Method of driving ejector pins to eject formed parts

Information

  • Patent Grant
  • 6393942
  • Patent Number
    6,393,942
  • Date Filed
    Thursday, September 27, 2001
    23 years ago
  • Date Issued
    Tuesday, May 28, 2002
    22 years ago
Abstract
A method of driving part ejector pins at a high cycle rate by a reversible servo motor rotating a crank unidirectionally to advance a pin mounting structure from a retracted position to an advanced eject position, and back to the retracted position, and reversing the motor to repeat the cycle with only a single motor reversal.
Description




BACKGROUND OF THE INVENTION




This invention concerns ejector mechanisms which are used to eject formed parts from tooling used in their manufacture. In thermoforming parts, a well known process is to vacuum form an array of cups into a single sheet of plastic. The formed sheet is then transferred into a trim die where the cups are cut free from the rest of the sheet and ejected into a stacking mechanism and transferred as a stack for further processing.




The ejector comprises an array of pins held on a member, the pins advanced into the parts after die cutting is complete the same from the sheet to push the cup free of the trim die. Such ejection in the past has been typically accomplished by air cylinders cycling the pin motion. Production speeds have greatly increased in recent years, and reversing servo motors driving slider crank mechanical movements have been used to increase the ejector cycle rate. In this arrangement, the servo motor drives a crank which has an arm pinned to one end of a link, the link pinned at the other end to a slider mounting the ejector pins.




The servo motor rotates the crank to advance the slider to a maximum advance or eject position, reverses, and then retracts and reverses again to begin the next cycle. Thus, each cycle requires two reversals of the servo motor.




This arrangement has worked satisfactorily despite the need for two servo motor reversals, and offered each changes in the retract and advanced positions to adapt to tooling changes. However, because the demand for even higher cycle rates has grown, this arrangement has been found to be deficient as being not capable of executing even more rapid cycle rates now desired, primarily due to the need to reverse the motor twice for each ejection cycle.




It is an object of the present invention to provide a part ejector of the type operated by a reversible servo motor which is capable of higher cycle rates than the prior reversible servo motor driven part ejectors.




SUMMARY OF THE INVENTION




The above recited objects as well as other objects which will become apparent upon a reading of the following specification and claims are achieved by a method for driving part ejectors in which only a single reversal of the servo motor is required per ejector cycle. This is achieved by continuing to advance the servo motor unidirectionally past the point at which the ejector reaches its maximum travel at the crank dead center position, retracting the ejector pins by continued rotational advance of the servo motor in the same direction, the crank-slider causing retraction of the slider to a retracted position, where the servo motor is reversed preparatory to the next cycle. Thus, only a single reversal of the servo motor is required per ejector cycle.











DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram of a prior art ejector mechanism.





FIG. 2

is a diagram of the ejector mechanism according to the present invention.





FIG. 3

is a perspective view of a servo motor-slider crank mechanism utilized in the present invention.





FIG. 4

is a side view of the servo motor-slider crank mechanism shown in FIG.


3


.











DETAILED DESCRIPTION




In the following detailed description, certain specific terminology will be employed for the sake of clarity and a particular embodiment described in accordance with the requirements of 35 USC 112, but it is to be understood that the same is not intended to be limiting and should not be so construed inasmuch as the invention is capable of taking many forms and variations within the scope of the appended claims.




Referring to

FIG. 1

, a prior art ejector mechanism includes a slider


10


mounted for reciprocation in a bearing guide


12


. An ejector pin support beam structure


14


fixed to the slider


10


has a plurality of ejector pins


16


projecting therefrom (only one shown completely). In the advance position shown, the ejector pins


16


has caused molded parts


18


, here depicted as a disposable cup, to be ejected away as shown from tooling


20


and the remaining part of a sheet


22


from which the parts are formed.




A crank


24


has a crank arm


26


pinned to one end of a connecting link


28


, pinned at the other end to the slider


10


, thus forming a slider-crank mechanism.




The crank


24


is oscillated by a reversible servo motor (not shown) between a retracted position R


1


and advanced position A


1


whereat ejection occurs. Thus, the crank


24


is reversed at the retracted position R


1


and advanced position A


1


for each ejection cycle.




The end points R


1


, A


1


can be readily adjusted, by controlling the servo motor to position the crank arm at another retracted position R


2


and advanced position A


2


as required for a given tooling-part set up.




According to the method of the present invention, the servo motor is controlled to drive the crank


26


unidirectionally from a first angular position R-


1


A corresponding to the retracted position of the pin mounting structure


14


through an advanced position A-


1


at the dead center position of the crank


24


to a second retracted position R-


1


B, 180° from the first retracted position R-


1


A.




The crank


24


is then reversed and driven unidirectionally back to R-


1


A, passing through the second advanced or ejection position A-


2


which is the same as ejection position A-


1


. The ejector pin support piece


14


is reciprocated between corresponding retracted and advanced positions, whereat the pins


16


push the parts


18


into a stacking mechanism (not shown), as indicated.




Thus, each eject cycle requires only a single reversal of the servo motor, allowing higher ejection cycle rates to be achieved. It is noted that by merely changing the servo motor controls other retracted positions R-


2


A, R-


2


B can be set. However, the advanced positions A-


1


,


2


(and the stroke) cannot be so changed, necessitating relocating of the tooling with respect to the ejector.





FIGS. 3 and 4

illustrate an ejector mechanism enabling the practice of the invention.




A servo motor-gear unit


30


oscillates a belt pulley wheel


32


, driving a belt


34


passing around a larger belt pulley wheel


36


.




A crank shaft


38


is thereby oscillated to oscillate a pair of crank arms


40


.




The outer end of the crank arms


40


are pinned to respective connecting links


42


each pinned at their opposite end to an ejector pin mounting structure including piece


48


.




Slider bars


50


are included in the pin mounting structure to the ejector pin mounting piece


48


, guided in linear bearings


44


, to constrain the piece


48


to linear motion.




Mounting structures


52


,


54


are also provided.



Claims
  • 1. A method of driving ejector pins to eject parts from tooling of a part forming apparatus, including the steps of:mounting ejector pins to a slidably mounted pin mounting structure located with respect to said tooling so as to engage and eject said parts with said pins when said structure is moved to an advanced position from a retracted position; reciprocating said structure by oscillating a crank having a crank arm pinned to one end of a connecting link, said connecting link pinned at the other end to said pin mounting structure; said step of oscillating said crank comprising the steps of rotating said crank unidirectionally with a motor from a first angular position corresponding to said retracted position of said pin mounting structure through a crank dead center position corresponding to said advanced position of said pin mounting structure, to a second angular position 180° past said first angular position, also corresponding to said retracted position of said pin mounting structure; and reversing rotation of said motor to rotate said crank and crank arm back through said crank dead center position to said first angular position, whereby only a single reversal of said motor produces an advance and retraction of said ejector pins.
  • 2. The method according to claim 1 wherein said crank is rotated by a reversible servo motor.
RELATED CROSS-REFERENCE APPLICATION

This application claims benefit of U.S. provisional Ser. No. 60/237,338, filed Sep. 29, 2001.

US Referenced Citations (12)
Number Name Date Kind
3777504 Marchi Dec 1973 A
4105386 Thiel et al. Aug 1978 A
4502588 Whiteside et al. Mar 1985 A
4966054 Beck Oct 1990 A
5121735 Hancock Jun 1992 A
5225213 Brown et al. Jul 1993 A
5540035 Plahm et al. Jul 1996 A
5964134 Arends Oct 1999 A
5980231 Arends et al. Nov 1999 A
6055904 Chun et al. May 2000 A
6109472 Gibier Aug 2000 A
6154931 Corrales Dec 2000 A
Provisional Applications (1)
Number Date Country
60/237338 Sep 2000 US