the display discharge cell C1 upon the discharging caused in the odd row addressing stage WOOD, the even row addressing stage WOEV, and the priming stage P is used to create the light of lowest luminance. In
The leakage light to the display discharge cell C1 from the control discharge cell C2 has lower luminance than the light emission by the sustaining discharge. Therefore, the second gradation can reduce (moderate) the luminance difference between the first gradation and the third gradation. The first gradation is the lowest luminance (black), and the third gradation is brighter than the first gradation by two steps.
Thus, gradation can be expressed smoothly even if the image has low luminance. In other words, low luminance image reproduction of high quality can be achieved.
According to the above described drive scheme, neither the write address discharge nor the elimination address discharge occurs over the subfields SF1 to SF15, when the first gradation driving is performed to create the lowest luminance 0, as understood from
In the PDP apparatus 49 shown in
Since the light emission resulting from the reset discharge, priming discharge and address discharge is blocked by the protruding dielectric layer 12, the contrast of the displayed image is enhanced. Particularly, the contrast of a dark image is sharpened.
The control discharge cell C2 has the secondary electron emission layer 30 on the back substrate 13, as shown in
During the driving shown in
In the illustrated and described embodiment, the row electrodes are arranged in the order of Y, X, Y, X, . . . in the PDP 50. The scanning pulse is applied to the row electrode Y. In each control discharge cell C2 (second discharge cell), the row electrode Y is further from the display discharge cell C1 (first discharge cell) than the row electrode X. A unit area of light emission (light emission element) is defined by the first and second discharge cells in the PDP 50. When viewed in the column electrode direction (vertical direction of the PDP), therefore, the discharge cells are arranged in the order of second discharge, first discharge cell, second discharge cell, first discharge cell, . . . . Each pair of second discharge cell and first discharge cell defines the unit light emission area or the light emission element. Thus, it can be said that the PDP 50 has a “second discharge cell-first discharge cell” cell structure.
Various modifications and changes may be made to the illustrated and described embodiment by those skilled in the art without departing from the spirit and scope of the present invention. For example, the present invention can be applied to the PDP which does not have the above described cell structure. Specifically, the scanning pulse may be applied to the row electrode Y and located closer to the display discharge cell (first discharge cell) C1 than the row electrode X within the control discharge cell (second discharge cell) C2. In other words, the row electrodes may be arranged in the order of X, Y, X, Y, . . . . When viewed in the column electrode direction, the discharge cells may be arranged in the order of first discharge cell, second discharge cell, first discharge cell, second discharge cell, . . . . In this arrangement, the row electrode X faces the mating row electrode Y over the first discharge gap in the first discharge cell, and the row electrode Y faces another row electrode X of an adjacent row electrode pair over the second discharge gap in the second discharge cell.
It should also be noted that the reset discharge may occur between the row electrode Y and column electrode in the second discharge cell, or between the row electrode Y and a row electrode X of an adjacent row electrode pair. Also, the priming discharge may be not be performed after the address discharge.
It is also permissible to arrange the row electrodes in the order of X, Y, Y, X, . . . . In this arrangement, two second discharge cells are adjacent to each other if two continuous unit light emission areas are considered in the column electrode direction. In summary, the present invention can be applied to the PDP which has any of the following cell structures when the first discharge cell and the mating second discharge cell are considered in the column electrode direction; the “first discharge cell-second discharge cell” structure, the “second discharge cell-first discharge cell” structure, and the “first discharge cell-second discharge cell and the second discharge cell-first discharge cell” structure. In such PDP, the reset discharge and address discharge are caused between the row electrode Y and column electrode within the second discharge cell, and the priming discharge is dispensed with. Unit light emission areas are arranged successively in the row and column directions, and the discharge space in the second discharge cell of each unit light emission area is closed relative to the second discharge cells of the neighboring unit light emission areas by the horizontal and vertical walls.
This application is based on a Japanese patent application No. 2002-295328, and the entire disclosure thereof is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2002-295328 | Oct 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6097149 | Miyaji et al. | Aug 2000 | A |
6621231 | Kwon | Sep 2003 | B1 |
6703782 | Otani et al. | Mar 2004 | B1 |
7075504 | Tokunaga et al. | Jul 2006 | B1 |
20020158821 | Lim | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2001-154630 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040066394 A1 | Apr 2004 | US |