1. Technical Field
The present invention relates in general to integrated circuitry and, in particular, to capacitors and their fabrication.
2. Description of the Related Art
Precision capacitors for complementary metal oxide semiconductor (CMOS) analog applications are generally metal-insulator-metal (MIM) capacitors or polysilicon-insulator-polysilicon (P-P) capacitors. P-P capacitors are becoming less popular, however, because of the problems connected with their use in conjunction with complementary metal oxide semiconductor (CMOS) technologies. More specifically, P-P capacitors are generally fabricated before CMOS structures, and the heat and oxidation cycles of the CMOS fabrication process degrade P-P capacitors. In addition, as analog circuits become more sophisticated, the allowed variation in the capacitance decreases and is preferably maintained at approximately 50 ppM/V. Because P-P capacitors suffer from carrier depletion (which changes the capacitance) as surface voltage across the P-P capacitor changes, P-P capacitors do not maintain the linearity required in sophisticated analog circuits. Further, P-P capacitors often trap charge within the dielectric during their use.
As a result, MIM capacitors, which are usually formed after the CMOS fabrication process, are becoming more popular for analog circuits. However, MIM capacitors also present manufacturing challenges, especially when used with copper wiring, because copper generally cannot be used as an electrode with an SiO2 dielectric layer. In particular, the present invention recognizes that the etching step(s) utilized to define the simplest MIM capacitor that does not use the underlying damascene metallurgy as an electrode etches the top and bottom plates and the dielectric in one step, and in doing so, creates contamination on the edge of the dielectric that contacts both plates. This contamination is not easy to remove and causes undesirable leakage between the top and bottom plates.
In view of the foregoing, the present invention provides an improved capacitor structure and method of fabricating a capacitor structure that prevents a contamination layer formed during etching from connecting the top and bottom plates and thereby causing leakage.
A capacitor structure in accordance with the present invention includes a bottom plate, a top plate, and a dielectric layer between the bottom and top plates. In addition, at least one insulating sidewall spacer that protects the dielectric layer during processing is formed along the perimeter of the top plate and overlaying a portion of the dielectric layer. In a preferred embodiment, the sidewall spacer, which may be an oxide insulator, is formed following an etch of the top plate to expose the dielectric layer.
All objects, features, and advantages of the present invention will become apparent in the following detailed written description.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
With reference now to the figures and in particular with reference to
Subsequently, a silicon nitride (Si3N4) layer 30 is formed over metal damascene layers 20, 21 and semiconductor substrate 10. Silicon nitride layer 30 is subsequently masked and etched to form an opening 25 in silicon nitride layer 30 to define the location at which a metal-insulator-metal (MIM) capacitor will be formed. The MIM capacitor may be formed without silicon nitride layer 30 if an etch process for the capacitor's bottom plate can be found that does not damage metal damascene conductor 21 when the capacitor layers are defined, as discussed further below.
Referring now to
A dielectric layer 70, which is preferably made of silicon dioxide (SiO2), may then be formed over second barrier layer 60, and a third barrier layer 80, which is preferably formed of titanium nitride (TiN), may then be formed over dielectric layer 70. Overlaying third barrier layer 80 is a top electrode 90 formed of aluminum or any other suitable metal.
The foregoing layers can be formed using any conventional process, such as chemical vapor deposition (CVD), sputtering, evaporation, etc. If the conductivity of barrier layers 100 and 40 is sufficient (i.e., the resistivity is not too high), then layers 30, 60 and 80 may be omitted from the MIM capacitor structure.
Following the formation of the MIM capacitor structure illustrated in
Referring now to
Next, as depicted in
Subsequently, as shown in
Referring now to
Thereafter, as depicted at block 170, a photo mask 120 is utilized to pattern capacitor top plate (e.g., layers 80, 90 and 100) in an etch back of the capacitor stack stopping on dielectric layer 70. Next, as shown at block 172, one or more sidewall spacers 132 are formed around the perimeter of the top plate and over dielectric layer 70 through the deposition and etching of silicon dioxide, for example. Sidewall spacers 132 protect dielectric layer 70 from overetching and contamination during the subsequent etch of dielectric layer 70 and the bottom plate (e.g., layers 40, 50 and 60), which is depicted at block 174. The etch of the bottom plate stops on silicon nitride layer 30, if present.
After the essential structure of the MIM capacitor has been defined by the foregoing etching steps, capacitor fabrication continues at block 176, which depicts forming silicon nitride layer 134 on the top and sides of the capacitor stack and depositing and planarizing interlayer dielectric 136. Finally, as illustrated at block 178, contacts 150 to the top plate and metal damascene conductor 21 are formed, and wiring 140 is deposited in a conventional manner. Thereafter, the process ends at block 180.
As has been described, the present invention provides an improved capacitor and method of capacitor fabrication that reduce charge leakage between the capacitor plates by protecting the capacitor dielectric with insulating sidewall spacers during etching.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention. In particular, those skilled in the art will appreciate that the formation of protective sidewall spacers in accordance with the present invention, although particularly suitable for use in MIM capacitor fabrication, may also be employed in the fabrication of types of capacitor structures.
This application is a divisional of U.S. application Ser. No.09/616,951 filed Jul. 14, 2000 now U.S. Pat. 6,344,964 This application is also related to Ser. No. 09/298,122, “Metal-Insulator-Metal Capacitor for Copper Damascene Process and Method of Forming the Same,” filed Apr. 23, 1999, and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4172758 | Bailey et al. | Oct 1979 | A |
5272101 | Forouhi et al. | Dec 1993 | A |
5330931 | Emesh et al. | Jul 1994 | A |
5356833 | Maniar | Oct 1994 | A |
5371700 | Hamada | Dec 1994 | A |
5378909 | Chong et al. | Jan 1995 | A |
5442213 | Okudaira et al. | Aug 1995 | A |
5452178 | Emesh et al. | Sep 1995 | A |
5489548 | Nishioka et al. | Feb 1996 | A |
5633781 | Saenger et al. | May 1997 | A |
5742472 | Lee et al. | Apr 1998 | A |
5789320 | Andricacos | Aug 1998 | A |
5795819 | Motsiff et al. | Aug 1998 | A |
5825609 | Andricacos et al. | Oct 1998 | A |
5834348 | Kwon et al. | Nov 1998 | A |
5843817 | Lee et al. | Dec 1998 | A |
5879956 | Seon et al. | Mar 1999 | A |
5893734 | Jeng | Apr 1999 | A |
6184143 | Ohashi | Feb 2001 | B1 |
Number | Date | Country |
---|---|---|
0 455 338 | Nov 1991 | EP |
Number | Date | Country | |
---|---|---|---|
20020071237 A1 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09616951 | Jul 2000 | US |
Child | 10057185 | US |