The present invention relates to methods of enlarging the space beneath a masonry arch bridge, and to a masonry arch bridge.
Masonry arch bridges are commonly used in transport networks for spanning transport links, such as rail tracks. However, due to the limited space beneath them, existing masonry arch bridges can limit the size of vehicles used on such transport links. Further, they may inhibit modification of the transport links, such as the electrification of rail tracks. Thus, in order to increase the capacity of and to modify existing transport links, it can be necessary to enlarge the space beneath existing masonry arch bridges, or to demolish and rebuild such bridges.
It is often undesirable to demolish existing structures as they may be historically protected (e.g. in the UK, buildings may be placed on the Statutory List of Buildings of Special Architectural or Historic Interest).
Existing methods of enlarging the space beneath masonry arch bridges include lowering the ground beneath the bridge by digging. This technique can give rise to flooding problems. Further, in the rail industry, problems may arise with alignment with platform levels in the lowered region.
Further, both the demolish-and-rebuild, and ground-lowering techniques are expensive and disruptive to the transport network, since both necessarily lead to the spanned transport link being closed for significant lengths of time.
In one aspect the present invention provides a method of enlarging the space beneath a masonry arch bridge, the masonry arch bridge comprising a masonry arch and a spandrel wall at each end of the masonry arch, the method comprising forming a moveable portion of the masonry arch bridge by cutting the spandrel walls to form a cut on each side of the masonry arch, applying a lifting force to the moveable portion to raise the masonry arch to a raised position, and securing the masonry arch in the raised position.
No strengthening means may be applied to the masonry arch prior to lifting.
Alternatively strengthening means may be applied to the masonry arch prior to lifting.
In this context, strengthening means refers to a means which can be added to the bridge prior to lifting to strengthening the masonry arch. It may be a means external to the structure of the masonry arch.
In another aspect the present invention provides a method of enlarging the space beneath a masonry arch bridge, the masonry arch bridge comprising a masonry arch and a spandrel wall at each end of the masonry arch, the method comprising applying strengthening means to the masonry arch, applying a lifting force to the masonry arch to raise the masonry arch to a raised position, and securing the masonry arch in the raised position.
The method may further comprise, prior to applying the lifting force, forming a moveable portion of the masonry arch bridge by cutting the spandrel walls to form a cut on each side of the masonry arch.
In another aspect the present invention provides a masonry arch bridge comprising a masonry arch having an upper surface, a spandrel wall at each end of the masonry arch, and a strengthening means applied to the masonry arch.
Applying the strengthening means may comprise applying a compressive force to the masonry arch. The strengthening means may be provided above the masonry arch.
The strengthening means may be applied by anchoring one or more tendons relative to the masonry arch and applying a tensioning force to the tendon(s).
A first and a second tendon may overlap in the lateral direction in a region above the crown of the masonry arch. The tendons may generally be positioned above the masonry arch. Such a positioning both allows for the provision of a suitable compressive force, and allows vehicles or other traffic to pass under the bridge whilst the strengthening means is applied.
The tendon(s) may be anchored to the spandrel walls, parapets and/or to the masonry arch. One end of the tendon(s) may be anchored to one side of the crown, the other end of the tendon(s) may be anchored to the other side of the crown. The tendon(s) may be upwardly inclined in an inward lateral direction. The tendon(s) may be positioned in such a direction to maintain a sufficiently stabilising compression force in the masonry arch when the lifting force is applied. One (set of) tendon(s) may extend from an upper anchor position on a first side of the crown and another (set of) tendon(s) may extend from an upper anchor position on a second side of the crown, laterally opposite to the first side. The (sets of) tendon(s) may extend to respective lower anchor positions. The upper anchor positions may be live ends, the lower anchor positions may be dead ends. The angle of each tendon to the horizontal may be approximately equal.
The masonry arch bridge may comprise one or more inner spandrel walls. Further tendon(s) may be applied to the inner spandrel wall(s).
The strengthening means may comprise one or more devices, e.g. jacks, being located and orientated to apply a force to the masonry arch, the force having at least a component in the horizontal direction. The devices may act in compression. The devices may be orientated such that the force comprises at least a component in the lateral direction of the masonry arch. The devices may provide a force that is substantially only in the horizontal, lateral direction, with respect to the masonry arch. The devices may extend in the horizontal, lateral direction, with respect to the masonry arch. The one or more devices may be located at or within the cut(s) in the masonry arch. Where the cut extends in the longitudinal direction of the masonry arch (see below) the devices may be spaced evenly along the cut. The cored holes may be formed, and the devices may then be inserted into the cored holes. The devices may be loaded, before or after the cut is formed. If loaded before, this can reduce the stress on the masonry during cutting. The cored holes may have diameters of around 400-500 mm, preferably 450 mm. The centres of adjacent cored holes may be separated by approximately 1 m. The cored holes may be sized and spaced such that at least one ring of brickwork may be left beneath the cored holes (e.g. between the cored holes and the underside surface of the masonry arch). The one or more devices may at least partially maintain, or may increase, the thrust originally present due to arch action.
The strengthening means may comprise a saddle. The saddle may be applied to an upper surface of the masonry arch. The saddle may be anchored to the masonry arch.
Applying the saddle to the upper surface of the masonry arch may comprise casting a reinforced concrete saddle to the upper surface of the masonry arch and allowing the concrete to cure. Further, applying the saddle to the upper surface of the masonry arch may comprise post-tensioning the reinforced concrete saddle. The post-tensioning, along with the adhesive qualities of concrete, allows the saddle to securely anchor to the upper surface of the masonry arch. To improve the anchoring, prior to applying the saddle, the upper surface of the masonry arch may be cleaned, for example by jet-washing. Anchoring may be provided and/or enhanced using mechanical anchors between the saddle and the masonry arch.
Application of the strengthening means reduces the de-stabilisation of the masonry arch which could occur when the lifting force is applied. When the lifting force is applied, the usually present gravitational compression forces, and hence arch action, in the masonry arch may be reduced.
Application of the saddle to the upper surface of the masonry arch helps to maximise the raised height of the masonry arch—applying the saddle to the underside of the arch would reduce the space beneath the arch. Further, this position of the saddle may allow for improved access for lifting means. Further, in this position the saddle will not cover any of the external masonry, thus not largely affecting the appearance of the masonry arch bridge. Further, the majority of the steps of the method may be carried out whilst vehicles can still pass under the bridge. Thus, down-time of the transport network is minimised. This is in contrast to ground-lowering or rebuilding techniques where the transport network is necessarily disrupted for significant amounts of time.
The spandrel walls are located at the longitudinal ends of the masonry arch. The spandrel walls may extend to adjacent masonry arches, the top of the masonry bridge and/or the foundations of the masonry bridge. The spandrel walls may be considered to be the end walls of the masonry arch bridge.
A lateral direction may be defined as being perpendicular to the longitudinal direction of the masonry arch in the horizontal direction.
Forming the moveable portion reduces the mass required to be lifted. The cuts may be made laterally outwardly of the crown of the arch. Further, the cuts may be made laterally outward of the entire arch. The cuts may be made intermediate the crown of the arch and the laterally outward periphery of the arch. Thus, the entire bridge or arch need not be lifted. Cutting of the masonry arch bridge may be achieved by wire sawing, or preferably diamond sawing or coring, to provide clean cuts. Cutting of the masonry bridge may also be achieved by splitting the masonry, for example using masonry wedges.
The method may also comprise cutting the masonry arch adjacent the cuts in the spandrel walls to form the moveable portion. These cuts may extend along the masonry arch in a longitudinal direction. This may be necessary, for example, when the cuts in the spandrel walls are made intermediate the crown and the laterally outward edge of the masonry arch.
During lifting, shim wedges may be inserted into the cuts and/or jacking pockets to support the masonry arch. Such shim wedges can be used in any of the embodiments of the present invention to support the masonry arch when gaps are formed at the cuts during lifting. The shims may preferably be around 50 mm in thickness.
In certain aspects, no strengthening means is necessary.
During lifting, the lifting force may be applied such that arch action of the masonry arch is sufficiently maintained to ensure that the masonry arch maintains its structural integrity.
The lifting force may be provided at a lower portion of the masonry arch.
At least a component of the lifting force may act to compress the masonry arch.
Thus, external strengthening may not be needed during the lifting process. Rather, the method may rely on the natural arch action of the masonry arch and/or compression due to the lifting force.
The lifting force may be provided by one or more lifting devices.
The lifting force may be provided by one or more tensile members connecting the masonry arch to a support structure positioned above the masonry arch. Further, the support structure may span the masonry arch. The support structure preferably spans the masonry arch in its lateral direction. The support structure may span the arch in its longitudinal direction. The tensile member(s) may comprise lifting strands or lifting bars. The support structure may comprise a truss or a support beam. The tensile member(s) may be connected directly to the masonry arch, preferably to a lower portion of the masonry arch. The tensile member(s) may be connected to the strengthening means. The support structure may be supported on support structure foundations which may be installed in the embankments at the lateral sides of the masonry arch bridge. The truss may be a modular truss. The truss may comprise upper and lower bracing portions. The lower bracing portions may be removable from the truss to ease access to the masonry arch. The lower bracing portion may be applied to the truss prior to the lifting force being applied.
The lifting force may be applied via jacks. The jacks may be located at foundations of the support structure, and hence lift the support structure, the tensile member(s) and the moveable portion. The jacks may be ram jacks. Alternatively or additionally, the jacks may be located in the cut(s) in the masonry arch bridge. The jacks may be inclined.
Alternatively, the tensile member(s) may comprise the jacks, e.g. when the tensile member is a strand, the strand may comprise a strand jack. In this case, the support structure may remain static throughout the lift.
The saddle may comprise a lifting beam, the tensile member(s) being connected to the lifting beam. The lifting beam may be a beam extending in the longitudinal direction of the saddle. The lifting beam may have anchor points to which the tensile member(s) may be attached. Two lifting beams may be provided, one disposed on each side of the crown of the saddle. The two lifting beams may be disposed symmetrically on each side of the crown of the saddle.
The moveable portion and the tensile members may be symmetric about the crown of the arch. The net lifting force may act through the centre of mass of the moveable portion, so as to avoid rotation of the moveable portion.
The saddle may comprise two sets of tendons, each set of tendons spanning between first and second live ends and to first and second dead ends respectively. The tendons may be spaced longitudinally from each other and extend generally in the lateral direction. The tendons may be evenly spaced in the lateral direction.
The first and second live ends of each set of tendons may extend longitudinally. The first and second live ends may be positioned at the crown of the saddle. This eases access to the live ends for tensioning. The first and second dead ends may be positioned at the lower portions of the sides of the saddle. The first live end may be positioned nearer the second dead end than the first dead end, and the second live end may be positioned nearer the first dead end than the second dead end. This allows the two sets of tendons to overlap at the crown of the saddle. Such an arrangement improves the post-tensioned qualities and anchoring of the saddle.
The masonry arch may be supported on respective piers at each side of the masonry arch, and the lifting force may be applied at the piers. The lifting force may be applied using jacks, preferably ram jacks. The jacks may be housed in the piers in jacking pockets, which may be formed by cutting or coring into the piers.
Securing the masonry arch in the raised position may comprise grouting or filling the gaps formed when the masonry arch is lifted. Once the masonry arch has been secured, the lifting force may be removed.
In one embodiment, the moveable portion of the masonry arch bridge, when raised, may undergo linear vertical movement, i.e. with no rotation. In this embodiment, the moveable portion may comprise the masonry arch and a portion of the masonry arch bridge substantially vertically above the masonry arch.
In this embodiment, the cuts may be substantially vertical. In this case horizontal cuts may also be made between the side of the arch and the vertical cut. When such cuts are made and the masonry arch is raised, a gap will form in the location of each of the horizontal cuts. To secure the masonry arch in the raised position, this gap may be grouted or filled.
The cuts may be upwardly inclined in the laterally outward direction. In this case, no horizontal cuts may be necessary. When such cuts are made and the masonry arch is raised, a gap will form in the location of each of the upwardly inclined cuts. To secure the masonry arch bridge in the raised position, this gap may be grouted or filled.
In another embodiment, the moveable portion of the masonry arch bridge, when raised, may undergo rotational movement. This may be achieved with or without using the saddle.
When using the saddle, the saddle may comprise a first saddle portion and a second saddle portion, and the first saddle portion may be applied to a first portion of the masonry arch and the second saddle portion may be applied to a second portion of the masonry arch. The masonry arch may consist of the first portion and the second portion of the masonry arch. Preferably, the first and second saddle portions may meet at the crown of the masonry arch. The first and second saddle portion may each be applied to one half of the upper surface of the masonry arch, i.e. one side from the base of the arch to the crown.
The first and second saddle portions may each comprise a set of tendons spanning between a live end and a dead end. The tendons may be spaced longitudinally from each other and extend in the lateral direction. The tendons may be evenly spaced.
The live and dead ends of the set of tendons may extend longitudinally. The dead end may be positioned at the crown of the saddle. The live end may be positioned at the lateral periphery of the saddle portion. The tendons may be upwardly inclined in a laterally inward direction from the outer periphery to the crown of the saddle. Such an arrangement improves the post-tensioned qualities and anchoring of the saddle.
The concrete saddle may be cast such that the upper surface of saddle is approximately at the original road level. Such an arrangement reduces the need for re-profiling the road surface once the masonry bridge has been raised.
Regardless of whether the saddle is used, the method may further comprise, prior to applying the lifting force, forming wedge-shaped gaps in the spandrel walls laterally outward of the masonry arch; and forming a first and second moveable portion by cutting through the masonry arch.
Preferably, when the saddle is used, the masonry arch may be cut in the location where the first and second saddle portions meet.
Preferably, regardless of whether the saddle is used, the masonry arch may be cut at the crown of the masonry arch. Further, horizontal cuts may be formed in the piers.
When the first and second moveable portions are formed and the lifting force is applied, the first and second moveable portions may pivot about respective first and second pivot points. The first and second pivot points may be located at a position laterally outwardly from the masonry arch. This position could be, for example, where the masonry arch bridge meets the embankment. This position may be at or near where the masonry arch meets the piers. This position could be within additional masonry arches that are laterally outward of the masonry arch (see below), for example in a three-span bridge the position could be located in the outer (side) masonry arches, approximately one-quarter of the span of the outer masonry arches from the outer lateral extremity of the outer masonry arches. In order for the first and second moveable portions to pivot, the lifting force should be applied to the respective first and second portions at positions laterally inward of the centre of mass of the first and second portions.
The tip of the wedge-shaped gap should be positioned at the pivot point. The angle of the wedge-shaped gap should be sufficiently large to allow the first and second moveable portions to sufficiently rotate to enlarge the space the masonry arch bridge as desired.
The step of securing the masonry arch bridge may comprise inserting or forming a wedge between the first and second bridge portions. Further, the gap formed in the location of the horizontal cut may be grouted or filled.
Any masonry, mortar, concrete or grout used to secure the bridge in its lifted position, e.g. the grout filling the cuts, gaps or wedge-shaped gaps, may be applied and then may be left to cure, e.g. for around 24 hours. The application and/or curing may occur whilst the lifting force and/or strengthening means remain being applied to the masonry arch. Once applied/cured, the strengthening means and/or lifting force can be removed.
An advantage of pivoting the moveable portions in this manner is that the road surface need not be re-profiled after the masonry arch bridge has been secured, since the road surface is already inclined due to the rotation.
In one embodiment, the masonry arch bridge may be a single-span masonry arch bridge.
In another embodiment, the masonry arch bridge may be a multi-span masonry arch bridge comprising one or more additional masonry arches and respective one or more piers between adjacent masonry arches, and the strengthening means may be applied to the additional masonry arch(es).
The multi-span masonry arch bridge thus comprises a plurality of masonry arches. Adjacent masonry arches may share, and hence may be separated by, respective piers. The wedge-shaped gaps in the spandrel walls may be located laterally outward of the outer-most masonry arches. The outer-most masonry arches are the two masonry arches which are furthest from the centre of the masonry arch bridge in the lateral direction. Alternatively, the wedge-shaped gaps may be located between adjacent masonry arches. Alternatively, the wedge-shaped gaps may be located within the outer, or outermost, masonry arches, for example in a three-span bridge the location could be located in the outer masonry arches, approximately one-quarter of the span of the outer, or outermost, masonry arches from the outer lateral extremity of the outer, or outermost, masonry arches.
The masonry arch discussed in relation to the present invention may be any one of the plurality of masonry arches. The invention may be applied to one or more of the masonry arches.
The multi-span masonry arch bridge may consist of two masonry arches. The two masonry arches may be considered to be the outer-most arches.
The multi-span masonry arch bridge may consist of an odd number of masonry arches. In this case, the masonry arch discussed in relation to the present invention may be a central masonry arch.
The multi-span masonry arch bridge may comprise one or more first side masonry arches to one side of the central masonry arch, and one or more second side masonry arches to the other side of central masonry arch. The number of first and second side masonry arches may be the same. The first and second side masonry arches may correspond to one another such that the masonry arch bridge is symmetric about the crown of the central masonry arch. A pier may be located between and may support adjacent masonry arches. In the art, side masonry arches may be known as back arches.
The cut may be formed in the central arch, preferably at the crown.
For example, the multi-span masonry arch bridge may be a three-span masonry arch bridge. The three-span masonry arch bridge may comprise first and second side masonry arches, a first pier adjacent to the central masonry arch and the first side masonry arch, and a second pier adjacent to the central masonry arch and the second side masonry arch.
In this case, the first saddle portion may be applied to the upper surface of the first side masonry arch and a portion of the central masonry arch, and the second saddle portion may be applied to the upper surface of the second side masonry arch and the remaining portion of the central masonry arch.
The one or more devices located and orientated to apply a force to the masonry arch, the force having at least a component in the horizontal direction may be located in the cut in the central arch.
The wedge-shaped gaps in the spandrel walls may be located laterally outward of the first and second side arches. Alternatively, the wedge-shaped gaps may be located within the first and second side arches. For example, the wedge-shaped gaps may be formed in the first and/or second side arches approximately one-quarter of the span of the first/second side arch from the outer lateral extremity of the first/second side arch respectively.
The wedge-shaped gaps may be alternatively be replaced by cuts, for example if the spandrel wall is sufficiently small or if the geometry of the masonry arch bridge so allows.
Additionally or alternatively, the method may comprise providing a bearing in the cut.
There may be one or more bearings. The bearing may be provided at the laterally outward side of the moveable portion. The bearing may act to maintain compression, and hence arch action, of the masonry arch during lifting. The bearing may reduce friction during the lift. The bearing may maintain the structural form of the bridge with or without providing compression (e.g. by preventing cut masonry crumbling). The bearing may be provided between a first surface formed on the moveable portion and a second surface formed on the remainder of the bridge adjacent the first surface. The surfaces may be planar. The surfaces may be vertical. The surfaces may extend in the longitudinal direction of the masonry arch bridge. The bearing surfaces may or may not be provided along substantially the entire longitudinal length of the cut. The bearing surfaces may or may not extend along substantially the entire depth of the cut. The longitudinal length of the cut is a horizontal direction generally parallel with the longitudinal direction of the arch.
The cut may comprise one or more cored holes. The cored hole(s) may be substantially vertical. The cored hole(s) may have a generally circular cross-sectional shape. The cored holes may be positioned adjacent one another, and may form substantially the entire longitudinal length of the cut. The cored holes may be spaced from one another. The cored holes may be discrete and joined by a cut through the masonry.
A bearing may be located in (each of) the cored hole(s), or may be located on only some of the cored holes.
The bearing may comprise two planar portions which may be substantially identical to one another. The width of the planar portions may be substantially the same as the diameter of the cored hole(s).
The length of the planar portions may be substantially the same as the depth of the cored hole(s).
The length of the planar portions may be greater than the depth of the cored hole(s).
The length of the planar portions may be less than the depth of the cored hole(s). In use, the planar portions may be located at a lower portion of the cored hole(s). The bearing may further comprise one or more extension portions configured to extend from the planar portions and out of the cored hole. The extension portion(s) can allow the bearing to be inserted into, removed from and positioned within the cored hole. In use, the extension portion(s) may extend in a generally vertical direction.
The bearing may comprise a friction reducing means. The friction reducing means may be located between the first and second surfaces. The friction reducing means may have an area that is substantially similar to that of the planar portions. The friction reducing means may be attached to one or neither of the surfaces. The friction reducing means may be grease. The grease may be provided in a layer. The friction reducing means may comprise a layer of PTFE. The first and second surfaces may be stainless steel surfaces. The planar portions may be stainless steel layers.
The bearing may comprise a means for protecting the surfaces of the bearing. The means may be a protective layer, and may be positioned between the two surfaces. The protective means may be resilient. The protective means may protect the surfaces from damage. The protective means may provide the friction reducing means.
The bearing may be attached to the moveable portion and/or the remainder of the bridge by grout/concrete. The bearing may be attached to the moveable portion and/or the remainder of the bridge using pegs. The pegs may be embedded in the concrete/grout. The bearing may be positioned in the cored hole, and the grout/concrete may then poured into the cored hole and allowed to set around the pegs.
Each bearing may have vertical dimension of about 100 mm to 4000 mm, preferably 500 mm or 4000 mm, and a horizontal dimension of about 150 mm to 500 mm, preferably 300 mm.
The moveable portion may be lifted about 250 mm to 1000 mm, preferably 500 mm.
The bearing may contain a material (e.g. rubber) or a hydraulic device to accommodate minor mis-alignment of the bearing with respect to the intended slip plane whilst still maintaining pressure across the slip plane.
Prior to applying the strengthening means and/or forming the moveable portion, a shield may be applied to the masonry arch bridge. Debris netting may be applied to the masonry arch bridge. This will increase the safety of the overall procedure and will mean that people, cars, trains, etc. will be able to pass beneath the bridge while the majority of the work is conducted. The shield may be formed of steel. The shield may have a thickness of less than 15 mm so as to be accommodated in typical working clearance. The shield and/or netting may be recoverable for use on further masonry arch bridges. The shield may be positioned underneath the masonry arch. The shield may be supported on the ground beneath the masonry arch. The shield may have an arch shape. The shape may generally follow the shape of the masonry arch, such that the tracks/roadway underneath the arch may be used whilst the present method is carried out. There may be a small gap separating the masonry arch and the shield. The shield may extend beyond the longitudinal extremity of the bridge.
Also, masonry arch bridge parapets and the spandrel walls may be braced to ensure they remain intact during the work. Alternatively, the parapets may be removed. Further, the existing masonry bridge fill material may be excavated to uncover the masonry arch; any non-excavated bridge fill material may be battered back.
Certain preferred embodiments will now be described by way of example only and with reference to the accompanying drawings, in which
Regarding the first embodiment,
The first phase of the method comprises installing lifting truss foundations 10 in the fill material and the embankments 5, installing debris netting and shield 11 to the masonry arch 3 and the masonry arch bridge 1 and installing a truss 12 on the truss foundations 10.
With reference to
With reference to
With reference to
With reference to
With reference to
The saddle comprises two sets of tendons 24 connecting first and second live ends 25 to first and second dead ends 26 respectively. The tendons 24 are spaced longitudinally from each other and extend in the lateral direction. The tendons 24 are evenly spaced.
The first and second live ends of each set of tendons 24 extend longitudinally. The first and second live ends 25 are positioned at the crown of the saddle 20. The first and second dead ends are positioned at the lower portions of the sides of the saddle. The first live end 25 is positioned nearer the second dead end 26 than the first dead end 26, and the second live end 25 is positioned nearer the first dead end 26 than the second dead end 26. This allows the two sets of tendons 24 to overlap at the crown of the saddle 20.
Regarding the second embodiment,
The first phase of the method comprises installing debris netting and shield 111 to the masonry arch bridge 101
With reference to
With reference to
With reference to
With reference to
Upon lifting, gaps 133 are formed between the masonry arches 103, 116, 117 and the piers 109. A crown gap 143 is also formed between the two movable portions 131, 136. Further, in addition to the jacks, shim wedges (not shown) may be inserted into the cuts 132 and/or jacking pockets 134 adjacent the jacks to support the masonry arch during lifting. Such shim wedges can be used in any of the embodiments of the present invention (e.g. regardless of whether jacks are used) to support the masonry arch when gaps are formed at the cuts during lifting. The shims may preferably be around 50 mm in thickness.
A wedge, masonry, mortar and/or grout 140 is installed to fill gaps 133, 143. This is allowed to cure and the jacks 115 are de-jacked. The jacking pockets 134 can then be filled.
With reference to
The saddle portion 128, 129 comprises a set of tendons 124 connecting live end 125 to dead end 126. The tendons 124 are spaced longitudinally from each other and extend in the lateral direction. The tendons 124 are evenly spaced.
The live and dead ends 125, 126 of the set of tendons 124 extend longitudinally. The dead end 126 is positioned at the crown of the saddle 120. The live end 125 is positioned at the lateral periphery of the saddle portion 128, 129. The tendons 124 are upwardly inclined in a laterally inward direction from the outer periphery to the crown of the saddle 120.
The concrete saddle 120 is cast such that the upper surface of saddle 120 is approximately at the original road level 114.
Regarding the third embodiment, similarly to the second embodiment,
The first phase of the method comprises installing debris netting and shield 111 to the masonry arch bridge 101. The shield can be seen in further detail in
With reference to
With reference to
With reference to
With reference to
Upon lifting, gaps 133 are formed between the masonry arches 103, 116, 117 and the piers 109. A crown gap 143 is also formed between the two movable portions 131, 136. To ensure arch compression is maintained during jacking, the horizontal jacks located in the cores 150 are inflated during jacking. Further, in addition to the vertical and horizontal jacks, shim wedges (not shown) may be inserted adjacent the vertical and horizontal jacks 115 (e.g. in the cores 150, the jacking pockets 134, the horizontal cut 132 and/or the crown cut 135) to support the masonry arch during lifting.
A wedge, masonry, mortar and/or grout 140 is installed to fill gaps 133, 143. This is allowed to cure and the jacks 115 are de-jacked. This may be achieved by using grout bags that are inserted into the gaps 133, 143 and inflated/filled with grout. Once the jacks are removed, the jacking pockets 134 and the cores 150 can be filled.
With reference to
The tendons may be anchored to the spandrel wall 204. One end of each tendon 224 is anchored to one side of the crown, and the other end of each tendon 224 is anchored to the other side of the crown. The tendons 224 are upwardly inclined in an inward lateral direction. One tendon extends from an upper anchor position 225 on a first side of the crown and another tendon extends from an upper anchor position 225 on a second side of the crown. The tendons may extend to respective lower anchor positions 226. The upper anchor positions 225 are live ends, the lower anchor positions 226 are dead ends. The angle each tendon 224 makes with the horizontal is approximately equal.
As shown in
As shown in
Another embodiment of the method is illustrated in
However, alternatively (or additionally to the lifting from above shown in
The bearing 451 acts to maintain compression and hence arch action of the masonry arch 403. The bearing 451 also reduces friction and allows for a more controlled lift. This is achieved by having a cut 430 comprising a plurality of cored holes 460. The cored holes 460 are substantially vertical. The cored holes 460 have a generally circular cross-sectional shape. The cored holes 460 are positioned adjacent one another and collectively extend along substantially the entire longitudinal length (i.e. in a horizontal direction) of the cut 430. The cored holes 460 are not present in the spandrel walls.
A bearing 451 is located in each of the cored holes 460. The bearing 451 comprises two planar portions 452, 453 which are substantially identical to one another. The width of the planar portions 452, 453 is substantially the same as the diameter of the cored holes 460. The length of the planar portions 452, 453 is substantially the same as the depth of the cored holes 460.
The bearing 451 comprises a friction reducing means 455, such as grease. The friction reducing means 455 is located between planar portions 452, 453. The friction reducing means 455 has an area that is substantially similar to that of the planar portions 452, 453.
The planar portion 452 is attached to the moveable portion 432 by grout/concrete 456. The planar portion 452 is attached to the grout/concrete 456 by pegs 454. The pegs 454 are embedded in the grout/concrete 456. The bearing 451 may be positioned in the cored hole 460, and the grout/concrete 456 is then poured into the cored hole 460 and allowed to set around the pegs 454. Planar portion 453 is attached to the remainder of the bridge 401 in a similar fashion.
When in use, the planar portions 452, 453 are in slidable contact with one another. Thus, as the moveable portion 432 is lifted (by any of the above-discussed methods) the planar portion 453 provides a lateral support to the planar portion 452. The planar portion 452 provides a lateral support to the moveable portion 432. The bearing 451 thus provides a lateral reaction force to the moveable portion 432, and helps to maintain the form of the moveable portion 432 and the remainder of the masonry arch bridge 401.
As shown in
Number | Date | Country | Kind |
---|---|---|---|
1407868.7 | May 2014 | GB | national |
1420921.7 | Nov 2014 | GB | national |
1501828.6 | Feb 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/059630 | 5/1/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/166103 | 11/5/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1784271 | Collins | Dec 1930 | A |
4353190 | Gleeson | Oct 1982 | A |
4558969 | Fitzsimons | Dec 1985 | A |
4890993 | Wilson | Jan 1990 | A |
5252002 | Day | Oct 1993 | A |
5380123 | Ryynanen | Jan 1995 | A |
5836717 | Bernini | Nov 1998 | A |
6243994 | Bernini | Jun 2001 | B1 |
6367214 | Monachino | Apr 2002 | B1 |
6640505 | Heierli | Nov 2003 | B1 |
8925282 | Aston | Jan 2015 | B2 |
20040062609 | Heierli | Apr 2004 | A1 |
20070261341 | Lockwood | Nov 2007 | A1 |
20150322635 | Aston | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
102704414 | Oct 2012 | CN |
1 045 089 | Oct 2000 | EP |
2 302 896 | Feb 1997 | GB |
2010185233 | Aug 2010 | JP |
Entry |
---|
International Search Report of International Application No. PCT/EP2015/059630 dated Jul. 10, 2015, 3 pages. |
Written Opinion of the International Searching Authority of International Application No. PCT/EP2015/059630 dated Jul. 10, 2015, 5 pages. |
UKIPO Search Report of British Application No. 1407868.7 dated Oct. 1, 2014, 3 pages. |
UKIPO Search Report of British Application No. 1420921.7 dated Mar. 27, 2015, 4 pages. |
UKIPO Search Report of British Application No. 1501828.6 dated Oct. 1, 2015, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20170067215 A1 | Mar 2017 | US |