The present invention relates to an address/display separation system AC-type plasma display apparatus (PDP apparatus) used as a display unit of a personal computer or work station, a flat TV, or a plasma display for displaying advertisements, information, etc.
For an AC-type color PDP apparatus, an address/display separation system is widely employed, in which a period (an address period) during which cells to be used for display are selected and a display period (a sustain period) during which a discharge is caused to occur for light emission to produce a display are separated. In this system, charges are accumulated in the cells to be lit during the address period and a discharge is caused to occur for producing a display during the sustain period by the use of the charges.
PDP apparatuses include: a two-electrode type apparatus in which a plurality of first electrodes extending in a first direction are provided in parallel to each other and a plurality of second electrodes extending in a second direction perpendicular to the first direction are provided in parallel to each other; and a three-electrode type apparatus in which a plurality of first electrodes and a plurality of second electrodes each extending in a first direction are provided by turns in parallel to each other and a plurality of third electrodes extending in a second direction perpendicular to the first direction are provided in parallel to each other. Recently, the three-electrode type PDP has been widely used. The present invention can be applied not only to the two-electrode type PDP apparatus but also to the three-electrode type PDP apparatus. First, the three-electrode type PDP apparatus is taken as an example for an explanation here.
In this structure, the X electrode 11 and the Y electrode 12 are each made of a bus electrode formed by a metal layer and a transparent electrode, and are arranged so that the transparent electrodes of a pair of the X electrode 11 and the Y electrode 12 are close to each other. A display cell is defined at the intersection of a pair of the X electrode 11 and the Y electrode 12 and the address electrode 15.
It is difficult for a plasma display panel to produce a gradated display by controlling the discharge intensity, therefore, one image (one frame: 1/60 sec) is made up of a plurality of subfields and a gradated display is produced by combining subfields to be lit for each cell.
There is a case where the process, in which the wall charges in a cell in which a sustain discharge has been caused to occur in the preceding subfield are erased or reduced, is included in the process during the sustain period, but it is assumed here, and in the following explanation, that the process in question is part of the process during the reset period. Either way, this process is performed between the sustain period and the reset period.
During the following address period A, in a state in which an X bias voltage 84 is applied to the X electrode and a Y bias voltage (non-selection potential) 90 is applied to the Y electrode, a scan pulse 91 having a voltage −Vs is applied to the Y electrode while the position of application is shifted sequentially and an address pulse 94 having a voltage VA is applied to the address electrode in the cells to be lit in synchronization with the scan pulse 91. Due to this, a large voltage VA+Vs is applied between the Y electrode and the address electrode in the cells to be lit, therefore, an address discharge is caused to occur therein. At this time, a large electric field is formed also between the X electrode and the Y electrode, therefore, an address discharge is caused to occur also between the Y electrode and the X electrode induced by the address discharge between the Y electrode and the address electrode. Because of the transition of the address discharge between the Y electrode and the address electrode to that between the Y electrode and the X electrode, wall charges having the polarity opposite to that of the voltage applied to the respective electrodes are accumulated in the vicinity of the Y electrode and the X electrode. These wall charges are used to selectively cause a subsequent sustain discharge to occur. It is assumed here that the X bias voltage 84 is Vx, the Y bias voltage (non-selection potential) 90 is a negative voltage −Vy, the voltage of the scan pulse 91 is −Vs, and the voltage of the address pulse 94 is VA. These voltages are set so that an address discharge is caused to occur in the cells to which the scan pulse 91 and the address pulse 94 have been applied simultaneously and no discharge is caused to occur in the other cells, and in the cells in which an address discharge has been caused to occur (in the lit cells), wall charges capable of selectively causing a subsequent sustain discharge to occur are formed in the vicinity of the X electrode and the Y electrode. The wall charges left in all of the cells at the end of the reset period will serve to cause an address discharge to occur without fail even if a voltage to be applied between the Y electrode and the address electrode by the scan pulse 91 and the address pulse 94 is small. The wall charges in the cells in which no address discharge has been caused to occur (the wall charges formed during the reset period) are retained until a subsequent discharge is caused to occur. Here, an example is explained, in which an address discharge is caused to occur in the cells to be lit and wall charges required to selectively causing a sustain discharge to occur are formed, but there may be a case where uniform wall charges are formed in all of the cells during the reset period and the wall charges are erased in the cells not to be lit by causing an address discharge to occur.
During the following sustain period, a sustain pulse 85 having the voltage −Vs is applied to the X electrode and a sustain pulse 92 having a voltage Vs is applied to the Y electrode. Due to this, a voltage 2Vs is applied between the X electrode and the Y electrode. In the cells in which an address discharge has been caused to occur, the voltage due to the wall charges formed by the address discharge is added to ZVs, therefore, the discharge start voltage is exceeded and a sustain discharge is caused to occur. In the cells in which no address discharge has been caused to occur, no sustain discharge is caused to occur. In the cells in which a sustain discharge has been caused to occur, wall charges having the opposite polarity are formed by the sustain discharge. Next, when a sustain pulse 86 having the voltage Vs is applied to the X electrode and a sustain pulse 93 having the voltage −Vs is applied to the Y electrode, in the lit cells in which a sustain discharge has been caused to occur, the voltage due to the wall charges having the opposite polarity formed by the sustain discharge is added and a subsequent sustain discharge is caused to occur, but no discharge is caused to occur in the unlit cells in which no sustain discharge has been caused to occur. As described above, because the application of a sustain pulse reverses the polarity of the wall charges to be formed, a sustain discharge is caused to occur continuously in the lit cells by applying a sustain pulse having the opposite polarity alternately to the X electrode and the Y electrode.
The luminance of a subfield is set by the number of sustain discharges. As shown in
Here, a discharge in a PDP is explained. A discharge for forming a predetermined amount of wall charges in all of the cells during the reset period, in other words, a discharge by the reset voltage 82 and the write obtuse wave 88 and a discharge by the adjusting voltage 83 and the adjusting obtuse wave 89 do not relate to a display and light emission caused by these discharges is the same in all of the cells, therefore, the contrast is reduced as a result. Although not shown in
A discharge by the on-cell reset process for erasing or reducing the wall charges in the cells lit in the preceding subfield during the reset period, in other words, a discharge by the on-cell reset voltage 87 and the on-cell reset obtuse wave 81 is a discharge that relates to the display in the preceding subfield. Moreover, an address discharge and a sustain discharge are charges that relate to a display.
Conventionally, as to the luminance of each field, only the light emission luminance due to a sustain discharge is considered in general. On the other hand, erasure of charges is performed by a discharge small in the intensity by using an obtuse wave, such as a discharge by the on-cell reset voltage 87 and the on-cell reset obtuse wave 81.
The quality of display of a PDP apparatus has been improved yearly, but improvement is still demanded and the improvement in displaying performance of low-luminance gradations is particularly demanded. Japanese Unexamined Patent Publication (Kokai) 11-65517 has described the necessity to consider the luminance by other discharges that relate to a gradated display, whereas only the light emission luminance by a sustain discharge is considered conventionally.
When a gradated display is produced in an AC type color plasma display by combining subfields of different luminance, the displaying performance of low-luminance gradations is determined by the luminance of a subfield having the lowest luminance. The above-mentioned Japanese Unexamined Patent Publication (Kokai) No. 11-65517 and Japanese Unexamined Patent Publication (Kokai) No. 2003-66897 have described a configuration in which subfields made up of only a reset period and an address period, without a sustain period, are provided.
As described above, by providing a subfield made up of only the reset period and the address period, without the sustain period, the displaying performance of low-luminance gradations can be improved but still more improvement is demanded.
The object of the present invention is to realize a plasma display apparatus in which the displaying of low-luminance gradations has been further improved.
In order to realize the above-mentioned object, a plasma display apparatus (a PDP apparatus) according to a first aspect of the present invention is a three-electrode type PDP apparatus, in which at least one subfield made up of only a reset period and an address period, without a sustain period, is provided in one frame and an address discharge is caused to occur only between Y (second) electrodes and address (third) electrodes. Due to this, the minimum luminance of the subfield is reduced and the displaying performance of low-luminance gradations of the plasma display apparatus can be further improved.
In other words, the PDP apparatus according to the first aspect of the present invention, comprising first and second groups of electrodes arranged on a first substrate in parallel to each other and a third group of electrodes arranged on a second substrate facing the first substrate so as to intersect the first and second groups of electrodes, is characterized in that: one frame is made up of a plurality of subfields; the plurality of subfields include first subfields having an address period during which an address discharge is caused to occur to select cells to be lit and a sustain period during which a sustain discharge is caused to occur in the cells elected during the address period and second subfields having the address period but not the sustain period; during the address period in the first subfields, after the address discharge is caused to occur between the second group of electrodes and the third group of electrodes, the address discharge is caused to occur between the first group of electrodes and the second group of electrodes; and during the address period in the second subfields, the address discharge is caused to occur between the second group of electrodes and the third group of electrodes, without the transition of this address discharge to that between the first group of electrodes and the second group of electrodes.
Moreover, in order to realize the above-mentioned object, in a PDP apparatus according to a second aspect of the present invention, at least two second subfields made up of only a reset period and an address period are provided in one frame and the two second subfields are made to differ from each other in the address discharge intensity and thus a subfield of lower luminance is provided.
In other words, the PDP apparatus according to the second aspect of the present invention is characterized in that: one frame is made up of a plurality of subfields; the plurality of subfields include first subfields having an address period during which an address discharge is caused to occur to select cells to be lit and a sustain period during which a sustain discharge is caused to occur in the cells selected during the address period and second subfields having the address period but not the sustain period; and the plurality of subfields include at least the two second subfields of different intensity of the address discharge.
According to the above-mentioned Japanese Unexamined Patent Publication (Kokai) No. 11-65517 and Japanese Unexamined Patent Publication (Kokai) No. 2003-66897, as shown in
The present invention can be applied to the three-electrode type PDP apparatus explained in
In the case of the three-electrode type PDP apparatus described in Japanese Unexamined Patent Publication (Kokai) No. 11-65517 and Japanese Unexamined Patent Publication (Kokai) No. 2003-66897, during the address period, a large voltage is applied between the group of X electrodes and the group of Y electrodes and once an address discharge is caused to occur by a scan pulse and an address pulse, induced by this discharge, an address discharge is caused to occur also between the X electrodes and the Y electrodes and wall charges in order to selectively cause a sustain discharge to occur are formed in the vicinity of the X and Y electrodes. In contrast to this, if a voltage to be applied between the group of X electrodes and the group of Y electrodes is reduced so that an address discharge is prevented from occurring between the X electrodes and the Y electrodes even if an address discharge occurs between the Y electrodes and the address electrodes, the address discharge intensity is reduced and the luminance can be reduced. In other words, one subfield of low-luminance not having the sustain period is provided so that a discharge is prevented from occurring between the X electrodes and the Y electrodes at the time of an address discharge.
As described above, the luminance of the subfield can be further reduced, therefore, if, for example, at least two subfields of low luminance having no sustain period are provided and one of them is made to have the address period under the same condition as that in the subfield having the sustain period, that is, the subfield is used to form wall charges for a sustain discharge, and the other subfield is used as a subfield of lower luminance in which no address discharge is caused to occur between the X electrodes and the Y electrodes, it is possible to provide a plurality of subfields of low and different luminance.
Moreover, it is no longer necessary to form wall charges in order to selectively cause a sustain discharge to occur and, therefore, the intensity of an address discharge between the Y electrodes and the address electrodes can be reduced. The intensity of an address discharge between the Y electrodes and the address electrodes can be reduced by reducing the absolute value of a voltage between the Y electrodes and the address electrodes when an address pulse and a sustain pulse are applied simultaneously. To be specific, the voltage of an address pulse or a scan pulse or the voltages of both are changed.
It is also possible to further increase the number of the steps of the luminance in the low-luminance subfields by changing the intensity of an address discharge between the X electrode and the Y electrode and an address discharge between the Y electrode and the address period in smaller steps and by combining the amounts of change.
In the case of the two-electrode type PDP apparatus, the absolute value of a voltage is reduced between the first electrodes (the transverse electrodes) and the second electrodes (the longitudinal electrodes) when an address pulse and a sustain pulse are applied simultaneously.
The features and advantages of the invention will be more clearly understood from the description taken in conjunction with the accompanying drawings, in which:
The PDP apparatus in the first embodiment has a conventional configuration widely known and one frame is made up of a plurality of subfields, but the drive waveforms in subfields of low-luminance are different. No more detailed explanation of the configuration of the PDP apparatus is given here but only the drive waveforms are explained below.
As obvious from the comparison with the conventional drive waveforms shown in
In SF2, the operation during the reset period R is the same as that during the reset period R in SF3 and SF4. Then, during the address period A, in a state in which a ground potential is applied to the X electrode and the Y bias voltage (non-selection potential) −Vy is applied to the Y electrode, a scan pulse having the voltage −Vs is applied sequentially to the Y electrode while the position of application is shifted, and an address pulse having the voltage VA is applied to the address electrode in synchronization with the scan pulse. No sustain period is provided in SF2 as in SF3. In other words, while the voltage Vx is applied to the X electrode in SF3 and SF4, the ground potential is applied in SF2 in the first embodiment.
As the voltage Vx is applied to the X electrode in SF3 and SF4, a large voltage Vx+Vs is applied between the Y electrode to which a scan pulse is applied and the X electrode and when an address discharge is caused to occur between the Y electrode and the address electrode in the cells to be lit to which a scan pulse and an address pulse have been applied simultaneously, induced by this address discharge, an address discharge is caused to occur also between the Y electrode and the X electrode (the transition of the address discharge between the Y electrode and the address electrode to that between the Y electrode and the X electrode), and positive wall charges are formed in the vicinity of the Y electrode and negative charges are formed in the vicinity of the X electrode. In SF4, a sustain discharge is caused to occur selectively by using the wall charges. Therefore, the intensity of an address discharge in SF3 and SF4 is the sum of the intensity of a discharge between the Y electrode and the address electrode and the intensity of a discharge between the Y electrode and the X electrode, and the luminance due to an address discharge will also be the sum of the luminance due to two discharges.
As the ground potential is applied to the X electrode in SF2, only the voltage Vs is applied between the Y electrode to which a scan pulse is applied and the X electrode and therefore even if an address discharge is caused to occur, no discharge is induced between the Y electrode and the Y electrode. Because of this, an address discharge is caused to occur only between the Y electrode and the address electrode and therefore the luminance due to the address discharge is lower than that of SF3 and SF4. As no address discharge is caused to occur between the Y electrode and the X electrode during the address period in SF2, wall charges for selectively causing a sustain discharge to occur are not formed in the vicinity of the Y electrode and in the vicinity of the X electrode, but this will not bring about any problem because SF2 does not have the sustain period.
The luminance was 0.97 cd/m2 when an address discharge was caused to occur actually in SF3 and SF4, where Vs=80V, Vx=80V and VA=60V, and the luminance was 0.36 cd/m2 when an address discharge was caused to occur in SF2, where Vx=0V, and thus the luminance could be more than halved.
The operation during the reset period in SF1 is the same as that during the reset period R in SF2 to SF4. Then, during the address period A, in a state in which the ground potential is applied to the X electrode and a voltage Vy is applied to the Y electrode, a scan pulse having the voltage −Vs is applied sequentially to the Y electrode while the position of application is shifted and an address pulse having a voltage VA1 is applied to the address electrode in synchronization with the scan pulse. As in SF2 and SF3, no sustain period is provided in SF1. In other words, while an address pulse having the voltage VA is applied in SF2, an address pulse having the voltage VA1 lower than the voltage VA is applied in SF1.
As in SF2, therefore, no address discharge is caused to occur between the Y electrode and the X electrode. Moreover, as the voltage VA1 of an address pulse is lower than the voltage VA, the intensity of an address discharge between the Y electrode and the address electrode is smaller in SF1 and therefore the luminance of SF1 is lower than the luminance of SF2.
As described above, in the subfield configuration of the PDP apparatus in the first embodiment, three subfields of different luminance even lower than the minimum luminance of the subfield having the sustain period are provided. Moreover, in comparison with the conventional subfield configuration shown in
In the drive waveforms in the first embodiment shown in
In the drive waveforms in the first embodiment shown in
As shown in
First, the drive waveforms in SF4 are explained. As shown schematically, the waveforms applied to the X1 and X2 electrodes, the Y1 and Y2 electrodes, and the address electrodes during reset period R are the same as those in
The following address period is divided into a first half period and a second half period, and during the first half period, writing is performed in the first, third, fifth, . . . , n-th display lines L1, L5, L9, . . . , L(4n−3) of the odd-numbered display lines and during the second half period, writing is performed in the second, fourth, sixth, . . . , n-th display lines L3, L7, L11, . . . , L(4n−1) of the odd-numbered display lines.
During the first half period, in a state in which the ground potential is applied to the X2 and Y2 electrodes, the X bias voltage Vx is applied to the X1 electrode, and the Y bias voltage (non-selection potential) −Vy is applied to the Y1 electrode, a scan pulse having the voltage −Vs is applied to the Y1 electrode while the position of application is shifted sequentially and an address pulse having the voltage VA is applied to the address electrode in the cells to be lit in synchronization with the scan pulse. In other words, the same drive waveforms as those in SF4 in the first embodiment are applied to the odd-numbered X1 and Y1 electrodes and the address electrodes. Due to this, an address discharge is caused to occur between the Y1 electrode and the address electrode in the cells to be lit in the first, third, fifth, . . . , n-th display lines of the odd-numbered display lines, and induced by this, an address discharge is caused to occur also between the Y1 electrode and the X1 electrode. As a result, negative wall charges are formed in the vicinity of the odd-numbered X1 electrodes and positive wall charges are formed in the vicinity of the odd-numbered Y1 electrodes.
During the second half of the address period, in a state in which the ground potential is applied to the X1 and Y1 electrodes, the X bias voltage Vx is applied to the X2 electrode, and the Y bias voltage −Vy is applied to the Y2 electrode, a scan pulse having the voltage −Vs is applied to the Y2 electrode while the position of application is shifted sequentially and an address pulse having the voltage VA is applied to the address electrode in the cells to be lit in synchronization with the scan pulse. In other words, the same drive waveforms as those in the SF4 in the first embodiment are applied to the even-numbered X2 and Y2 electrodes and the address electrodes. Due to this, an address discharge is caused to occur between the Y2 electrode and the address electrode in the cells to be lit in the second, fourth, sixth, . . . , n-th display lines of the odd-numbered display lines, and induced by this, an address discharge is caused to occur also between the Y2 electrode and the X2 electrode. As a result, negative wall charges are formed in the vicinity of the even-numbered X2 electrodes and positive wall charges are formed in the vicinity of the even-numbered Y2 electrodes.
In the manner described above, writing is performed in the odd-numbered display lines.
During the sustain period, in a state in which the ground potential is applied to the X2, Y2, and address electrodes, a sustain pulse having the voltage −Vs is applied to the X1 electrode and a sustain pulse having the voltage Vs is applied to the Y1 electrode. Due to this, the voltage 2Vs is applied between the X1 electrode and the Y1 electrode and the voltage due to the wall charges in the vicinity of the X1 and Y1 electrodes is added and thus the discharge start voltage is reached, and a sustain discharge is caused to occur in the cells to be lit in the first, third, fifth, . . . , n-th display lines of the odd-numbered display lines. At this time, the voltage Vs is applied between the Y1 electrode and the X2 electrode, both electrodes defining an even-numbered display line, and between the Y2 electrode and the X1 electrode, both electrodes defining an even-numbered display line, and the voltage due to the wall charges is also added, but no discharge is caused to occur because the discharge start voltage is not reached. Due to the sustain discharge between the X1 electrode and the Y1 electrode in the cells to be lit, positive wall charges are formed in the vicinity of the X1 electrode and negative wall charges are formed in the vicinity of the Y1 electrode. Because no discharge is caused to occur, the wall charges are maintained in the X2 and Y2 electrodes, therefore, the negative wall charges remain in the vicinity of the X2 electrode and the positive wall charges remain in the vicinity of the Y2 electrode.
Next, a sustain pulse having the voltage Vs is applied to the X1 and Y2 electrodes and a sustain pulse having the voltage −Vs is applied to the Y1 and X2 electrodes. In other words, sustain pulses having the opposite phase to each other are applied between the X1 and Y1 electrodes and between the X2 and Y2 electrodes, respectively. As described above, the voltage due to the wall charges in the vicinity of the X1, Y1, X2 and Y2 electrodes serve to increase the voltages between the X1 and Y1 electrodes and between the X2 and Y2 electrodes, therefore, the discharge start voltage is reached and a sustain discharge is caused to occur between the X1 and Y1 electrodes and between the X2 and Y2 electrodes. Due to this discharge, the polarity of the wall charges in the vicinity of the X1, Y1, X2 and Y2 electrodes is reversed. Because no voltage is applied between the Y1 and X2 electrodes and between the Y2 and X1 electrodes, no sustain discharge is caused to occur.
In this manner, if a sustain pulse is applied between the X1 and Y1 electrodes and between the X2 and Y2 electrodes while the polarity of the sustain pulse is reversed in turn, a sustain discharge is caused to occur repeatedly.
The first sustain discharge is caused to occur only between the X1 and Y1 electrodes and not between the X2 and Y2 electrodes, therefore, the number of sustain discharges between the X2 and Y2 electrodes is less than that between the X1 and Y1 electrodes by one. Therefore, at the end of the sustain period, in a state in which the ground potential is applied to the X1 and Y1 electrodes, a sustain pulse having the voltage Vs is applied to the X2 electrode and a sustain pulse having the voltage −Vs is applied to the Y electrode, and thus a sustain discharge is caused to occur only between the X2 and Y2 electrodes. Due to the sustain discharge between the X2 and Y2 electrodes, the polarity of the wall charges in the vicinity of the X2 and Y2 electrodes is reversed and becomes the same polarity as that of the wall charges in the vicinity of the X1 and Y1 electrodes. Due to this, it is possible to erase the wall charges in the lit cells in the preceding subfield by applying a common on-cell reset voltage to all of the X electrodes and an on-cell reset obtuse wave to all of the Y electrodes during the reset period. Two sustain discharges are caused to occur in each of the odd-numbered display lines.
The drive waveforms in the SF3 are those in the SF4 from which the drive waveforms during the sustain period S are excluded and, during the address period A, an address discharge is caused to occur between the X and Y electrodes and wall charges for a sustain discharge are formed, but no sustain discharge is caused to occur. Therefore, the luminance of the SF3 is lower than that of the SF4 by the amount corresponding to one sustain discharge.
The drive waveforms in the SF2 differ from those in the SF3 in that the potential Vx at the X1 and X2 electrodes is changed to the ground potential during the address period A. Because of this, no address discharge is caused to occur between the X electrode and the Y electrode during the address period A and wall charges for a sustain discharge are not formed. Therefore, the luminance of the SF2 is lower than that of the SF3 by an amount corresponding to an address discharge between the X electrode and the Y electrode.
The drive waveforms in the SF1 differ from those in the SF2 in that the voltage VA1 of an address pulse is lower than the voltage VA. Because of this, the intensity of an address discharge between the Y electrode and the address electrode is reduced, therefore, the luminance of the SF1 is lower than that of the SF2 by the amount corresponding to the reduction in the intensity of an address discharge.
The operation in the SF4 in the odd number field is explained as above, but in the even number field, the drive waveform of the X1 electrode is applied to the X2 electrode, and the drive waveform of the X2 electrode is applied to the X1 electrode.
In the second embodiment, a modification in which the potential of the X electrode during the address period is changed or the modification in which instead of the change of the voltage of an address pulse to VA1, the voltage of a scan pulse is changed, both explained in the first embodiment, are also applicable.
As described above, in the subfield configuration of the PDP apparatus in the second embodiment, three subfields of different luminances lower than the minimum luminance of the subfield having the sustain period are provided, therefore, the display of low-luminance gradations will be improved.
In the two-electrode type PDP, as shown in
First the drive waveforms in the SF3 are explained. As shown schematically, the waveforms to be applied to the transverse electrodes and the longitudinal electrodes during the reset period R are similar to the waveforms to be applied to the X electrodes and the Y electrodes in
During the address period A, in a state in which the bias voltage −Vy is applied to the transverse electrodes and the ground potential is applied to the longitudinal electrodes, a scan pulse having the voltage −Vs is applied to the transverse electrodes while the position of application is shifted sequentially, and an address pulse having the voltage VA is applied to the longitudinal electrodes in the cells to be lit in synchronization with the scan pulse. Due to this, an address discharge is caused to occur in the cells to be lit and wall charges for selectively causing a sustain electrode to occur are formed. In this case, positive wall charges are formed in the vicinity of the transverse electrodes and negative wall charges are formed in the vicinity of the longitudinal electrodes in the cells to be lit.
During the sustain period S, a sustain pulse having the voltage Vs is applied to the transverse electrodes and a sustain pulse having the voltage −Vs is applied to the longitudinal electrodes. By the addition of the voltage due to the wall charges, to the voltage of the sustain pulses, the discharge start voltage is exceeded and a sustain discharge is caused to occur. Due to sustain discharge, the polarity of the wall charges is reversed and, therefore, when a sustain pulse whose polarity has been reversed is applied, a sustain discharge is caused to occur again. After this, if a sustain pulse is applied repeatedly while the polarity is reversed by turns, a sustain discharge is caused to occur repeatedly.
SF2 differs from SF3 in that the sustain period S is not provided. Because of this, wall charges for a sustain discharge are formed during the address period A, but no sustain discharge is caused to occur, therefore, the luminance of the SF2 is lower than that of the SF3 by the amount corresponding to a sustain discharge.
SF1 differs from SF2 in that the voltage of a scan pulse is changed from −Vs to −Vs1 (Vs1 is less than Vs) and the voltage of an address pulse is changed from VA to VA1 (VA1 is less than VA). Because of this, the voltage to be applied between the transverse electrode and the longitudinal electrode when an address discharge is caused to occur in a cell to be lit becomes smaller and, therefore, the intensity of an address discharge is reduced. As a result, the luminance of the SF1 becomes lower than the luminance of the SF2 by the amount corresponding to the reduction in the intensity of an address discharge.
As described above, in the subfield configuration of the PDP apparatus in the third embodiment, two subfields of different luminance lower than the minimum luminance of the subfield having the sustain period are provided and, therefore, the display of low-luminance gradations is improved.
According to the present invention, as the minimum luminance of the subfield can be further reduced, the display of low-luminance gradations is improved and the quality of the display is improved.
Moreover, according to the present invention, the quality of display in a plasma display apparatus can be improved and, in particular, the displaying performance of low-luminance gradations, which is thought to be inferior to that of a CRT, can be improved and, therefore, it is probable that the plasma display apparatus will gain more general acceptance.
Number | Date | Country | Kind |
---|---|---|---|
2003-397220 | Nov 2003 | JP | national |
This application is a Continuation Application of application Ser. No. 10/924,992, filed Aug. 25, 2004 now U.S. Pat. No. 7,427,969, and claims the benefit of Japanese Application No. 2003-397220, filed Nov. 27, 2003.
Number | Name | Date | Kind |
---|---|---|---|
6373452 | Ishii et al. | Apr 2002 | B1 |
6791516 | Kang | Sep 2004 | B2 |
6980179 | Yatsuda et al. | Dec 2005 | B2 |
7180481 | Yamada | Feb 2007 | B2 |
7576710 | Kim et al. | Aug 2009 | B2 |
7907103 | Jung et al. | Mar 2011 | B2 |
20020130825 | Kang | Sep 2002 | A1 |
20020195970 | Lim et al. | Dec 2002 | A1 |
20030107532 | Choi | Jun 2003 | A1 |
20030189533 | Myoung et al. | Oct 2003 | A1 |
20040027073 | Nomoto et al. | Feb 2004 | A1 |
20040164931 | Han et al. | Aug 2004 | A1 |
20050088374 | Kim et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
A 11-65517 | Mar 1999 | JP |
2002-304153 | Oct 2002 | JP |
A 2003-66897 | Mar 2003 | JP |
2002-0085704 | Nov 2002 | KR |
10-2005-0038974 | Apr 2005 | KR |
Number | Date | Country | |
---|---|---|---|
20080291132 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10924992 | Aug 2004 | US |
Child | 12167122 | US |