Method of fabricating a printhead

Information

  • Patent Grant
  • 4875281
  • Patent Number
    4,875,281
  • Date Filed
    Monday, November 28, 1988
    36 years ago
  • Date Issued
    Tuesday, October 24, 1989
    35 years ago
Abstract
An electrostatic or thermal printhead and method of fabrication is provided in which dielectric material is disposed in a row of spaced depressions or in a single recess along the upper surface of an edge of a dielectric-coated conductive sheet. Electrodes are disposed along the edge of the sheet over the dielectric material and terminate at associated conductive pads or printhead circuitry on the sheet. In one embodiment, the edge is trimmed and left bare to form an inexpensive electrostatic printhead. In an alternate embodiment, resistive material is disposed over the edge to connect the electrodes to the conductive sheet to form an inexpensive thermal printhead.
Description

FIELD OF THE INVENTION
This invention relates to printheads and, more particularly, to an electrostatic or thermal printhead and method of fabrication.
BACKGROUND OF THE INVENTION
In electrostatic and thermal printing, printheads are used which typically comprise multiple substrates of printhead circuitry laminated together to form a single unit. In general, both electrostatic and thermal printheads contain one or more arrays of electrodes separated from a ground source by a substrate layer. Thermal printheads principally differ from electrostatic printheads by the addition of resistive material disposed along the length of the writing surface of the head and connecting the electrodes to the ground source.
Fabrication of electrostatic and thermal printheads by laminating multiple layers of substrates is expensive. The more layers and the more complex the structure, the longer, the more detailed and the more expensive must be the manufacture of a printhead.
SUMMARY OF THE INVENTION
The present invention is an inexpensive printhead fabricated by forming a row of depressions or, alternatively, a single recess at an edge on the upper surface of a dielectric-coated conductive sheet which functions as a ground plane. The depressions are filled with a dielectric material, and electrodes are disposed on the filled depressions and extend to conductive pads or other printhead circuitry on the sheet. The sheet is then preferably trimmed along a line through the filled depressions to form the printhead writing surface. The result is a printhead comprised of a dielectric-coated conductive sheet having an edge containing electrodes spaced from the sheet by the dielectric material.
In one embodiment, the edge is merely dressed, thereby completing an inexpensive electrostatic printhead. Energization of the printhead electrodes by driver circuitry creates an electrostatic potential, suitable for electrostatic printing, between the electrodes and the conductive sheet across the dielectric material.
In an alternative embodiment, the edge is dressed and resistive material in the form of individual resistors or a layer of resistive material is disposed over the edge and the dielectric material to connect the electrodes to the conductive sheet. This completes an inexpensive thermal printhead. Energization of the electrodes by driver circuitry causes current to pass through the resistive material to the conductive sheet, which causes the individual resistors or the resistive material between the electrodes and the conductive sheet to generate heat suitable for thermal printing.





DESCRIPTION OF THE DRAWINGS
The invention will be more fully understood by referring to the following detailed description read in conjunction with the accompanying drawings, of which:
FIG. 1 is a plan view of a printhead constructed in accordance with the invention;
FIG. 1A is a detailed view of a portion of the thermal printhead of FIG. 1 showing the writing edge;
FIG. 2 is a sectional elevation view of a portion of the writing edge of an electrostatic printhead constructed in accordance with the invention;
FIG. 3 is a sectional elevational view of a portion of the writing edge of a thermal printhead constructed in accordance with the invention;
FIG. 4 is a plan view showing the construction of a printhead in accordance with the invention;
FIG. 4A is a detailed view of a portion of the printhead of FIG. 4; and
FIG. 5 is a detailed view of the conductive sheet at the first step of fabrication of an alternative embodiment of the invention.





DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGS. 4 and 4A, onto the upper surface of conductive sheet 10 near edge 12 a row of depressions 14 or, alternatively, a single recess 16 (FIG. 5), is etched or pressed. Sheet 10 is then completely covered, except for depressions 14, with dielectric coating 18. Depressions 14 are filled with dielectric material 20 until flush with the surface of dielectric coating 18. By vacuum deposit or other well-known methods, electrodes 22, leading to electrode conductive pads 24, are deposited over dielectric-filled depressions 26. At the same time and by the same vacuum deposit or other well-known methods, other conductive areas, such as driver conductive pads 28, conductors 30, and input/output pads 32, are deposited on sheet 10 with its dielectric coating 18. Printhead 34 is then cut along writing edge plane 36 to form writing edge 38 (FIG. 1). To complete the basic printhead, driver circuitry 40, typically in the form of semiconductor chips, are connected to electrode conductive pads 24 and driver conductive pads 28 by well-known techniques, such as wire bonding.
Referring to FIGS. 1, 1A and 2, the result is printhead 34 having an array of electrodes 22 disposed over a row of dielectric-filled depressions 26 spaced along writing edge 38 on the upper surface of dielectric-coated conductive sheet 10.
In one embodiment, resulting printhead 34 is an inexpensive electrostatic printhead. Referring to FIG. 2, upon energization of electrode 22 an electrostatic potential suitable for electrostatic printing is created between electrode 22 and conductive sheet 10 across dielectric material 20.
In an alternative embodiment, resulting printhead 34 is modified to form an inexpensive thermal printhead. Referring to FIG. 3, resistive material, typically in the form of individual resistors 42, but also in the form of a layer of resistive material, is disposed on the writing edge over dielectric material 20 to connect electrodes 22 to conductive sheet 10. Energization of electrode 22 causes current to pass through resistor 42 to conductive sheet 10, which causes resistor 42 to generate heat suitable for thermal printing.
Having indicated a preferred embodiment of the present invention, it will occur to one skilled in the art that modifications and alternatives can be practised in the spirit of the invention. For example, in an alternative embodiment (not shown), printhead 34 (of FIGS. 1 and 4) can be fabricated without driver circuitry 40 disposed on the printhead. It is therefore intended that the scope of the invention be defined only by the following claims.
Claims
  • 1. A method of fabricating a printhead, comprising the steps of:
  • forming at least one indentation in a conductive sheet along a writing edge of the sheet;
  • coating the sheet, except for the indentation, with a dielectric substance;
  • filling the indentation with a dielectric material; and
  • depositing a plurality of electrodes over the dielectric-filled indentation to form a row of electrodes along the writing edge.
  • 2. The method of claim 1, further comprising the additional step of disposing driver circuitry on said conductive sheet.
  • 3. The method of claim 1, further comprising the additional step of depositing resistive material on the writing end of said conductive sheet.
  • 4. A method for fabricating a printhead, comprising the steps of:
  • forming a row of depressions in a conductive sheet along a writing edge of the sheet;
  • coating the sheet, except for the depressions, with a dielectric substance;
  • filling the depressions with a dielectric material; and
  • depositing an electrode over each dielectric-filled depression to form a row of electrodes along the writing edge.
  • 5. The method of claim 4, further comprising the additional step of disposing driver circuitry on said conductive sheet.
  • 6. The method of claim 4, further comprising the additional step of depositing resistive material on the writing end of said conductive sheet.
  • 7. A method for fabricating a printhead, comprising the steps of:
  • forming a recess in a conductive sheet along a writing edge of the sheet;
  • coating the sheet, except for the recess, with a dielectric substance;
  • filling the recess with a dielectric material; and
  • depositing a plurality of electrodes over the recess to form a row of electrodes along the writing edge.
  • 8. The method of claim 7, further comprising the additional step of disposing driver circuitry on said conductive sheet.
  • 9. The method of claim 7, further comprising the additional step of depositing resistive material on the writing end of said conductive sheet.
Parent Case Info

This application is a division of application Serial No. 163,365, filed Mar. 2, 1988.

US Referenced Citations (12)
Number Name Date Kind
RE32897 Salmon et al. Mar 1989
3120806 Supernowicz Feb 1964
3578946 Colello May 1971
4141103 Ohkubo et al. Dec 1980
4206541 Marciniec Jun 1980
4259676 Salmon et al. Mar 1981
4298786 Marciniec Nov 1981
4371273 Kendall et al. Feb 1983
4382328 Janszen May 1983
4695853 Hackleman et al. Sep 1987
4750260 Takeno et al. Jun 1988
4809428 Aden et al. Mar 1989
Foreign Referenced Citations (1)
Number Date Country
2234366 Jan 1973 DEX
Divisions (1)
Number Date Country
Parent 163365 Mar 1988