Method of fabricating 3D vacuum insulated refrigerator structure having core material

Information

  • Patent Grant
  • 11752669
  • Patent Number
    11,752,669
  • Date Filed
    Tuesday, December 28, 2021
    2 years ago
  • Date Issued
    Tuesday, September 12, 2023
    a year ago
Abstract
A method of fabricating a vacuum insulated refrigerator structure includes positioning a first barrier film in a female mold cavity. Porous filler material is positioned on the barrier film, and a second barrier film is positioned over the porous filler material. A male mold is brought into contact with the second barrier film to deform and compress the porous filler material into a 3D shape. A vacuum is formed between the first and second barrier films, and the first and second peripheral edge portions are sealed together to form a vacuum insulated core. The vacuum insulated core may be positioned between a liner and a wrapper to form an insulated refrigerator cabinet, door, or other vacuum insulated component.
Description
BACKGROUND OF THE INVENTION

Various types of vacuum insulated refrigerator cabinets, doors, and other such structures have been developed. However, known methods of forming vacuum insulated structures may suffer from various drawbacks and limitations.


SUMMARY OF THE INVENTION

A method of fabricating a vacuum insulated refrigerator structure includes positioning a first barrier film in a female mold cavity. Porous filler material is positioned on the first barrier film, and a second barrier film is positioned over the porous filler material. The first and second barrier films have first and second peripheral edge portions, respectively. The porous filler material is disposed between the first and second barrier films. A male mold is brought into contact with the second barrier film to thereby cause the porous filler material to deform into a 3D shape including a central portion and at least one sidewall portion that extends transversely from the central portion. A vacuum is formed between the first and second barrier films, and the first and second peripheral edge portions are sealed together to form a vacuum insulated core having porous filler material disposed in a vacuum. The vacuum insulated core may be positioned between a liner and a wrapper to form an insulated refrigerator cabinet, door, or other insulated refrigerator component.


These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a refrigerator;



FIG. 2 is a partially schematic view of a female mold part and first barrier film;



FIG. 3 is a partially schematic view showing porous insulation powder disposed over at least a portion of the first barrier film in the female mold part;



FIG. 4 is a partially schematic view of a male mold part having a second barrier film positioned on the male mold part;



FIG. 5 is a partially schematic view showing a core position between male and female mold parts;



FIG. 6 is a partially schematic view showing the mold inside a vacuum chamber;



FIG. 7 is a partially schematic view showing the mold inside a vacuum chamber as the peripheral edge portions of the first and second barrier films are sealed together;



FIG. 8 is a partially schematic cross sectional view of a 3D vacuum insulated core disposed between a liner and wrapper; and



FIG. 9 is a cross sectional view of a vacuum insulated refrigerator structure taken along the line IX-IX; FIG. 1.





DETAILED DESCRIPTION

For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in FIG. 2. However, it is to be understood that the disclosure may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


With reference to FIG. 1, a refrigerator 1 may include a vacuum insulated cabinet 2 forming a fresh food compartment 4 and a freezer compartment 6. Doors 8 and 10 are movably mounted to the cabinet 2, and selectively close off an access opening 12 that provides access to the fresh food compartment 4. A door or drawer 14 selectively closes off an access opening 16 that provides access to freezer compartment 6. A cooling system (not shown) including a compressor, condenser, evaporator, and other related components may be positioned in a machine compartment 18 located at a lower rear portion of cabinet 2. Door 8 may include an ice/water dispenser 20.


The cabinet 2 may comprise a vacuum insulated structure having an outer wrapper 22, an inner liner 24 that fits within the outer wrapper 22, and a vacuum insulated core structure 26 that is disposed between the wrapper 22 and liner 24. One or more of the doors 8, 10, and 14 may also comprise vacuum insulated structures having an outer wrapper or panel, inner liner, and vacuum insulated core disposed between the outer panel and the inner liner.


With reference to FIGS. 2-5, the cabinet 2 and/or doors 8, 10, and 14 may be fabricated utilizing a female mold 30 and a male mold 40. The female mold 30 may include a generally planar interior surface 32 and one or more inwardly facing side walls or surfaces 34 that together form a mold cavity 36. In the illustrated example, the female mold 30 includes four generally planar side surfaces 34 that are orthogonal relative to one another such that female mold 30 is generally bathtub-shaped.


A vacuum insulated core component may be fabricated by placing a first barrier film 38 in the mold cavity 36 with the first barrier film 38 positioned closely against surfaces 32 and 34. The first barrier film 38 includes peripheral edge portions 39 that are positioned directly against edge surfaces 33 of female mold 30. With further reference to FIG. 3, porous filler material 50 is then positioned in the female mold cavity 36 over at least a portion of first barrier film 38. Porous filler material 50 may comprise silica powder, glass fibers, or other suitable material that is capable of being deformed as required for a particular application.


With reference to FIG. 4, a male mold part 40 includes a generally planar central portion 42, outwardly-facing side surfaces 44, and edge surface portions 43. Male mold part 40 may include four outwardly facing surfaces 44 that are orthogonal relative to one another. A second barrier film 48 is positioned over or on the male mold 40, and the female and male mold components 30 and 40 are then brought together as shown in FIG. 5 to compress the silica powder 50 between barrier films 38 and 48. Alternatively, second barrier film 48 may be positioned over female mold 30 as shown by dashed lines 48A rather than positioning second barrier film 48 on male mold 40. The peripheral edge portions 39 and 49 of barrier films 38 and 48 overlap one another, and may be pressed together by surfaces 33 and 43 of female and male mold parts 30 and 40, respectively.


With further reference to FIG. 6, the female and male mold parts 30 and 40 are then positioned within a vacuum chamber 52, and air is evacuated from the vacuum chamber 52 through an opening or passageway 54 utilizing a vacuum pump (not shown) or other suitable mechanism to thereby form a vacuum in the space 56 inside vacuum chamber 52. With further reference to FIG. 7, the peripheral edge portions 39 and 49 of barrier films 38 and 48, respectively are then sealed along a seal line 58 utilizing heat sealing, adhesives, or other suitable known processes. The seal line 58 may include 4 substantially straight edge portions if the refrigerator component (e.g. cabinet 2, or doors 8, 10, or 14) have a rectangular perimeter. Barrier films 38 and 48 may comprise multilayer polymer and/or metal foil that is impervious to oxygen, nitrogen, carbon dioxide water vapor, and other gasses as may be required to maintain a vacuum.


With further reference to FIGS. 8 and 9, vacuum insulated core 26 is then removed from the vacuum chamber 52, and the core 26 is positioned between a wrapper 22 and a liner 24 to form a 3D vacuum insulated refrigerator component 60. The wrapper 22 and liner 24 may be interconnected utilizing known structures and processes. A small gap or space 66 (FIG. 9) may be formed between vacuum insulated core 26 and outer wrapper 22. Similarly, a small gap or space 68 may be formed between liner 24 and vacuum insulated core 26. The gaps 66 and/or 68 may be filled with adhesive and/or polyurethane foam (not shown) to interconnect the vacuum insulated core 26 to the wrapper 22 and liner 24, and to fill the gaps 66 and 68 to reduce or prevent flexing of wrapper 22 and liner 24. If the refrigerator component 60 comprises a cabinet 2, the forward edge 64 of the cabinet 2 may include an edge strip 62 that is sealingly connected to the wrapper 22 and liner 24.


It will be understood that the 3D vacuum core may have various shapes and sizes as required for a particular application. For example, the 3D vacuum core may be configured to be utilized in a refrigerator cabinet as described above, or it may be configured to be utilized in a refrigerator door or other component.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A method of fabricating a vacuum insulated refrigerator structure, the method comprising: providing a female mold having a female mold cavity that is defined by a central surface portion and a plurality of inwardly facing side wall surface portions that are transverse to the central surface portion, the female mold further including edge surfaces extending transversely outward from the inwardly facing side wall surface portions and away from the female mold cavity;providing a male mold having a central surface portion and a plurality of outwardly facing side wall surface portions that are transverse to the central surface portion of the male mold, the male mold further including edge surfaces extending transversely outward from the outwardly facing side wall surface portions;positioning the male and female molds in a vacuum chamber;positioning an impermeable first barrier film having a first peripheral edge portion in the female mold cavity adjacent to the central surface portion and adjacent to the inwardly facing side wall surface portions;positioning the first peripheral edge portion of the impermeable first barrier film over the edge surfaces of the female mold;positioning porous powder filler material on the impermeable first barrier film;followed by positioning an impermeable second barrier film having a second peripheral edge portion over the porous powder filler material whereby the porous powder filler material is disposed between the impermeable first and second barrier films;positioning the second peripheral edge portion of the impermeable second barrier film over the first peripheral edge portion of the impermeable first barrier film;bringing the female and male molds together;causing the male mold to press against the impermeable second barrier film to thereby deform the impermeable second barrier film from a first shape into a second shape;causing the central surface portion of the male mold and at least a portion of the plurality of outwardly facing side wall surface portions of the male mold to enter the female mold cavity thereby causing the second barrier film and the porous powder filler material to deform into a shape including a central portion having a substantially uniform thickness, the shape including at least one sidewall portion extending transversely from the central portion;causing the porous powder filler material to contact the impermeable first and second barrier films;followed by pressing the first and second peripheral edge portions together between the edge surfaces of the male and female molds by bringing the male and female molds together to define a closed configuration;followed by evacuating air between the impermeable first and second barrier films by forming a vacuum in the vacuum chamber;followed by sealing the first and second peripheral edge portions together along a seal line while the male and female molds are in the closed configuration in the vacuum chamber to form a vacuum insulated core;followed by removing the vacuum insulated core from the vacuum chamber;followed by positioning the vacuum insulated core between a wrapper and a liner; andfollowed by connecting the wrapper to the liner to form the vacuum insulated refrigerator structure.
  • 2. The method of claim 1, wherein: outer edges of the impermeable first and second barrier films are disposed outside of the male and female molds when the male and female molds are in the closed configuration.
  • 3. The method of claim 1, wherein: the impermeable second barrier film is planar prior to causing the male mold to press against the impermeable second barrier film.
  • 4. The method of claim 1, including: positioning the impermeable second barrier film on the male mold before bringing the male and female molds together.
  • 5. The method of claim 1, wherein: the central surface portion of the female mold cavity is substantially planar and free of protrusions.
  • 6. The method of claim 1, wherein: the central surface portion of the male mold cavity is substantially planar and free of protrusions.
  • 7. The method of claim 1, wherein: the inwardly facing side wall surface portions of the female mold are substantially orthogonal to the central surface portion.
  • 8. The method of claim 1, wherein: the central surface portion of the female mold and the central surface portion of the male mold are rectangular;the impermeable first and second barrier films comprise multilayer films; andthe porous powder filler material comprises silica powder.
  • 9. The method of claim 1, wherein: the vacuum insulated refrigerator structure comprises a door.
  • 10. A method of fabricating a vacuum insulated refrigerator structure, the method comprising: providing a mold tool having a female mold and a male mold, wherein the female mold has a female mold cavity and a central surface portion, and wherein the male mold has a central surface portion;positioning a central portion of a first barrier film in the female mold cavity over the central surface portion;positioning porous powder filler material on the central portion of the first barrier film;positioning a central portion of a second barrier film over the female mold cavity;followed by bringing the female and male molds together;causing the male mold to deform the second barrier film from a first shape into a second shape, the second shape including a generally planar central portion and at least one sidewall portion extending transversely from the generally planar central portion;wherein bringing the female and male molds together further includes causing the female and male molds to compress the porous powder filler material;followed by forming at least a partial vacuum between the first and second barrier films;followed by sealing the first and second peripheral edge portions together to form a vacuum insulated core having porous powder filler material disposed in a vacuum formed between the first and second barrier films;followed by moving the female and male molds apart;followed by removing the vacuum insulated core from the mold tool;followed by positioning the vacuum insulated core between a wrapper and a liner; andconnecting the wrapper to the liner to form the vacuum insulated refrigerator structure.
  • 11. The method of claim 10, wherein: the central surface portion of the female mold cavity is free of protrusions.
  • 12. The method of claim 10, wherein: the central surface portion of the male mold is free of protrusions.
  • 13. The method of claim 10, wherein: the central surface portion of the female mold is substantially planar;the female mold includes four inwardly facing side wall surface portions that are transverse to the central surface portion;the central surface portion of the male mold is substantially planar, the male mold including four outwardly facing side wall surface portions that are transverse to the central surface portion of the male mold.
  • 14. The method of claim 10, wherein: bringing the female and male molds together includes causing the central surface portion of the male mold to be disposed in the female mold cavity.
  • 15. The method of claim 10, wherein: the first and second barrier films comprise multilayer films.
  • 16. The method of claim 10, including: causing the first and second peripheral edge portions to overlap prior to sealing the first and second peripheral edge portions together.
  • 17. A method of fabricating a vacuum insulated refrigerator structure, the method comprising: positioning a first barrier film having a first peripheral edge portion in a female mold cavity;positioning porous filler material on the barrier film;positioning a second barrier film having a second peripheral edge portion over the porous filler material whereby the porous filler material is disposed between the first and second barrier films;utilizing a male mold that is in contact with the second barrier film to press the second barrier film and cause the porous filler material to deform into a shape including a central portion and at least one sidewall portion extending transversely from the central portion;evacuating air from between the first and second barrier films; andfollowed by sealing the first and second peripheral edge portions together to form a vacuum insulated core having porous filler material disposed in a vacuum.
  • 18. The method of claim 17, wherein: the female mold includes a generally planar central surface portion and at least one inwardly facing side wall surface portion that is generally orthogonal to the central surface portion.
  • 19. The method of claim 17, wherein: the male mold includes a generally planar central surface portion and at least one outwardly facing side wall surface portion that is generally orthogonal to the central surface portion of the male mold.
  • 20. The method of claim 19, wherein: the central surface portion of the female mold and the central surface portion of the male mold are substantially free of protrusions.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a Continuation of U.S. patent application Ser. No. 14/984,347 filed on Dec. 30, 2015, entitled “METHOD OF FABRICATING 3D VACUUM INSULATED REFRIGERATOR STRUCTURE HAVING CORE MATERIAL,” which is hereby incorporated herein by reference.

US Referenced Citations (483)
Number Name Date Kind
948541 Coleman Feb 1910 A
1275511 Welch Aug 1918 A
1849369 Frost Mar 1932 A
1921576 Muffly Aug 1933 A
2108212 Schellens Feb 1938 A
2128336 Torstensson Aug 1938 A
2164143 Munters Jun 1939 A
2191659 Hintze Feb 1940 A
2318744 Brown May 1943 A
2356827 Coss et al. Aug 1944 A
2432042 Richard Dec 1947 A
2439602 Heritage Apr 1948 A
2439603 Heritage Apr 1948 A
2451884 Stelzer Oct 1948 A
2464526 Palmer Mar 1949 A
2538780 Hazard Jan 1951 A
2559356 Hedges Jul 1951 A
2644605 Palmer Jul 1953 A
2729863 Kurtz Jan 1956 A
2768046 Evans Oct 1956 A
2792959 Diamond et al. May 1957 A
2809764 Diamond Oct 1957 A
2817123 Jacobs Dec 1957 A
2942438 Schmeling Jun 1960 A
2985075 Knutsson-Hall May 1961 A
3086830 Malia Apr 1963 A
3125388 Costantini et al. Mar 1964 A
3137900 Carbary Jun 1964 A
3165221 Kasady Jan 1965 A
3218111 Steiner Nov 1965 A
3258883 Campanaro et al. Jul 1966 A
3290893 Haldopoulos Dec 1966 A
3338451 Kesling Aug 1967 A
3353301 Heilweil et al. Nov 1967 A
3353321 Heilweil et al. Nov 1967 A
3358059 Snyder Dec 1967 A
3379481 Fisher Apr 1968 A
3408316 Mueller et al. Oct 1968 A
3471416 Fijal Oct 1969 A
3597850 Jenkins Aug 1971 A
3607169 Coxe Sep 1971 A
3632012 Kitson Jan 1972 A
3633783 Aue Jan 1972 A
3634971 Kesling Jan 1972 A
3635536 Lackey et al. Jan 1972 A
3670521 Dodge, III et al. Jun 1972 A
3688384 Mizushima et al. Sep 1972 A
3768687 Spencer Oct 1973 A
3769770 Deschamps et al. Nov 1973 A
3862880 Feldman Jan 1975 A
3868829 Mann et al. Mar 1975 A
3875683 Waters Apr 1975 A
3910658 Lindenschmidt Oct 1975 A
3915328 Hawes et al. Oct 1975 A
3933398 Haag Jan 1976 A
3935787 Fisher Feb 1976 A
3995984 Fetherston et al. Dec 1976 A
4005919 Hoge et al. Feb 1977 A
4006947 Haag et al. Feb 1977 A
4043624 Lindenschmidt Aug 1977 A
4050145 Benford Sep 1977 A
4067628 Sherburn Jan 1978 A
4118266 Kerr Oct 1978 A
4170391 Bottger Oct 1979 A
4180297 Abrams Dec 1979 A
4242241 Rosen et al. Dec 1980 A
4260876 Hochheiser Apr 1981 A
4303730 Torobin Dec 1981 A
4303732 Torobin Dec 1981 A
4325734 Burrage et al. Apr 1982 A
4330310 Tate, Jr. et al. May 1982 A
4332429 Frick et al. Jun 1982 A
4396362 Thompson et al. Aug 1983 A
4417382 Schilf Nov 1983 A
4492368 DeLeeuw et al. Jan 1985 A
4529368 Makansi Jul 1985 A
4548196 Torobin Oct 1985 A
4583796 Nakajima et al. Apr 1986 A
4660271 Lenhardt Apr 1987 A
4671909 Torobin Jun 1987 A
4671985 Rodrigues et al. Jun 1987 A
4732432 Keil et al. Mar 1988 A
4745015 Cheng et al. May 1988 A
4777154 Torobin Oct 1988 A
4781968 Kellerman Nov 1988 A
4805293 Buchser Feb 1989 A
4865875 Kellerman Sep 1989 A
4870735 Jahr, Jr. et al. Oct 1989 A
4914341 Weaver et al. Apr 1990 A
4917841 Jenkins Apr 1990 A
4951652 Ferrario et al. Aug 1990 A
5007226 Nelson Apr 1991 A
5018328 Cur et al. May 1991 A
5033636 Jenkins Jul 1991 A
5066437 Barito et al. Nov 1991 A
5076984 Bisplinghoff et al. Dec 1991 A
5082335 Cur et al. Jan 1992 A
5094899 Rusek, Jr. Mar 1992 A
5118174 Benford et al. Jun 1992 A
5121593 Forslund Jun 1992 A
5157893 Benson et al. Oct 1992 A
5168674 Molthen Dec 1992 A
5171346 Hallett Dec 1992 A
5175975 Benson et al. Jan 1993 A
5212143 Torobin May 1993 A
5221136 Hauck et al. Jun 1993 A
5227245 Brands et al. Jul 1993 A
5231811 Andrepont et al. Aug 1993 A
5248196 Lynn et al. Sep 1993 A
5251455 Cur et al. Oct 1993 A
5252408 Bridges et al. Oct 1993 A
5263773 Gable et al. Nov 1993 A
5269099 Kennedy et al. Dec 1993 A
5273801 Barry et al. Dec 1993 A
5284023 Silva et al. Feb 1994 A
5318108 Benson et al. Jun 1994 A
5340208 Hauck et al. Aug 1994 A
5353868 Abbott Oct 1994 A
5359795 Mawby et al. Nov 1994 A
5368381 Mandel Nov 1994 A
5375428 LeClear et al. Dec 1994 A
5397759 Torobin Mar 1995 A
5418055 Chen et al. May 1995 A
5433056 Benson et al. Jul 1995 A
5477676 Benson et al. Dec 1995 A
5500287 Henderson Mar 1996 A
5500305 Bridges et al. Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507999 Copsey et al. Apr 1996 A
5509248 Dellby et al. Apr 1996 A
5512345 Tsutsumi et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5533311 Tirrell et al. Jul 1996 A
5562154 Benson et al. Oct 1996 A
5586680 Dellby et al. Dec 1996 A
5599081 Revlett et al. Feb 1997 A
5600966 Valence et al. Feb 1997 A
5632543 McGrath et al. May 1997 A
5640828 Reeves et al. Jun 1997 A
5643485 Potter et al. Jul 1997 A
5652039 Tremain et al. Jul 1997 A
5704107 Schmidt et al. Jan 1998 A
5716581 Tirrell et al. Feb 1998 A
5768837 Sjoholm Jun 1998 A
5792539 Hunter Aug 1998 A
5792801 Tsuda et al. Aug 1998 A
5813454 Potter Sep 1998 A
5826780 Nesser et al. Oct 1998 A
5827385 Meyer et al. Oct 1998 A
5834126 Sheu Nov 1998 A
5843353 Devos et al. Dec 1998 A
5866228 Awata Feb 1999 A
5868890 Fredrick Feb 1999 A
5876104 Kunkel et al. Mar 1999 A
5900299 Wynne May 1999 A
5918478 Bostic et al. Jul 1999 A
5924295 Park Jul 1999 A
5934085 Suzuki et al. Aug 1999 A
5950395 Takemasa et al. Sep 1999 A
5952404 Simpson et al. Sep 1999 A
5966963 Kovalaske Oct 1999 A
5972151 Sbrana Oct 1999 A
5985189 Lynn et al. Nov 1999 A
6013700 Asano et al. Jan 2000 A
6029846 Hirath et al. Feb 2000 A
6037033 Hunter Mar 2000 A
6063471 Dietrich et al. May 2000 A
6094922 Ziegler Aug 2000 A
6109712 Haworth et al. Aug 2000 A
6128914 Tamaoki et al. Oct 2000 A
6132837 Boes et al. Oct 2000 A
6158233 Cohen et al. Dec 2000 A
6163976 Tada et al. Dec 2000 A
6164030 Dietrich Dec 2000 A
6164739 Schulz et al. Dec 2000 A
6187256 Aslan et al. Feb 2001 B1
6209342 Banicevic et al. Apr 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6217140 Hirath et al. Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6221456 Pogorski et al. Apr 2001 B1
6224179 Wenning et al. May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6260377 Tamaoki et al. Jul 2001 B1
6266941 Nishimoto Jul 2001 B1
6266970 Nam et al. Jul 2001 B1
6294595 Tyagi et al. Sep 2001 B1
6305768 Nishimoto Oct 2001 B1
6336693 Nishimoto Jan 2002 B2
6485122 Wolf et al. Jan 2002 B2
6390378 Briscoe, Jr. et al. May 2002 B1
6406449 Moore et al. Jun 2002 B1
6408841 Hirath et al. Jun 2002 B1
6415623 Jennings et al. Jul 2002 B1
6428130 Banicevic et al. Aug 2002 B1
6430780 Kim et al. Aug 2002 B1
6460955 Maughan et al. Oct 2002 B1
6623413 Wynne Sep 2003 B1
6629429 Kawamura et al. Oct 2003 B1
6655766 Hodges Dec 2003 B2
6689840 Eustace et al. Feb 2004 B1
6716501 Kovalchuk et al. Apr 2004 B2
6736472 Banicevic May 2004 B2
6749780 Tobias Jun 2004 B2
6773082 Lee Aug 2004 B2
6858280 Allen et al. Feb 2005 B2
6860082 Yamamoto et al. Mar 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
7008032 Chekal et al. Mar 2006 B2
7026054 Ikegawa et al. Apr 2006 B2
7197792 Moon Apr 2007 B2
7197888 LeClear et al. Apr 2007 B2
7207181 Murray et al. Apr 2007 B2
7210308 Tanimoto et al. May 2007 B2
7234247 Maguire Jun 2007 B2
7263744 Kim et al. Sep 2007 B2
7284390 Van Meter et al. Oct 2007 B2
7296432 Muller et al. Nov 2007 B2
7316125 Uekado et al. Jan 2008 B2
7343757 Egan et al. Mar 2008 B2
7360371 Feinauer et al. Apr 2008 B2
7449227 Echigoya et al. Nov 2008 B2
7475562 Jackovin Jan 2009 B2
7517031 Laible Apr 2009 B2
7614244 Venkatakrishnan et al. Nov 2009 B2
7625622 Teckoe et al. Dec 2009 B2
7641298 Hirath et al. Jan 2010 B2
7665326 LeClear et al. Feb 2010 B2
7703217 Tada et al. Apr 2010 B2
7703824 Kittelson et al. Apr 2010 B2
7757511 LeClear et al. Jul 2010 B2
7762634 Tenra et al. Jul 2010 B2
7794805 Aumaugher et al. Sep 2010 B2
7815269 Wenning et al. Oct 2010 B2
7842269 Schachtely et al. Nov 2010 B2
7845745 Gorz et al. Dec 2010 B2
7861538 Welle et al. Jan 2011 B2
7886559 Hell et al. Feb 2011 B2
7893123 Luisi Feb 2011 B2
7908873 Cur et al. Mar 2011 B1
7930892 Vonderhaar Apr 2011 B1
7938148 Carlier et al. May 2011 B2
7939179 DeVos et al. May 2011 B2
7992257 Kim Aug 2011 B2
8049518 Wern et al. Nov 2011 B2
8074469 Hamel et al. Dec 2011 B2
8079652 Laible et al. Dec 2011 B2
8083985 Luisi et al. Dec 2011 B2
8108972 Bae et al. Feb 2012 B2
8113604 Olson et al. Feb 2012 B2
8117865 Allard et al. Feb 2012 B2
8157338 Seo et al. Apr 2012 B2
8162415 Hagele et al. Apr 2012 B2
8163080 Meyer et al. Apr 2012 B2
8176746 Allard et al. May 2012 B2
8182051 Laible et al. May 2012 B2
8197019 Kim Jun 2012 B2
8202599 Henn Jun 2012 B2
8211523 Fujimori et al. Jul 2012 B2
8266923 Bauer et al. Sep 2012 B2
8281558 Hiemeyer et al. Oct 2012 B2
8343395 Hu et al. Jan 2013 B2
8353177 Adamski et al. Jan 2013 B2
8382219 Hottmann et al. Feb 2013 B2
8434317 Besore May 2013 B2
8439460 Laible et al. May 2013 B2
8456040 Allard et al. Jun 2013 B2
8486215 Amann et al. Jul 2013 B2
8491070 Davis et al. Jul 2013 B2
8516845 Wuesthoff et al. Aug 2013 B2
8528284 Aspenson et al. Sep 2013 B2
8590992 Lim et al. Nov 2013 B2
8717029 Chae et al. May 2014 B2
8739568 Allard et al. Jun 2014 B2
8752918 Kang Jun 2014 B2
8752921 Gorz et al. Jun 2014 B2
8763847 Mortarotti Jul 2014 B2
8764133 Park et al. Jul 2014 B2
8770682 Lee et al. Jul 2014 B2
8776390 Hanaoka et al. Jul 2014 B2
8840204 Bauer et al. Sep 2014 B2
8852708 Kim et al. Oct 2014 B2
8871323 Kim et al. Oct 2014 B2
8881398 Hanley et al. Nov 2014 B2
8905503 Sahasrabudhe et al. Dec 2014 B2
8943770 Sanders et al. Feb 2015 B2
8944541 Allard et al. Feb 2015 B2
8955352 Lee et al. Feb 2015 B2
9009969 Choi et al. Apr 2015 B2
RE45501 Maguire May 2015 E
9056952 Eilbracht et al. Jun 2015 B2
9062480 Litch Jun 2015 B2
9074811 Korkmaz Jul 2015 B2
9080808 Choi et al. Jul 2015 B2
9102076 Doshi et al. Aug 2015 B2
9103482 Fujimori et al. Aug 2015 B2
9125546 Kleemann et al. Sep 2015 B2
9140480 Kuehl et al. Sep 2015 B2
9140481 Cur et al. Sep 2015 B2
9170045 Oh et al. Oct 2015 B2
9170046 Jung et al. Oct 2015 B2
9188382 Kim et al. Nov 2015 B2
9221210 Wu et al. Dec 2015 B2
9228386 Thielmann et al. Jan 2016 B2
9267727 Lim et al. Feb 2016 B2
9303915 Kim et al. Apr 2016 B2
9328951 Shin et al. May 2016 B2
9353984 Kim et al. May 2016 B2
9410732 Choi et al. Aug 2016 B2
9423171 Betto et al. Aug 2016 B2
9429356 Kim et al. Aug 2016 B2
9448004 Kim et al. Sep 2016 B2
9463917 Wu et al. Oct 2016 B2
9482463 Choi et al. Nov 2016 B2
9506689 Carbajal et al. Nov 2016 B2
9518777 Lee et al. Dec 2016 B2
9568238 Kim et al. Feb 2017 B2
D781641 Incukur Mar 2017 S
D781642 Incukur Mar 2017 S
9605891 Lee et al. Mar 2017 B2
9696085 Seo et al. Jul 2017 B2
9702621 Cho et al. Jul 2017 B2
9759479 Ramm et al. Sep 2017 B2
9777958 Choi et al. Oct 2017 B2
9791204 Kim et al. Oct 2017 B2
9833942 Wu et al. Dec 2017 B2
9927169 Baker et al. Mar 2018 B2
10024544 Bhogal et al. Jul 2018 B2
10077342 An et al. Sep 2018 B2
11247369 Naik Feb 2022 B2
20020004111 Matsubara et al. Jan 2002 A1
20020114937 Albert et al. Aug 2002 A1
20020144482 Henson et al. Oct 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030008100 Horn Jan 2003 A1
20030056334 Finkelstein Mar 2003 A1
20030157284 Tanimoto et al. Aug 2003 A1
20030167789 Tanimoto et al. Sep 2003 A1
20030173883 Koons Sep 2003 A1
20040144130 Jung Jul 2004 A1
20040178707 Avendano Sep 2004 A1
20040180176 Rusek, Jr. Sep 2004 A1
20040226141 Yates et al. Nov 2004 A1
20040253406 Hayashi et al. Dec 2004 A1
20050042247 Gomoll et al. Feb 2005 A1
20050229614 Ansted Oct 2005 A1
20050235682 Hirai et al. Oct 2005 A1
20060064846 Espindola et al. Mar 2006 A1
20060076863 Echigoya et al. Apr 2006 A1
20060201189 Adamski et al. Sep 2006 A1
20060261718 Miseki et al. Nov 2006 A1
20060263571 Tsunetsugu et al. Nov 2006 A1
20060266075 Itsuki et al. Nov 2006 A1
20070001563 Park et al. Jan 2007 A1
20070099502 Ferinauer et al. May 2007 A1
20070176526 Gomoll et al. Aug 2007 A1
20070266654 Noale Nov 2007 A1
20080044488 Zimmer et al. Feb 2008 A1
20080048540 Kim Feb 2008 A1
20080138458 Ozasa et al. Jun 2008 A1
20080196441 Ferreira et al. Aug 2008 A1
20080300356 Meyer et al. Dec 2008 A1
20080309210 Luisi et al. Dec 2008 A1
20090032541 Rogala et al. Feb 2009 A1
20090056367 Neumann Mar 2009 A1
20090058244 Cho et al. Mar 2009 A1
20090113925 Korkmaz May 2009 A1
20090126854 Khan May 2009 A1
20090131571 Fraser et al. May 2009 A1
20090179541 Smith et al. Jul 2009 A1
20090205357 Lim et al. Aug 2009 A1
20090302728 Rotter et al. Dec 2009 A1
20090322470 Yoo et al. Dec 2009 A1
20090324871 Henn Dec 2009 A1
20100170279 Aoki Jul 2010 A1
20100206464 Heo et al. Aug 2010 A1
20100218543 Ducharme Sep 2010 A1
20100231109 Matzke et al. Sep 2010 A1
20100287843 Oh Nov 2010 A1
20100287974 Cur et al. Nov 2010 A1
20100293984 Adamski et al. Nov 2010 A1
20100295435 Kendall et al. Nov 2010 A1
20110011119 Kuehl et al. Jan 2011 A1
20110023527 Kwon et al. Feb 2011 A1
20110030894 Tenra et al. Feb 2011 A1
20110095669 Moon et al. Apr 2011 A1
20110146325 Lee Jun 2011 A1
20110146335 Jung et al. Jun 2011 A1
20110165367 Kojima et al. Jul 2011 A1
20110215694 Fink et al. Sep 2011 A1
20110220662 Kim et al. Sep 2011 A1
20110241513 Nomura et al. Oct 2011 A1
20110241514 Nomura et al. Oct 2011 A1
20110260351 Corradi et al. Oct 2011 A1
20110290808 Bai et al. Dec 2011 A1
20110309732 Horil et al. Dec 2011 A1
20110315693 Cur et al. Dec 2011 A1
20120000234 Adamski et al. Jan 2012 A1
20120011879 Gu Jan 2012 A1
20120060544 Lee et al. Mar 2012 A1
20120099255 Lee et al. Apr 2012 A1
20120103006 Jung et al. May 2012 A1
20120104923 Jung et al. May 2012 A1
20120118002 Kim et al. May 2012 A1
20120137501 Allard et al. Jun 2012 A1
20120152151 Meyer et al. Jun 2012 A1
20120196059 Fujimori et al. Aug 2012 A1
20120202049 Valladeau et al. Aug 2012 A1
20120231204 Jeon et al. Sep 2012 A1
20120237715 McCracken Sep 2012 A1
20120240612 Wuesthoff et al. Sep 2012 A1
20120273111 Nomura et al. Nov 2012 A1
20120279247 Katu et al. Nov 2012 A1
20120280608 Park et al. Nov 2012 A1
20120285971 Junge et al. Nov 2012 A1
20120297813 Hanley et al. Nov 2012 A1
20120324937 Adamski et al. Dec 2012 A1
20130026900 Oh et al. Jan 2013 A1
20130033163 Kang Feb 2013 A1
20130043780 Ootsuka et al. Feb 2013 A1
20130068990 Eilbracht et al. Mar 2013 A1
20130111941 Yu et al. May 2013 A1
20130149481 Hiemeyer et al. Jun 2013 A1
20130221819 Wing Aug 2013 A1
20130255304 Cur et al. Oct 2013 A1
20130256318 Kuehl et al. Oct 2013 A1
20130256319 Kuehl et al. Oct 2013 A1
20130257256 Allard et al. Oct 2013 A1
20130257257 Cur et al. Oct 2013 A1
20130264439 Allard et al. Oct 2013 A1
20130270732 Wu et al. Oct 2013 A1
20130285527 Choi et al. Oct 2013 A1
20130293080 Kim et al. Nov 2013 A1
20130305535 Cur et al. Nov 2013 A1
20140009055 Cho et al. Jan 2014 A1
20140015395 Anthony et al. Jan 2014 A1
20140047775 Litch Feb 2014 A1
20140097733 Seo et al. Apr 2014 A1
20140132144 Kim et al. May 2014 A1
20140162162 Kalika et al. Jun 2014 A1
20140166926 Lee et al. Jun 2014 A1
20140171578 Meyer et al. Jun 2014 A1
20140190978 Bowman et al. Jul 2014 A1
20140216706 Melton et al. Aug 2014 A1
20140232250 Kim et al. Aug 2014 A1
20140260332 Wu Sep 2014 A1
20140311667 Siudzinski et al. Oct 2014 A1
20140346942 Kim et al. Nov 2014 A1
20140364527 Wintermantel et al. Dec 2014 A1
20150011668 Kolb et al. Jan 2015 A1
20150015133 Carbajal et al. Jan 2015 A1
20150017386 Kolb et al. Jan 2015 A1
20150027628 Cravens et al. Jan 2015 A1
20150047624 Luckhardt et al. Feb 2015 A1
20150059399 Hwang et al. Mar 2015 A1
20150115790 Ogg Apr 2015 A1
20150147514 Shinohara et al. May 2015 A1
20150159936 Oh et al. Jun 2015 A1
20150168050 Cur et al. Jun 2015 A1
20150176888 Cur et al. Jun 2015 A1
20150184923 Jeon Jul 2015 A1
20150190840 Muto et al. Jul 2015 A1
20150224685 Amstutz Aug 2015 A1
20150241115 Strauss et al. Aug 2015 A1
20150285551 Aiken et al. Oct 2015 A1
20160084567 Fernandez et al. Mar 2016 A1
20160116100 Thiery et al. Apr 2016 A1
20160123055 Ueyama May 2016 A1
20160161175 Benold et al. Jun 2016 A1
20160178267 Hao et al. Jun 2016 A1
20160178269 Hiemeyer et al. Jun 2016 A1
20160235201 Soot Aug 2016 A1
20160240839 Umeyama et al. Aug 2016 A1
20160258671 Allard et al. Sep 2016 A1
20160290702 Sexton et al. Oct 2016 A1
20160348957 Hitzelberger et al. Dec 2016 A1
20170038126 Lee et al. Feb 2017 A1
20170157809 Deka et al. Jun 2017 A1
20170159942 Ivanovic et al. Jun 2017 A1
20170176086 Kang Jun 2017 A1
20170184339 Liu et al. Jun 2017 A1
20170191746 Seo Jul 2017 A1
20170368799 Barbetta Dec 2017 A1
Foreign Referenced Citations (228)
Number Date Country
626838 Sep 1961 CA
1320631 Jul 1993 CA
2259665 Jan 1998 CA
2640006 Aug 2007 CA
1158509 Jul 2004 CN
1970185 May 2007 CN
100359272 Jan 2008 CN
101437756 May 2009 CN
201680116 Dec 2010 CN
201748744 Feb 2011 CN
102296714 Dec 2011 CN
102452522 May 2012 CN
102717578 Oct 2012 CN
102720277 Oct 2012 CN
103072321 May 2013 CN
202973713 Jun 2013 CN
203331442 Dec 2013 CN
104816478 Aug 2015 CN
105115221 Dec 2015 CN
204963379 Jan 2016 CN
1150190 Jun 1963 DE
4110292 Oct 1992 DE
4311510 Oct 1994 DE
4409091 Sep 1995 DE
19520020 Dec 1996 DE
19818890 Nov 1999 DE
19914105 Sep 2000 DE
19915311 Oct 2000 DE
19948361 Apr 2001 DE
102008026528 Dec 2009 DE
102009046810 May 2011 DE
102010024951 Dec 2011 DE
102010040346 Mar 2012 DE
102011051178 Dec 2012 DE
102012223536 Jun 2014 DE
102012223541 Jun 2014 DE
0260699 Mar 1988 EP
0480451 Apr 1992 EP
0645576 Mar 1995 EP
0691518 Jan 1996 EP
0860669 Aug 1998 EP
1087186 Mar 2001 EP
1200785 May 2002 EP
1243880 Sep 2002 EP
1484563 Dec 2004 EP
1496322 Jan 2005 EP
1505359 Feb 2005 EP
1602425 Dec 2005 EP
1624263 Aug 2006 EP
1344008 Sep 2006 EP
1338854 Dec 2009 EP
2342511 Jul 2011 EP
2543942 Jan 2013 EP
2607073 Jun 2013 EP
2789951 Oct 2014 EP
2801774 Nov 2014 EP
2878427 Jun 2015 EP
2980963 Apr 2013 FR
2991698 Dec 2013 FR
837929 Jun 1960 GB
1214548 Dec 1970 GB
4828353 Aug 1973 JP
5157777 May 1976 JP
59191588 Dec 1984 JP
6166070 Apr 1986 JP
61168772 Jul 1986 JP
63163764 Jul 1988 JP
1318880 Dec 1989 JP
03013779 Jan 1991 JP
4165197 Jun 1992 JP
4309778 Nov 1992 JP
06159922 Jun 1994 JP
71479 Jan 1995 JP
7167377 Jul 1995 JP
8145547 Jun 1996 JP
08300052 Nov 1996 JP
8303686 Nov 1996 JP
9166271 Jun 1997 JP
10113983 May 1998 JP
11159693 Jun 1999 JP
11311395 Nov 1999 JP
11336990 Dec 1999 JP
2000097390 Apr 2000 JP
2000117334 Apr 2000 JP
2000320958 Nov 2000 JP
2001038188 Feb 2001 JP
2001116437 Apr 2001 JP
2001336691 Dec 2001 JP
2001343176 Dec 2001 JP
2002068853 Mar 2002 JP
03478771 Dec 2003 JP
2004303695 Oct 2004 JP
2005069596 Mar 2005 JP
2005098637 Apr 2005 JP
2005114015 Apr 2005 JP
2005164193 Jun 2005 JP
2005256849 Sep 2005 JP
2006064090 Mar 2006 JP
2006077792 Mar 2006 JP
2006161834 Jun 2006 JP
2006161945 Jun 2006 JP
03792801 Jul 2006 JP
2006200685 Aug 2006 JP
2007263186 Oct 2007 JP
4111096 Jul 2008 JP
2008157431 Jul 2008 JP
2008190815 Aug 2008 JP
2009063064 Mar 2009 JP
2009162402 Jul 2009 JP
2009524570 Jul 2009 JP
2010017437 Jan 2010 JP
2010071565 Apr 2010 JP
2010108199 May 2010 JP
2010145002 Jul 2010 JP
2010156542 Jul 2010 JP
04545126 Sep 2010 JP
2010236770 Oct 2010 JP
2010276309 Dec 2010 JP
2011002033 Jan 2011 JP
2011069612 Apr 2011 JP
4779684 Sep 2011 JP
04779684 Sep 2011 JP
2011196644 Oct 2011 JP
2012026493 Feb 2012 JP
04897473 Mar 2012 JP
2012063029 Mar 2012 JP
2012087993 May 2012 JP
2012163258 Aug 2012 JP
2012189114 Oct 2012 JP
2012242075 Dec 2012 JP
2013002484 Jan 2013 JP
2013050242 Mar 2013 JP
2013050267 Mar 2013 JP
2013076471 Apr 2013 JP
2013088036 May 2013 JP
2013195009 Sep 2013 JP
20020057547 Jul 2002 KR
20020080938 Oct 2002 KR
20030083812 Nov 2003 KR
20040000126 Jan 2004 KR
20050095357 Sep 2005 KR
100620025 Sep 2006 KR
1020070044024 Apr 2007 KR
1020070065743 Jun 2007 KR
1020080103845 Nov 2008 KR
20090026045 Mar 2009 KR
1017776 Feb 2011 KR
101017776 Feb 2011 KR
20120007241 Jan 2012 KR
20120046621 May 2012 KR
20120051305 May 2012 KR
20150089495 Aug 2015 KR
2061925 Jun 1996 RU
2077411 Apr 1997 RU
2081858 Jun 1997 RU
2132522 Jun 1999 RU
2162576 Jan 2001 RU
2166158 Apr 2001 RU
2187433 Aug 2002 RU
2234645 Aug 2004 RU
2252377 May 2005 RU
2253792 Jun 2005 RU
2349618 Mar 2009 RU
2414288 Mar 2011 RU
2422598 Jun 2011 RU
142892 Jul 2014 RU
2529525 Sep 2014 RU
2571031 Dec 2015 RU
203707 Dec 1967 SU
476407 Jul 1975 SU
547614 May 1977 SU
648780 Feb 1979 SU
1307186 Apr 1987 SU
9614207 May 1996 WO
1996032605 Oct 1996 WO
9721767 Jun 1997 WO
1998049506 Nov 1998 WO
02060576 Apr 1999 WO
9920961 Apr 1999 WO
9920964 Apr 1999 WO
199920964 Apr 1999 WO
1999020964 Apr 1999 WO
0160598 Aug 2001 WO
200160598 Aug 2001 WO
200202987 Jan 2002 WO
02052208 Jul 2002 WO
2002052208 Jul 2002 WO
02060576 Aug 2002 WO
03072684 Sep 2003 WO
2003089729 Oct 2003 WO
2004010042 Jan 2004 WO
2006045694 May 2006 WO
2006073540 Jul 2006 WO
2006120183 Nov 2006 WO
2006120198 Nov 2006 WO
2007033836 Mar 2007 WO
2007085511 Aug 2007 WO
2007106067 Sep 2007 WO
2008065453 Jun 2008 WO
2008118536 Oct 2008 WO
2008122483 Oct 2008 WO
2009013106 Jan 2009 WO
2009112433 Sep 2009 WO
2009147106 Dec 2009 WO
2010007783 Jan 2010 WO
2010029730 Mar 2010 WO
2010043009 Apr 2010 WO
2010092627 Aug 2010 WO
2010127947 Nov 2010 WO
2011003711 Jan 2011 WO
2011058678 May 2011 WO
2011081498 Jul 2011 WO
2012023705 Feb 2012 WO
2012026715 Mar 2012 WO
2012031885 Mar 2012 WO
2012043990 Apr 2012 WO
2012044001 Apr 2012 WO
2012085212 Jun 2012 WO
2012119892 Sep 2012 WO
2013116103 Aug 2013 WO
2013116302 Aug 2013 WO
2014038150 Mar 2014 WO
2014095542 Jun 2014 WO
2014121893 Aug 2014 WO
2014184393 Nov 2014 WO
2013140816 Aug 2015 WO
2016082907 Jun 2016 WO
2017029782 Feb 2017 WO
Non-Patent Literature Citations (40)
Entry
Dai et al., “Generation of Metal Nanoparticles By Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636.
Raszewski et al., “Methods For Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages.
Basf, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015.
Basf, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015.
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer--Balindur+The+new+VIP+fixation+technology-English.pdf, Dec. 21, 2014.
European Patent Application No. 13775196.2, Supplemental Search Report, dated Dec. 7, 2015, 10 pages.
European Patent Application No. 14158608.1, Search Report, dated Sep. 30, 2014, 5 pages.
International Patent Application No. PCT/US2013036203, International Search Report, dated Jul. 26, 2013, 10 pages.
European Patent Application No. 15154577.9, Search Report, dated Jul. 20, 2015, 8 pages.
European Patent Application No. 14158619, Search Report, dated Jun. 22, 2015, 9 pages.
European Patent Application No. 15153481, Search Report, dated Jul. 10, 2015, 6 pages.
KitchenAid, “Refrigerator user instructions,” Sep. 5, 2015, 120 pages.
International Search Report, Application No. PCT/US2017/021068, dated Nov. 2, 2017, 9 pages.
International Search Report, Application No. PCT/US2016/020896, dated May 12, 2016. 3 pages.
European Search Report, Application No. EP14158615, dated Jun. 24, 2015, 5 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062479, dated Feb. 9, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/060947, dated Feb. 2, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/061125, dated Jan. 12, 2017, 9 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062453, dated Feb. 9, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/061790, dated Jan. 26, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062029, dated Jan. 26, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International patent Application No. PCT/US2016/060961, dated Feb. 2, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/060519, dated Mar. 16, 2017, 10 pages.
International Search Report, International Application No. PCT/US2016/062804, dated Feb. 27, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063023, dated Mar. 30, 2017, 7 pages.
International Search Report, International Application No. PCT/US2016/063065, dated Apr. 20, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063355, dated Feb. 27, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063958, dated Mar. 6, 2017, 10 pages.
International Search Report, PCT/US2016/043991, dated Apr. 27, 2017, 8 pages.
International Search Report, PCT/US2016/047558, dated Jun. 8, 2017, 9 pages.
International Search Report, PCT/US2016/062189, dated Mar. 30, 2017, 7 pages.
International Search Report, PCT/US2016/053711, dated Aug. 31, 2017, 8 pages.
International Search Report, PCT/US2016/054639, dated Aug. 17, 2017, 8 pages.
International Search Report, PCT/US2016/057271, dated Aug. 17, 2017, 8 pages.
International Search Report, PCT/US2017/017802, dated Sep. 28, 2017, 9 pages.
International Search Report, PCT/US2017/019930, dated Sep. 28, 2017, 9 pages.
International Search Report, Application No. PCT/US2016/054067, dated Jun. 29, 2017, 7 pages.
International Search Report, Application No. PCT/US2016/054121, dated Jul. 6, 2017, 9 pages.
International Search Report, Application No. PCT/US2016055161, dated Jun. 29, 2017, 9 pages.
International Search Report, Application No. PCT/US2016/055304, dated Jun. 29, 2017, 9 pages.
Related Publications (1)
Number Date Country
20220118659 A1 Apr 2022 US
Continuations (1)
Number Date Country
Parent 14984347 Dec 2015 US
Child 17563682 US