The present invention relates to a method for effectively drying polymeric and other materials.
Before a material, such as a polymeric material, is processed, it is important to remove contaminants and moisture from the material to prevent defects such as warping, uneven shrinkage and undesirable discoloration. Many devices have been developed in the past that remove such contaminants and moisture. However, such conventional devices are often very expensive to manufacture, unreliable, energy waste and require long production cycles. It often takes a very long time to dry thermoplastics such as nylon. It is not unusual to have to dry nylon granules for many hours before the nylon granules are sufficiently dry. There is a need for an inexpensive and reliable device for heating and drying a material to remove moisture before it is further processed.
The method of the here presented invention provides a solution to the above outlined problems. A drying device is provided that has an infrared heater or any source of radiation or other heating device disposed above a movable carrier, such as a rotatable disc. The movable carrier movably carries the material to be dried or heated. The material has a first temperature. A fluid, such as air is blown across the material by a fan device. The infrared heater or any source of radiation or other heating device induces a release of water molecules from the material. The fluid removes the water molecules disposed between the material and the infrared source or any source of radiation or other heating device.
The method of the present invention relates to an effective and quick way of drying or heating hydroscopic and non hydroscopic materials.
A temperature sensor 127 is disposed at the end of the heaters 112 that measures the temperature of the surface of the granules 104 disposed on the rotating disc 108 without touching the granules and sends signals back to a temperature-regulator that then controls the heaters 112 to make sure the heaters are heating the granules to the correct or desirable temperature.
A fan device 122 is disposed at one end of the device 100 that sucks in an outside gas or air 124 so that the air flows into a cavity 133 of a housing 135 and in through a central opening 123 at the axle 110. The gas may be nitrogen gas or especially clean air or any other suitable fluid. In this way, the fan device 122 creates an over-pressure inside the housing 135 that forces the air 124 through the opening 123 and radially outwardly above the granules 104. The central opening 123 guides the air to flow radially outwardly across the layer 120 of the granules 104 towards the peripheral sidewall 109 of the disc 108 to cool the granules 104 and to drive away moisture or water molecules 137 released from the granules 104 as the granules are being warmed or heated by the infrared heaters or any source of radiation or other heating device 112. The warm granules have a first temperature that is higher than a temperature of the air 124. The above components may be said to form a first module 125. The cooler air 124 may also be used to cool a gearbox and motor of the first module.
The disc 108 has a scraper 126 that scrapes the granules 104 towards a center opening 123 of the disc and into a second tube 128 so that the granules 104 fall by gravity onto a second rotatable disc 130 of a second module 132 disposed below the first disc 108. As the granules tumble down the second tube 128 they are preferably turned so that the granules land upside down compared to the way the laid on the first disc 108. The second module 132 has heaters 134, such as infrared heaters, or any source of radiation or other heating device disposed above the one layer 136 and a scraper 138 so that the second module 132 is substantially similar to the first module 125.
The scraper 138 scrapes the granules into a third tube 140 so that the granules fall onto a third rotatable disc 142 of a third module 144 disposed below the first module 125 and the second module 132. The third module 144 is preferably identical to the second module 132. The use of many modules and repeating the process many times makes the granules 104 drier. It may also be possible run the granule material many times through the same module to make the material drier. The use of modules makes it very easy to clean the cleaning device 100 when it is time to dry a different material.
While the present invention has been described in accordance with preferred compositions and embodiments, it is to be understood that certain substitutions and alterations may be made thereto without departing from the spirit and scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/80848 | 10/23/2008 | WO | 00 | 2/4/2010 |
Number | Date | Country | |
---|---|---|---|
60981832 | Oct 2007 | US |