The invention involves the use of waste heat from any source to preheat roving packages, cakes and bobbins, all containing wet fiber or fiber strands, prior to drying or partially drying in a dielectric or microwave oven.
It is known to make rovings for reinforcement of plastics and other materials by pulling fibers such as glass fibers from molten glass exiting tips of a fiberizing bushing, spraying a water mist on the fibers to cool the rapidly moving fibers followed by applying a conventional aqueous chemical sizing to the fibers, gathering the fibers into one or more strands and winding the strand(s) onto a rotating collet to form a wet roving package or cake. Roving packages are not finished products, but instead are tubular or cylindrical shapes of tightly wound wet glass fiber strands having square ends and a hollow cylindrical passage having the shape of the collet down the center of the package. Cakes are typically wound on a paper or plastic sleeve placed on the collet, the sleeve staying with the cake until the cake is dried. Cakes can be of different shapes, but typically are cylindrical with tapered end portions. When the wet fiber strands are wound on a shaped spool, bobbin, the bobbin stays with the fiber strands and are called bobbins of rovings strands of fiber or fiber, bobbins for short.
The wet roving package, cake or bobbin is then dried, usually in a gas fired or electric oven, to remove the water and to cure the binder in the sizing. Some typical processes for making such wound continuous fiber packages or cakes are disclosed in U.S. Pat. Nos. 4,546,880, 5,613,642 and pages 218-230, and elsewhere, of THE MANUFACTURING TECHNOLOGY OF CONTINUOUS GLASS FIBERS by K. L. Loewenstein, published by Elsevier (1983), the disclosures of which are herein incorporated by reference. This type of drying is very slow and also tends to cause the binder on the fibers to migrate to the surface resulting in a binder rich product in the outer layer of fiber strands on the roving package or cake, an undesirable result because much of this outer layer must be removed and discarded before shipping a roving product. It is known to reduce migration of the resin(s) in the sizing during drying by modifying the sizing composition as shown by U.S. Pat. No. 4,104,434, but this technique is frequently not usable with sizings aimed at achieving the optimum bonding with many polymers and properties in fiber reinforced composites.
Monorail systems are also known that move hangers through fiber forming rooms where the operators place wet roving packages and/or cakes on the hangers. The monorail system moves the cakes to either a staging area outside the forming rooms where the roving packages or cakes are transferred to either wheeled trucks or monorail type racks for holding a plurality of wet roving packages and/or cakes to be put into the drying chamber(s). Monorail systems are also known that run the wet cakes on hangers coming through the forming rooms directly into drying tunnel chambers to dry the wet roving packages and/or cakes using fuel/air burners or electrical resistance heating. It is also known to use dielectric drying to dry cakes and roving packages as disclosed in pages 228-229 of Loewenstein (see above cite), but total electrical drying is expensive, particularly where electrical costs are high.
It is also known to generate electricity using a gas turbine or other heat engine that exhausts gases at elevated temperatures and it is known to use these gases in a heat exchanger to preheat the air and/or gaseous fuel used to drive the gas turbine or heat engine.
The invention includes a method and system for preheating wet roving packages, cakes and bobbins of fiber or fiber strands using waste heat from any source. The waste heat should have a temperature of at least about 200 degrees C., typically is in a range of about 390-450 degrees C. or higher, but the temperature of waste exhaust gases can be hotter than 540 degrees C. The waste gases can contain steam and even be saturated with steam, e.g. some sources of waste heat include exhaust from drying sections and binder curing section of any dryer, from a heat engine like a gas turbine used in an electrical generating system, from a glass furnace before or following a heat exchanger or from a heat exchanger on a glass furnace, etc. Prior to feeding the hot waste gases into a preheating oven for the wet rovings, in packages, cakes or on bobbins, lower temperature air, including ambient air, water mist or steam can be blended with the hot waste gases prior to or in a portion of the preheat chamber to reduce the temperature and/or to increase the humidity in the blend, but the temperature of the hot waste gases or blends is usually maintained at or above 100 degrees C. prior to entry into the preheat chamber. The pressure of the hot waste gases coming from the sources named or equivalent sources is relatively low, usually less than 1 psi gauge, but can be boosted with one or more blowers to push the waste hot gases into and through the preheat chamber, with or without the aid of one or more exhaust fans on the preheat chamber.
The invention also includes a method and system for generating electricity using a drive for the electrical generator that is powered by a heat engine that uses high pressure, hot gases produced by combustion of a fuel and an oxygen bearing gas, using at least a portion of the electricity generated to power a microwave or dielectric dryer for fiber strand roving packages or cakes and using the waste heat from the engine to preheat wet fiber strand roving packages or cakes. Any type of enclosure can be used to contain the wet roving packages or cakes during preheating including conventional batch type chambers for wheeled trucks or monorail type racks, conventional tunnel chambers for wheeled trucks or monorail type racks or conventional tunnel chambers for monorail hangers for the roving packages or cakes, the latter being most typical, but instead of using electric heating or combustion burners to supply the hot gases in these chambers, in the invention the waste hot gases from the heat engine are used in these chambers to preheat the roving packages, cakes, bobbins, etc. When used herein, high pressure, hot gases is meant a gas or mixture of gases having a pressure of at least about 4 psi gauge and a temperature of at least about 440 degrees C.
Preheating the wet fiber glass roving packages, cakes or bobbins, the fibers having water and normally a conventional sizing composition on the surfaces of the fibers, to a temperature of at least about 35 or 40 degrees C., more typically at least about 55-60 decrees C. and more typically to at least about 70 degrees C. and most typically to at least about 85 degrees C. to at least just below the boiling point of water at the preheating location, using waste hot gases, such as from a heat engine or other source of waste hot gases. The system and method also include injecting ambient air and/or water spray mist into the hot waste gases to form a blend prior to, or as, the hot waste gases enter the preheat chamber, prior to the waste hot gases contacting the wet fiber items.
The preheating, done prior to placing the wet items into a dielectric or microwave drying oven, reduces or eliminates significant migration of the resin(s), polymer(s) in the sizing minimizes scrap when preparing the dried packages, cakes or bobbins for packaging and shipment. Also, the invention reduces drying costs by heating the wet packages, cakes and bobbins to near the boiling point of the water by using waste hot gases instead of costly electrical energy or expensive fuels for much or most of the energy needed to dry the wet packages, cakes and bobbins. Also, the capacity of the dielectric or microwave dryer is greatly increased due to the wet roving packages, cakes and bobbins being at an elevated temperature of at least about 35 or 40-60 degrees C. when they enter the dielectric or microwave dryer. The microwave or dielectric dryer is operated in a conventional manner, except that the productivity can be increased accordingly, or the power can be reduced at the same or similar productivity. By productivity is meant the weight of fiber rovings put through the dryer per unit of time.
When the word “about” is used herein it is meant that the amount or condition it modifies can vary some beyond that as long as the advantages of the invention are realized. Practically, there is rarely the time or resources available to very precisely determine the limits of all of the parameters of ones invention because to do so would require an effort far greater than can be justified at the time the invention is being developed to a commercial reality. The skilled artisan understands this and expects that the disclosed results of the invention might extend, at least somewhat, beyond one or more of the limits disclosed. Later, having the benefit of the inventors disclosure and understanding the inventive concept and embodiments disclosed including the best mode known to the inventor, the inventor and others can, without inventive effort, explore beyond the limits disclosed to determine if the invention is realized beyond those limits and, when embodiments are found having no further unexpected characteristics, the limits of those embodiments are within the meaning of the term about as used herein. It is not difficult for the artisan or others to determine whether such an embodiment is either as expected or, because of either a break in the continuity of results or one or more features that are significantly better than those reported by the inventor, is surprising and thus an unobvious teaching leading to a further advance in the art.
In the invention, the hot waste exhaust gases 110 are used in a drying system like that shown in the schematic of
While the system of
When it is desired to minimize the amount of moisture loss during preheating, the preheating chamber can be changed as shown in
In a method of the invention, wet roving packages, cakes and bobbins of wound glass fiber strands containing water in the range of about 10 wt. percent to about 25 wt. percent, or higher, and supported on conventional roving package, cake and bobbin supporting apparatus are placed into a preheating chamber where they are exposed to hot waste gases from a heat engine, the temperature of the hot waste gases being as high as about 450 degrees C. or lower, but usually at least about 100 degrees C. until the temperature of at least an exterior portion of the roving packages, cakes and bobbins are at least about 35 or 40-60 degrees C., and usually below the boiling point of the water, by the time the fiber rovings reach the end of the preheat chamber. These hot wet roving packages, cakes and/or bobbins 120 or 136 are then fed into another chamber or an extension of the preheating chamber where at least most of the water in the wet roving packages, cakes and/or bobbins is removed by dielectric or microwave heating of the water to produce dried roving packages, cakes and bobbins of glass fiber or glass fiber strands, the glass fibers most often coated with a polymer or chemical sizing. The moisture content of the dried roving packages, cakes and bobbins is typically less than about 5-10 wt. percent, more typically less than about 3-7 wt. percent and most typically less than about 1-3 wt. percent, including bone dry.
When using microwave drying, a typical set up would be an electrode zone of about 10.8 meters and a drying frequency of about 13-14 Mhz. The capacity of the microwave dryer depends upon the type and size of roving packages, cakes or bobbins being dried, the length of the electrode or microwave zone, the temperature and moisture content of roving packages, cakes and bobbins entering the microwave dryer and the arrangement of the roving packages, cakes and bobbins in the microwave dryer, as is well known except for the temperature of the roving packages, cakes and bobbins entering the dryer. In any event, the capacity of any microwave and dielectric dryer is greatly enhanced by preheating the roving packages, cakes and bobbins to a temperature of at least about 40-60 degrees C.
When desired, it is also a part of the systems and methods of the invention to inject cooler air, ambient air and/or steam and/or a water spray mist into the waste hot gases to form a blend of hot gases prior to, during or just after inserting the blend of hot gases into the preheating chamber.
Different embodiments employing the concept and teachings of the invention will be apparent and obvious to those of ordinary skill in this art and these embodiments are likewise intended to be within the scope of the claims. The inventor does not intend to abandon any disclosed inventions that are reasonably disclosed but do not appear to be literally claimed below, but rather intends those embodiments to be included in the broad claims either literally or as equivalents to the embodiments that are literally included.
Number | Name | Date | Kind |
---|---|---|---|
1455392 | Diepschlag | May 1923 | A |
1518926 | Hiller | Dec 1924 | A |
1735393 | Hiller | Nov 1929 | A |
1932830 | Puening | Oct 1933 | A |
2049071 | McCormick | Jul 1936 | A |
2171535 | Ragnar et al. | Sep 1939 | A |
2213667 | Dundas et al. | Sep 1940 | A |
2230832 | Douglass | Feb 1941 | A |
2307995 | Warren | Jan 1943 | A |
2513369 | Shaw | Jul 1950 | A |
2527488 | Schemm | Oct 1950 | A |
2578315 | Parker | Dec 1951 | A |
2607537 | Shaw | Aug 1952 | A |
2677167 | Ewing | May 1954 | A |
2715283 | Halldorsson | Aug 1955 | A |
2869249 | Kamp | Jan 1959 | A |
2949677 | Cameron | Aug 1960 | A |
2957067 | Scofield | Oct 1960 | A |
3118658 | Dennert | Jan 1964 | A |
3330046 | Albertus | Jul 1967 | A |
3331595 | Nelson et al. | Jul 1967 | A |
3524633 | Shiller | Aug 1970 | A |
3744145 | Maxwell et al. | Jul 1973 | A |
4104434 | Johnson | Aug 1978 | A |
4137029 | Brooks | Jan 1979 | A |
4177575 | Brooks | Dec 1979 | A |
4254557 | Mayer et al. | Mar 1981 | A |
4254558 | Mayer | Mar 1981 | A |
4254616 | Siminski et al. | Mar 1981 | A |
4255166 | Gernand et al. | Mar 1981 | A |
4255403 | Mayer et al. | Mar 1981 | A |
4280415 | Wirguin et al. | Jul 1981 | A |
4287674 | Selivanov et al. | Sep 1981 | A |
4383377 | Crafton | May 1983 | A |
4546880 | Reese | Oct 1985 | A |
4685220 | Meenan et al. | Aug 1987 | A |
4778606 | Meenan et al. | Oct 1988 | A |
4785554 | Hederer et al. | Nov 1988 | A |
4793937 | Meenan et al. | Dec 1988 | A |
5137545 | Walker | Aug 1992 | A |
5215670 | Girovich | Jun 1993 | A |
5263267 | Buttner et al. | Nov 1993 | A |
5428906 | Lynam et al. | Jul 1995 | A |
5557873 | Lynam et al. | Sep 1996 | A |
5603751 | Ackerson | Feb 1997 | A |
5613642 | Mulder et al. | Mar 1997 | A |
5946818 | Baxter et al. | Sep 1999 | A |
6158145 | Landon et al. | Dec 2000 | A |
6173508 | Strohmeyer, Jr. | Jan 2001 | B1 |
6421931 | Chapman | Jul 2002 | B1 |
7055262 | Goldberg et al. | Jun 2006 | B2 |
7404262 | Jurkovich et al. | Jul 2008 | B2 |
20050066538 | Goldberg et al. | Mar 2005 | A1 |
20060179676 | Goldberg et al. | Aug 2006 | A1 |
20080229610 | Ronning | Sep 2008 | A1 |
20080289211 | Pinkham et al. | Nov 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080289211 A1 | Nov 2008 | US |