Fraudulent and cloned devices cause security issues and lost revenue. A vital security need in communication systems is to identify, authenticate, and authorize legitimate devices to access services. One way to handle authentication and authorization for devices is to use cryptographic keys.
Cryptographic keys are used to provide for secure encryption and decryption of information as well as device identification, authentication, and authorization. Unfortunately, the management of keys is complex, and symmetric cryptography provides protection challenges.
Therefore a need exists for a method and system for providing cryptographic protection for devices and provided services while decreasing the complexity of key management.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, which together with the detailed description below are incorporated in and form part of the specification and serve to further illustrate various embodiments of concepts that include the claimed invention, and to explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
An exemplary embodiment provides using a device generated asymmetric key pair to authenticate enrollment into a public key infrastructure (PKI) domain. The PKI domain comprises the end-to-end solution using a PKI ad includes all elements managed by the PKI and all elements that have certificates issued by the PKI. The generation of the device asymmetric key pair and unique device identifier (ID) preferably occurs during factory provisioning and configuration of the device, which in an exemplary embodiment is a mobile device. It should be understood that an exemplary embodiment relates to the factory provisioning and configuration of a device, but can alternately be performed on a circuit board that is later utilized within a device. The delivery of the public key of the generated device asymmetric key pair and unique device ID to the PKI preferably occurs prior to device enrollment, and preferably occurs over a different interface to the PKI than the interface over which device enrollment occurs. The device asymmetric key pair and unique device ID are preferably immutable on the device or circuit board and may be used more than once, based on policy, to enroll the device or circuit board into or with the PKI as needed. The device asymmetric key pair and unique device ID are unique to the device or circuit board, thus enabling the PKI to authenticate a device during enrollment.
The device will use the private key of the device asymmetric key pair to digitally sign a Certificate Signing Request (CSR), which preferably comprises a unique device ID. The device will send the CSR to the PKI as part of the enrollment process with the PKI domain. The PKI will use the delivered device public key and preferably the delivered unique device ID to authenticate the CSR received from the device. Based on a successful authentication result and other CSR verification, the PKI will issue a certificate to the device, enrolling the device into the PKI domain.
This exemplary embodiment thereby creates a service certificate that includes identifying information such as a device unique ID. In this manner, only device asymmetric key pairs with the device public key provisioned into the PKI can be used to authenticate device enrollment. Other devices will preferably be rejected and flagged when attempting to enroll into the PKI.
Factory 101 preferably includes mobile device 111 and Manufacturing System 121. Factory 101 is preferably where mobile devices will be provisioned and configured, including generating the device asymmetric key pair and unique device ID. Preferably, the Manufacturing System 121 will obtain the public key portion of the generated device asymmetric key pair and unique device ID from the mobile device 111 and deliver them to PKI 103. In an exemplary embodiment, the factory is a manufacturer-controlled environment where the platform asymmetric key pair is generated on the device and permanently stored, along with the unique device identifier. The Factory Test Station extracts the platform asymmetric public key and device identifier from the device for storage in the manufacturing database.
In accordance with an exemplary embodiment, the device asymmetric key pair, once generated, is protected against erasure, since these keys are the method to authenticate the mobile device to PKI 103. Further, the device asymmetric key pair enables production of properly signed certificates for various services. Without this key pair, Mobile Device 111 will not be able to authenticate itself to PKI 103 as a genuine device.
Mobile device 111 preferably protects the private portion of the asymmetric key material against information disclosure. This confidentiality protection preferably applies to device and service private keys. Modern processors typically provide hardware capabilities to securely encrypt and store key material. The encryption of key material preferably utilizes designated encryption keys that are unique to the device; thus even if the encrypted key material can be recovered from a device, it cannot be decrypted on another device.
Mobile device 111 is sometimes referred to as a subscriber unit. It should be understood that system 100 would typically include a plurality of mobile devices, but only one, mobile device 111, is depicted in
Manufacturing System 121 collects various data from mobile devices, such as by receiving the device public key of the generated device asymmetric key pair. Manufacturing System 121 receives a mobile device 111's public key, PKD, or alternately associated self-signed certificate that contains PKD, along with a unique device ID of Mobile Device 111. The device public key and preferably the unique device ID will then be delivered to PKI 103. The unique device identifier of mobile device 111 is preferably an identifier such as a processor electronic serial number, memory component electronic serial number, random generated number or combination of the above.
Manufacturing System 121 stores characteristics, identifiers and other information about the mobile devices as they are manufactured.
Input port 201 receives electronic signals from PKI 103 and Manufacturing System 121. Input port 201 is electrically connected to processor 203. Output port 207 transmits signals to PKI 103 and Manufacturing System 121. Output port 207 is electrically coupled to processor 203. Although depicted in
Processor 203 may include a microprocessor, application-specific integrated circuit (ASIC), field-programmable gate array, or another suitable electronic device. Processor 203 obtains and provides information (for example, from database 205 and/or input port 201), and processes the information by executing one or more software instructions or modules, capable of being stored, for example, in a random access memory (“RAM”) area of database 205 or a read only memory (“ROM”) of database 205 or another non-transitory computer readable medium (not shown). The software can include firmware, one or more applications, program data, filters, rules, one or more program modules, and other executable instructions. Processor 203 is configured to retrieve from database 205 and execute, among other things, software related to the control processes and methods described herein.
Database 205 can include one or more non-transitory computer-readable media, and may include a program storage area and a data storage area. The program storage area and the data storage area can include combinations of different types of memory, as described herein. In the embodiment illustrated, database 205 stores, among other things, instructions for processor 203 to carry out the any methods included herein.
Input port 301 receives electronic signals from Factory 101. More particularly, input port 301 receives electronic signals from mobile device 111 and Manufacturing System 121. Input port 301 is electrically connected to processor 303. Output port 307 transmits signals to Factory 101, and more particularly mobile device 111 and Manufacturing System 121. Output port 307 is electrically coupled to processor 303. Although depicted in
Processor 303 may include a microprocessor, application-specific integrated circuit (ASIC), field-programmable gate array, or another suitable electronic device. Processor 303 obtains and provides information (for example, from database 305 and/or input port 301), and processes the information by executing one or more software instructions or modules, capable of being stored, for example, in a random access memory (“RAM”) area of database 305 or a read only memory (“ROM”) of database 305 or another non-transitory computer readable medium (not shown). The software can include firmware, one or more applications, program data, filters, rules, one or more program modules, and other executable instructions. Processor 303 is configured to retrieve from database 305 and execute, among other things, software related to the control processes and methods described herein.
Database 305 can include one or more non-transitory computer-readable media, and may include a program storage area and a data storage area. The program storage area and the data storage area can include combinations of different types of memory, as described herein. In the embodiment illustrated, database 305 stores, among other things, instructions for processor 303 to carry out the any methods included herein.
The private key SKD, is preferably securely stored in mobile device 111 and protected against erasure. Public key PKD does not need protection against disclosure, since it is a public key. However, the public key does require protection against erasure in the device. In accordance with an exemplary embodiment, all asymmetric keys are generated within a device and the private key is never exposed outside the device. The generated device asymmetric key pair is preferably unique for each manufactured device. The device asymmetric key pair remains intact for the lifetime of the device.
In accordance with an exemplary embodiment, after generating the device asymmetric key pair, Mobile Device 111 sends Register Device Asymmetric Public Key and Device ID Message 407 to Manufacturing System 121. In the preferred embodiment this message includes PKD and the unique device ID.
Manufacturing System 121 then sends Public Key with Key ID Message 409 to PKI 103. In the preferred embodiment this message includes PKD and the unique device ID of Mobile Device 111. PKI 103 will receive this message and store the Mobile Device 111 PKD and unique device ID. PKI 103 will use this information to authenticate an enrollment request from Mobile Device 111. In accordance with an exemplary embodiment, the Public Key and unique device ID are protected cryptographically during transport.
After creating the service CSR, compiling a Certificate Request Message, and signing the message with the device private key SKF, Mobile Device 111 sends Certificate Request Message 507 to PKI 103. PKI 103 receives this message and uses PKD and preferably the unique device ID to authenticate (509) the CSR received from Mobile Device 111. Based on a successful authentication result and preferably other CSR verification, PKI 103 issues a service certificate for the Mobile Device 111, enrolling Mobile Device 111 into the PKI domain, and sends Certificate Reply Message 511 to Mobile Device 111. Mobile Device 111 will store (513) the service certificate.
Factory 101 establishes (601) a device asymmetric key pair and a unique identifier in Mobile Device 111. In accordance with an exemplary embodiment, the device asymmetric key pair comprises a public key and a private key.
Factory 101 transfers (603) the public key and the unique identifier to PKI 103.
PKI 103 imports (605) the public key and the unique identifier.
Mobile device 111 generates (607) a certificate signing request (CSR). In accordance with an exemplary embodiment, the CSR is protected with the digital signature of the device private key.
The CSR is transferred (609) to PKI 103.
PKI 103 authenticates (611) the CSR, preferably using the device public key and the unique identifier.
PKI 103 determines (613) if the authentication of the CSR was successful. If the authentication was not successful, the process ends (699). If the authentication was successful, PKI 103 issues (615) a certificate to Mobile Device 111.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more generic or specialized electronic processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising an electronic processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
9143886 | Abou-El-Ella et al. | Sep 2015 | B1 |
9712492 | Kim et al. | Jul 2017 | B1 |
10083440 | Vidu et al. | Sep 2018 | B2 |
10425401 | Pecen | Sep 2019 | B1 |
20040005904 | Wolf et al. | Jan 2004 | A1 |
20040139329 | Abdallah | Jul 2004 | A1 |
20080184030 | Kelly | Jul 2008 | A1 |
20110161659 | Himawan | Jun 2011 | A1 |
20120066499 | Ali | Mar 2012 | A1 |
20120216042 | Brown et al. | Aug 2012 | A1 |
20130102286 | Toksvig et al. | Apr 2013 | A1 |
20130140361 | Ling | Jun 2013 | A1 |
20140279324 | King et al. | Sep 2014 | A1 |
20150113267 | Busser | Apr 2015 | A1 |
20150304309 | Verma | Oct 2015 | A1 |
20150326543 | Pochuev | Nov 2015 | A1 |
20150379308 | Nakano et al. | Dec 2015 | A1 |
20160094548 | Lee | Mar 2016 | A1 |
20160134624 | Jacobson et al. | May 2016 | A1 |
20170093565 | Yang | Mar 2017 | A1 |
20180007037 | Reese | Jan 2018 | A1 |
20180060904 | Hunt et al. | Mar 2018 | A1 |
20180206117 | Stahl | Jul 2018 | A1 |
20180316511 | Meyer et al. | Nov 2018 | A1 |
20180323977 | Hojsik | Nov 2018 | A1 |
20190074980 | Loreskar | Mar 2019 | A1 |
20190149316 | Pala | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2940961 | Nov 2015 | EP |
Number | Date | Country | |
---|---|---|---|
20210067349 A1 | Mar 2021 | US |