B.A. Bunnell et al., “A Dominant Negative Mutation in Two Proteins Created by Ectopic Expression of an Au-Rich 3′ Untranslated Region”, Somataic Cell and Mol. Genet. 16:151-162 (1990). |
D. Caput et al., “Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators”, Proc. Natl. Acad. Sci. 83:1670-1674 (1986). |
P. Carter-Muenchau and R. Wolf, “Growth-rate-dependent regulation of 6-phosphogluconate dehydrogenase level mediated by an anti-Shine-Dalgarno sequence located within the Escherichia coli gnd structural gene”, Proc. Natl. Acad. Sci., USA, 86:1138-1142 (1989). |
A.W. Cochrane et al., “Identification and Characterization of Intragenic Sequences Which Repress Human Immunodeficiency Virus Structural Gene Expression”, J. Viro. 65:5303-5313 (1991). |
M.D. Cole and S.E. Mango, cis-Acting Determinants of c-myc mRNA Stability, Enzyme 44:167-180 (1990). |
M.D. Edge et al. “Total synthesis of a human leukocyte interferone gene”, Nature 292:756-762 (1981). |
M. Emerman, “The rev Gene Product of the Human Immunodeficiency Virus Affects Envelope-Specific RNA Localization”, Cell 57:1155-1165 (1989). |
B. Felber et al., “rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA”, Proc. Natl. Acad. Sci. USA 86:1495-1499 (1989). |
M. Hadzopoulou-Cladaras et al., “The rev (trs/art) Protein of Human Immunodeficiency Virus Type 1 Affects Viral mRNA and Protein Expression via a cis-Acting Sequence in the env Region”, J. Virol. 63:1265-1274 (1989). |
M.W. Hentze, “Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells”, Biochem. Biophys. Acta 1090: 281-292 (1991). |
E. Jay et al., “Chemical Synthesis of a Biologically Active Gene for Human Immune Interferon-γ”, J. Biol. Chem. 259:6311-6317 (1984). |
T. R. Jones and M.D. Cole, “Rapid Cytoplasmic Turnover of c-myc mRNA; Requirement of the 3′Untranslated Sequences”, Mol. Cell Biol. 4:4513-4521 (1987). |
R. Kamen et al., “A Novel Mechanism of Post Transcriptional, Sequence-Specific Regulation of mRNA Stability”, J. Cell Bio. Supp. 10D (1986):152 (Abst. No. 0210). |
D.M. Koeller et al., “Translation and the stability of mRNAs encoding the transferrin receptor and c-fos”, Proc. Natl. Acad. Sci. USA, 88:7778-7782 (1991). |
V. Kruys et al., “Constitutive activity of the tumor necrosis factor promoter is conceled by the 3′ untranslated region in nonmacrophage cell lines; a trans-dominant factor overcomes this suppressive effect”, Proc. Natl. Acad. Sci. USA, 89:673-677 (1992). |
T.A. Kunkel, “Rapid and Efficient site-specific mutagenesis without phenotypic selection”, Proc. Natl. Acad. Sci. USA, 82:488-492 (1985). |
I.A. Laird-Offringa et al., “Rapid c-myc mRNA degradation does not require (A+U)-rich sequences or complete translation of the mRNA”, Nucleic Acids Res. 19:2387-2394 (1991). |
M.D. Lundigran et al., “Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12”, Proc. Natl. Acad. Sci. USA, 88:1479-1483 (1991). |
F. Maldarelli et al., “Identification of Posttranscriptionally Active Inhibitory Sequences in Human Immunodeficiency Virus Type 1 RNA: Novel Level of Gene Regulation”, J. Virol. 65:5732-5743 (1991). |
K.P. Nambiar et al., “Total synthesis and Cloning of a Gene Coding for the Ribonuclease S Protein”, Science 223:1299-1301 (1984). |
R. Parker and A. Jacobson, “Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MATα1 gene are involved in promoting rapid mRNA decay in yeast”, Proc. Natl. Acad. Sci. USA, 87:2780-2784 (1990). |
C.A. Rosen, “Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus”, Proc. Natl. Acad. Sci., USA, 85:2071-2075 (1988). |
S. Schwartz et al., “Distinct RNA Sequences in the gag region of Human Immunodeficiency Virus Type 1 Decrease RNA Stability and Inhibit Expression in the Absence of Rev Protein”, J. Virol. 66:150-159 (1992). |
G. Shaw and R. Kamen, “A Conserved AU Sequence from the 3′ Untranslated Region of GM-CSF mRNA Mediates Selective mRNA Degradation”, Cell 46:659-668 (1986). |
G. Shaw and R. Kamen, “A Conserved AU Sequence from the 3′Untranslated Region of GM-CSF mRNA Mediates Selective mRNA Degradatin”, J. Cell. Bio. Supp. 11C (1987):132 (Abst. No. L541). |
A.-B. Shyu et al., “Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay”, Gen. & Devel. 5:221-231 (1991). |
C.M. Stoltzfus and S.J. Fogarty, “Multiple Regions in the Rous Sarcoma Virus src Gene Intron Act in cis To Affect the Accumulation of Unspliced RNA”, J. Virol. 63:1669-1676 (1989). |
T. Wilson and R. Treisman, “Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences” Nature336 :396-399 (1988). |
R. Wisdom and W. Lee, “The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors”, Gen & Devel. 5:232-243 (1991). |
D.H. Wreschner and G. Rechavi, “Differential mRNA stability to reticulocyte ribonucleases correlates with 3′ non-coding (U)nA sequences”, Eur. J. Biochem. 172:333-340 (1988). |
Schwartz et al., “Mutational Inactivation of an Inhibitory Sequence in HIV-1 Results in Rev-independent gag Expression”, Journal of Virology, vol. 66, 12:7176-7182 (1992) (Published after filing date of 07/858,747 priority application.). |