The need to reduce the cost and size of electronic equipment has created a need for smaller single filtering elements. Thin-Film Bulk Acoustic Resonators (FBARs) and Stacked Thin-Film Bulk Wave Acoustic Resonators (SBARs) represent one class of filter elements with potential for meeting these needs. These filters can collectively be referred to as FBARs. An FBAR is an acoustic resonator that uses bulk longitudinal acoustic waves in thin-film piezoelectric (PZ) material. Typically, an FBAR includes a layer of PZ material sandwiched between two metal electrodes. The combination PZ material and electrodes are suspended in air by supporting the combination around its perimeter or are placed over an acoustic mirror.
When an electrical field is created between the two electrodes, the PZ material converts some of the electrical energy into mechanical energy in the form of acoustic waves. The acoustic waves propagate generally in the same direction as the electric field and reflect off the electrode-air or electrode-acoustic mirror interface at some frequency, including at a resonance frequency. At the resonance frequency, the device can be used as an electronic resonator. Multiple EBARs can be combined such that each is an element in RF filters.
Ideally, the resonant energy in the filter elements is entirely “trapped” in the resonator. In practice, however, dispersive modes exist. These modes can result in a decreased quality factor (Q) for the filter.
For these and other reasons, a need exists for the present invention.
One aspect of the present invention provides an acoustic resonator that includes a substrate, a first electrode, a layer of piezoelectric material, a second electrode, and a fill region. The first electrode is adjacent the substrate, and the first electrode has an outer perimeter. The piezoelectric layer is adjacent the first electrode. The second electrode is adjacent the piezoelectric layer and the second electrode has an outer perimeter. The fill region is in one of the first and second electrodes.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
First electrode 16, PZ layer 18, and second electrode 20 collectively form an FBAR membrane. The FBAR membrane is adjacent substrate 12 and suspended over depression 14 to provide an electrode-air interface. In one embodiment, depression 14 is created by etching away a portion of substrate 12. Depression 14 is deep enough so that sufficient electrode-air interface is created under the FBAR membrane.
In an alternative embodiment, the FBAR membrane may be placed adjacent an acoustic mirror (not illustrated in
In one embodiment, substrate 12 is made of silicon (Si) and PZ layer 18 is made from aluminum nitride (AlN). Alternatively, other piezoelectric materials may be used for PZ layer 18. In one embodiment, first and second electrode 16 and 20 may be made of molybdenum (Mo). Alternatively, other materials may be used for the electrodes. In one embodiment, the contacts may be made of gold (Au). Alternatively, other materials may be used for the contacts.
FBAR 10 illustrated in
Second electrode 50 and the other layers of the FBAR membrane have a perimeter that can be of various configurations. For example, the perimeters of each can be pentagon-shaped, similar to FBAR 10 above. They could also be any of various polygonal shapes, circular, or various irregular shapes. The cross-sectional view illustrated in
In FBAR 40 illustrated in
In other embodiments, fill region 60 overlaps the perimeter of depression 44 such that part of fill region 60 is “inside” and part is “outside” the perimeter of depression 44. In still other embodiments, fill region 60 lies entirely “inside” the perimeter of depression 44.
Fill region 60 improves the performance of FBAR 40, resulting in improved insertion loss and improved resonator quality factor Q of FBAR 40. The overall quality factor Q of FBAR 40 depends proportionally on a parameter of resistance called Rp. In FBAR 40, the Rp may be improved by fill region 60.
An electric field is created between first and second electrodes 46 and 50 via an impressed voltage. The piezoelectric material of PZ layer 48 converts some of the electrical energy into mechanical energy in the form of acoustic waves. Some of the acoustic waves in FBAR 40 are longitudinal acoustic waves of any mode type, while others are transverse acoustic waves of the compression, shear, or drum mode type. FBAR 40 is designed to use longitudinal acoustic waves propagating in the thickness extensional direction in the PZ layer 48 as the desired resonator mode. However, FBAR 40, which provides fill region 60, reduces or suppresses energy loss, thereby improving the Q of the filter. In one embodiment, fill region 60 helps trap energy from lateral modes in FBAR 40.
In one embodiment, fill region 60 is filled with a material that is different than that used for second electrode 50. In that case, the material in fill region 60 will have different dispersion characteristics than will the remaining material of second electrode 50, which in one case is Mo. Adding this material with differing dispersion characteristics can improve insertion loss and improve the resonator quality factor Q of FBAR 40. In one embodiment, the material in fill region 60 increases the FBAR membrane's stiffness at its edge. In one case, the material in fill region 60 is such that it increases the acoustic impedance of the fill region 60 relative to that at the center of the FBAR membrane. Such material may be denser than the electrode material. For example, the material in fill region 60 can be W, while second electrode 50 is made of Mo. In other embodiments first and second electrodes 46 and 50 may be metal such as Pt, W, Cu, Al, Au, or Ag. In alternative embodiments, material in fill region 60 could also be made of materials such as polyimide, BCB, SiO2, Si3N4, or other dielectrics, AlN, ZnO, LiNbO3, PZT, LiTaO3, Al2O3, or other piezoelectric materials, Pt, W, Cu, Al, Au, Ag, or other metals or alloys of metals.
In one embodiment, fill region 60 has a depth in second electrode 50 that is on the order of hundreds to thousands of angstroms, and a width on the order of fractions of a micron to microns or even larger, up to that portion of the width of second electrode 50 that extends beyond or outside the perimeter of depression 44. In one embodiment, second electrode 50 is selectively etched to form a recessed feature that is then filled in with material to form fill region 60. In one embodiment, second electrode 50 is constructed using a lift-off technique to form a recessed feature that is filled in with material to form fill region 60.
In
In
As one skilled in the art will understand, any number of alternative fill regions 60 may be provided adjacent the edges of second electrode 50 consistent with the present invention. Fill region 60 may be continuously extending along some or all of the edges of second electrode 50 as illustrated, fill regions 60 may have smaller segments that are not continuous along the edge, and other shapes and configurations of fill regions 60 can be used, especially where second electrode 50 is a shape other than a pentagon.
Generally, the horizontal axis passing through the unit circle represents real impedance, the area above the axis represents inductive reactance and the area below represents capacitive reactance. The left-hand portion of the chart at zero reactance represents series resonance frequency (fs) and occurs where the Q circle crosses the real axes on the left side of the Smith Chart. The left-hand portion of the chart also demonstrates the parameter of resistance Rs. The right-hand portion of the chart at zero reactance represents parallel resonant frequency (fp) and occurs where the Q circle crosses the real axes on the right side of the Smith Chart. The right-hand portion of the chart also demonstrates the parameter of resistance Rp. The closer that a plot of FBAR filter characteristics on a Smith Chart is to the perimeter of the Smith Chart, the higher the Q will be for that FBAR. Also, the more smooth that the curve is, the lower the noise is in the FBAR.
In
In one embodiment, the performance of FBAR 40 as illustrated in
FBAR 70 is similar to FBAR 30 illustrated in
As with embodiments above, fill region 90 is filled with a material that is different than that used for second electrode 80. In that case, the material in fill region 90 will have different dispersion characteristics than will the remaining material of second electrode 80, which in one case is Mo. Adding this material with differing dispersion characteristics can improve insertion loss and improve the resonator quality factor Q of FBAR 70. In one embodiment, the material in fill region 90 increases the FBAR membrane's stiffness at its edge. In one case, the material in fill region 90 is such that it increases the acoustic impedance of the fill region 90 relative to that at the center of the FBAR membrane. Such material may be denser than the electrode material. For example, the material in fill region 90 can be W, while second electrode 80 is made of Mo. In other embodiments first and second electrodes 76 and 80 may be metal such as Pt, W, Cu, Al, Au, or Ag. In alternative embodiments, material in fill region 90 could also be made of materials such as polyimide, BCB, SiO2, Si3N4, or other dielectrics, AlN, ZnO, LiNbO3, PZT, LiTaO3, Al2O3, or other piezoelectric materials, Pt, W, Cu, Al, Au, Ag, or other metals or alloys of metals.
FBARs 40 and 70 may be fabricated in a variety of ways consistent with the present invention. In one embodiment, for example, a recessed region is created in the top electrode by first depositing electrode metal to a thickness slightly less than the desired thickness. Then a photo mask is used to pattern the center region of the resonator. The remaining thickness of electrode metal is then deposited, and a lift-off process is used to remove the resist remaining in the recessed area. An additional photo mask is then used to pattern the fill region. Fill material is deposited in the fill region, and the mask and fill material outside the fill region are removed in a lift-off process. In another embodiment, the recessed region may be produced by first depositing electrode metal to the desired thickness, patterning the electrode with a photo mask, and etching the recessed region. In another embodiment, the fill material may be produced by first depositing fill material, patterning the fill region with a photo mask, and etching away the fill material outside the fill region.
Next,
A filled recessed region on the bottom electrode may be constructed similarly. Furthermore, the top of the fill region does not necessarily need to align with the surface of the electrode, whether the fill region resides in the top electrode or bottom electrode. The recess in the FBAR can be generated by a lift-off process, but can also be made with an etch step. The fill material may be patterned in the recessed region by first masking with a photo mask, depositing metallization, and then using a lift-off to leave fill material in the recessed region. Fill material can also be added by first using a metal deposition, followed by a photo mask and an etch.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
The present application is a division of U.S. patent Ser. No. 11/100,311, now U.S. Pat. No. 7,369,013, entitled “ACOUSTIC RESONATOR PERFORMANCE ENHANCEMENT USING RECESSED REGION” filed on Apr. 6, 2005 and claims benefit of priority under 35 U.S.C. §121 therefrom. The entire disclosure of the parent application is specifically incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3174122 | Fowler et al. | Mar 1965 | A |
3189851 | Fowler | Jun 1965 | A |
3321648 | Kolm | May 1967 | A |
3422371 | Poirier et al. | Jan 1969 | A |
3568108 | Poirier et al. | Mar 1971 | A |
3582839 | Pim et al. | Jun 1971 | A |
3590287 | Berlincourt et al. | Jun 1971 | A |
3610969 | Clawson et al. | Oct 1971 | A |
3826931 | Hammond | Jul 1974 | A |
3845402 | Nupp | Oct 1974 | A |
4084217 | Brandis et al. | Apr 1978 | A |
4172277 | Pinson | Oct 1979 | A |
4272742 | Lewis | Jun 1981 | A |
4281299 | Newbold | Jul 1981 | A |
4320365 | Black et al. | Mar 1982 | A |
4344004 | Okubo | Aug 1982 | A |
4355408 | Scarrott | Oct 1982 | A |
4456850 | Inoue et al. | Jun 1984 | A |
4529904 | Hattersley | Jul 1985 | A |
4608541 | Moriwaki et al. | Aug 1986 | A |
4625138 | Ballato | Nov 1986 | A |
4640756 | Wang et al. | Feb 1987 | A |
4719383 | Wang et al. | Jan 1988 | A |
4769272 | Byrne et al. | Sep 1988 | A |
4798990 | Henoch | Jan 1989 | A |
4819215 | Yokoyama et al. | Apr 1989 | A |
4836882 | Ballato | Jun 1989 | A |
4841429 | McClanahan et al. | Jun 1989 | A |
4906840 | Zdeblick et al. | Mar 1990 | A |
5048036 | Scifres et al. | Sep 1991 | A |
5048038 | Brennan et al. | Sep 1991 | A |
5066925 | Freitag | Nov 1991 | A |
5075641 | Weber et al. | Dec 1991 | A |
5111157 | Komiak | May 1992 | A |
5118982 | Inoue et al. | Jun 1992 | A |
5129132 | Zdeblick et al. | Jul 1992 | A |
5162691 | Mariani et al. | Nov 1992 | A |
5185589 | Krishnaswamy et al. | Feb 1993 | A |
5214392 | Kobayashi et al. | May 1993 | A |
5233259 | Krishnaswamy et al. | Aug 1993 | A |
5241209 | Sasaki | Aug 1993 | A |
5241456 | Marcinkiewicz et al. | Aug 1993 | A |
5262347 | Sands | Nov 1993 | A |
5270492 | Fukui | Dec 1993 | A |
5294898 | Dworsky et al. | Mar 1994 | A |
5361077 | Weber | Nov 1994 | A |
5382930 | Stokes et al. | Jan 1995 | A |
5384808 | Van Brunt et al. | Jan 1995 | A |
5448014 | Kong et al. | Sep 1995 | A |
5465725 | Seyed-Boloforosh | Nov 1995 | A |
5475351 | Uematsu et al. | Dec 1995 | A |
5548189 | Williams | Aug 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5587620 | Ruby et al. | Dec 1996 | A |
5589858 | Kadowaki et al. | Dec 1996 | A |
5594705 | Connor et al. | Jan 1997 | A |
5603324 | Oppelt et al. | Feb 1997 | A |
5633574 | Sage | May 1997 | A |
5671242 | Takiguchi et al. | Sep 1997 | A |
5692279 | Mang et al. | Dec 1997 | A |
5704037 | Chen | Dec 1997 | A |
5705877 | Shimada | Jan 1998 | A |
5714917 | Ella | Feb 1998 | A |
5729008 | Blalock et al. | Mar 1998 | A |
5789845 | Wadaka et al. | Aug 1998 | A |
5835142 | Nakamura et al. | Nov 1998 | A |
5853601 | Krishaswamy et al. | Dec 1998 | A |
5864261 | Weber | Jan 1999 | A |
5866969 | Shimada et al. | Feb 1999 | A |
5872493 | Ella | Feb 1999 | A |
5873153 | Ruby et al. | Feb 1999 | A |
5873154 | Ylilammi et al. | Feb 1999 | A |
5894184 | Furuhashi et al. | Apr 1999 | A |
5894647 | Lakin | Apr 1999 | A |
5910756 | Ella | Jun 1999 | A |
5932953 | Drees et al. | Aug 1999 | A |
5936150 | Kobrin et al. | Aug 1999 | A |
5953479 | Zhou et al. | Sep 1999 | A |
5955926 | Uda et al. | Sep 1999 | A |
5962787 | Okada et al. | Oct 1999 | A |
5969463 | Tomita | Oct 1999 | A |
5982297 | Welle | Nov 1999 | A |
6001664 | Swirhun et al. | Dec 1999 | A |
6016052 | Vaughn | Jan 2000 | A |
6040962 | Kanazawa | Mar 2000 | A |
6051907 | Ylilammi | Apr 2000 | A |
6060818 | Ruby et al. | May 2000 | A |
6087198 | Panasik | Jul 2000 | A |
6090687 | Merchant et al. | Jul 2000 | A |
6107721 | Lakin | Aug 2000 | A |
6111341 | Hirama | Aug 2000 | A |
6111480 | Iyama et al. | Aug 2000 | A |
6118181 | Merchant et al. | Sep 2000 | A |
6124678 | Bishop et al. | Sep 2000 | A |
6124756 | Yaklin et al. | Sep 2000 | A |
6131256 | Dydyk | Oct 2000 | A |
6150703 | Cushman et al. | Nov 2000 | A |
6166646 | Park et al. | Dec 2000 | A |
6187513 | Katakura | Feb 2001 | B1 |
6198208 | Yano et al. | Mar 2001 | B1 |
6215375 | Larson, III et al. | Apr 2001 | B1 |
6219032 | Rosenberg et al. | Apr 2001 | B1 |
6219263 | Wuidart | Apr 2001 | B1 |
6228675 | Ruby et al. | May 2001 | B1 |
6229247 | Bishop | May 2001 | B1 |
6252229 | Hays et al. | Jun 2001 | B1 |
6262600 | Haigh et al. | Jul 2001 | B1 |
6262637 | Bradley et al. | Jul 2001 | B1 |
6263735 | Nakatani et al. | Jul 2001 | B1 |
6265246 | Ruby et al. | Jul 2001 | B1 |
6278342 | Ella | Aug 2001 | B1 |
6292336 | Horng et al. | Sep 2001 | B1 |
6307447 | Barber et al. | Oct 2001 | B1 |
6307761 | Nakagawa | Oct 2001 | B1 |
6335548 | Roberts et al. | Jan 2002 | B1 |
6355498 | Chan et al. | Mar 2002 | B1 |
6366006 | Boyd | Apr 2002 | B1 |
6376280 | Ruby et al. | Apr 2002 | B1 |
6377137 | Ruby | Apr 2002 | B1 |
6384697 | Ruby | May 2002 | B1 |
6396200 | Misu et al. | May 2002 | B2 |
6407649 | Tikka et al. | Jun 2002 | B1 |
6414569 | Nakafuku | Jul 2002 | B1 |
6420820 | Larson, III | Jul 2002 | B1 |
6424237 | Ruby et al. | Jul 2002 | B1 |
6429511 | Ruby et al. | Aug 2002 | B2 |
6434030 | Rehm et al. | Aug 2002 | B1 |
6437482 | Shibata | Aug 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6441702 | Ella et al. | Aug 2002 | B1 |
6462631 | Bradley et al. | Oct 2002 | B2 |
6466105 | Lobl et al. | Oct 2002 | B1 |
6466418 | Horng et al. | Oct 2002 | B1 |
6469597 | Ruby et al. | Oct 2002 | B2 |
6469909 | Simmons | Oct 2002 | B2 |
6472954 | Ruby et al. | Oct 2002 | B1 |
6476536 | Pensala | Nov 2002 | B1 |
6479320 | Gooch | Nov 2002 | B1 |
6483229 | Larson, III et al. | Nov 2002 | B2 |
6486751 | Barber et al. | Nov 2002 | B1 |
6489688 | Baumann et al. | Dec 2002 | B1 |
6492883 | Liang et al. | Dec 2002 | B2 |
6496085 | Ella | Dec 2002 | B2 |
6498604 | Jensen | Dec 2002 | B1 |
6507983 | Ruby et al. | Jan 2003 | B1 |
6515558 | Ylilammi | Feb 2003 | B1 |
6518860 | Ella et al. | Feb 2003 | B2 |
6525996 | Miyazawa | Feb 2003 | B1 |
6528344 | Kang | Mar 2003 | B2 |
6530515 | Glenn et al. | Mar 2003 | B1 |
6534900 | Aigner et al. | Mar 2003 | B2 |
6542055 | Frank et al. | Apr 2003 | B1 |
6548942 | Panasik | Apr 2003 | B1 |
6548943 | Kaitila et al. | Apr 2003 | B2 |
6549394 | Williams | Apr 2003 | B1 |
6550664 | Bradley et al. | Apr 2003 | B2 |
6559487 | Kang et al. | May 2003 | B1 |
6559530 | Hinzel et al. | May 2003 | B2 |
6564448 | Oura et al. | May 2003 | B1 |
6566956 | Ohnishi et al. | May 2003 | B2 |
6566979 | Larson et al. | May 2003 | B2 |
6580159 | Fusaro et al. | Jun 2003 | B1 |
6583374 | Knieser et al. | Jun 2003 | B2 |
6583688 | Klee et al. | Jun 2003 | B2 |
6593870 | Dummermuth et al. | Jul 2003 | B2 |
6594165 | Duerbaum et al. | Jul 2003 | B2 |
6600390 | Frank | Jul 2003 | B2 |
6601276 | Barber | Aug 2003 | B2 |
6603182 | Low et al. | Aug 2003 | B1 |
6617249 | Ruby et al. | Sep 2003 | B2 |
6617750 | Dummermuth et al. | Sep 2003 | B2 |
6617751 | Sunwoo et al. | Sep 2003 | B2 |
6621137 | Ma et al. | Sep 2003 | B1 |
6630753 | Malik et al. | Oct 2003 | B2 |
6635509 | Ouellet | Oct 2003 | B1 |
6639872 | Rein | Oct 2003 | B1 |
6651488 | Larson et al. | Nov 2003 | B2 |
6657363 | Aigner | Dec 2003 | B1 |
6668618 | Larson et al. | Dec 2003 | B2 |
6670866 | Ella et al. | Dec 2003 | B2 |
6693500 | Yang et al. | Feb 2004 | B2 |
6710508 | Ruby et al. | Mar 2004 | B2 |
6710681 | Figueredo et al. | Mar 2004 | B2 |
6713314 | Wong et al. | Mar 2004 | B2 |
6714102 | Ruby et al. | Mar 2004 | B2 |
6720844 | Lakin | Apr 2004 | B1 |
6720846 | Iwashita et al. | Apr 2004 | B2 |
6724266 | Piazza et al. | Apr 2004 | B2 |
6738267 | Navas Sabater et al. | May 2004 | B1 |
6774746 | Whatmore et al. | Aug 2004 | B2 |
6777263 | Gan et al. | Aug 2004 | B1 |
6787048 | Bradley et al. | Sep 2004 | B2 |
6788170 | Kaitila et al. | Sep 2004 | B1 |
6803835 | Frank | Oct 2004 | B2 |
6812619 | Kaitila et al. | Nov 2004 | B1 |
6828713 | Bradley et al. | Dec 2004 | B2 |
6842088 | Yamada et al. | Jan 2005 | B2 |
6842089 | Lee | Jan 2005 | B2 |
6853534 | Williams | Feb 2005 | B2 |
6873065 | Haigh et al. | Mar 2005 | B2 |
6873529 | Ikuta | Mar 2005 | B2 |
6874211 | Bradley et al. | Apr 2005 | B2 |
6874212 | Larson, III | Apr 2005 | B2 |
6888424 | Takeuchi et al. | May 2005 | B2 |
6900705 | Nakamura et al. | May 2005 | B2 |
6903452 | Ma et al. | Jun 2005 | B2 |
6906451 | Yamada et al. | Jun 2005 | B2 |
6911708 | Park | Jun 2005 | B2 |
6917261 | Unterberger | Jul 2005 | B2 |
6924583 | Lin et al. | Aug 2005 | B2 |
6924717 | Ginsburg et al. | Aug 2005 | B2 |
6927651 | Larson, III et al. | Aug 2005 | B2 |
6936928 | Hedler et al. | Aug 2005 | B2 |
6936954 | Peczalski | Aug 2005 | B2 |
6943648 | Maiz et al. | Sep 2005 | B2 |
6946928 | Larson et al. | Sep 2005 | B2 |
6954121 | Bradley et al. | Oct 2005 | B2 |
1670365 | Turchi | Nov 2005 | A1 |
6963257 | Ella et al. | Nov 2005 | B2 |
6970365 | Turchi | Nov 2005 | B2 |
6975183 | Aigner et al. | Dec 2005 | B2 |
6977563 | Komuro et al. | Dec 2005 | B2 |
6985052 | Tikka | Jan 2006 | B2 |
6987433 | Larson et al. | Jan 2006 | B2 |
6989723 | Komuro et al. | Jan 2006 | B2 |
6998940 | Metzger | Feb 2006 | B2 |
7002437 | Takeuchi et al. | Feb 2006 | B2 |
7019604 | Gotoh et al. | Mar 2006 | B2 |
7019605 | Larson | Mar 2006 | B2 |
7026876 | Esfandiari et al. | Apr 2006 | B1 |
7053456 | Matsuo | May 2006 | B2 |
7057476 | Hwu | Jun 2006 | B2 |
7057478 | Korden et al. | Jun 2006 | B2 |
7064606 | Louis | Jun 2006 | B2 |
7084553 | Ludwiczak | Aug 2006 | B2 |
7091649 | Larson | Aug 2006 | B2 |
7098758 | Wang et al. | Aug 2006 | B2 |
7102460 | Schmidhammer et al. | Sep 2006 | B2 |
7128941 | Lee | Oct 2006 | B2 |
7138889 | Lakin | Nov 2006 | B2 |
7161448 | Feng et al. | Jan 2007 | B2 |
7170215 | Namba et al. | Jan 2007 | B2 |
7173504 | Larson | Feb 2007 | B2 |
7187254 | Su et al. | Mar 2007 | B2 |
7209374 | Noro | Apr 2007 | B2 |
7212083 | Inoue et al. | May 2007 | B2 |
7212085 | Wu | May 2007 | B2 |
7230509 | Stoemmer | Jun 2007 | B2 |
7230511 | Onishi et al. | Jun 2007 | B2 |
7242270 | Larson et al. | Jul 2007 | B2 |
7259498 | Nakatsuka et al. | Aug 2007 | B2 |
7275292 | Ruby et al. | Oct 2007 | B2 |
7276994 | Takeuchi et al. | Oct 2007 | B2 |
7280007 | Feng et al. | Oct 2007 | B2 |
7281304 | Kim et al. | Oct 2007 | B2 |
7294919 | Bai | Nov 2007 | B2 |
7301258 | Tanaka | Nov 2007 | B2 |
7310861 | Aigner et al. | Dec 2007 | B2 |
7332985 | Larson et al. | Feb 2008 | B2 |
7367095 | Larson, III et al. | May 2008 | B2 |
7368857 | Tanaka | May 2008 | B2 |
7369013 | Fazzio et al. | May 2008 | B2 |
7388318 | Yamada et al. | Jun 2008 | B2 |
7388454 | Ruby et al. | Jun 2008 | B2 |
7388455 | Larson, III | Jun 2008 | B2 |
7408428 | Larson, III | Aug 2008 | B2 |
7414349 | Sasaki | Aug 2008 | B2 |
7414495 | Iwasaki et al. | Aug 2008 | B2 |
7423503 | Larson, III | Sep 2008 | B2 |
7425787 | Larson, III | Sep 2008 | B2 |
7439824 | Aigner | Oct 2008 | B2 |
7545532 | Muramoto | Jun 2009 | B2 |
20020000646 | Gooch et al. | Jan 2002 | A1 |
20020030424 | Iwata | Mar 2002 | A1 |
20020063497 | Panasik | May 2002 | A1 |
20020070463 | Chang et al. | Jun 2002 | A1 |
20020121944 | Larson, III et al. | Sep 2002 | A1 |
20020121945 | Ruby et al. | Sep 2002 | A1 |
20020126517 | Matsukawa et al. | Sep 2002 | A1 |
20020140520 | Hikita et al. | Oct 2002 | A1 |
20020152803 | Larson, III et al. | Oct 2002 | A1 |
20020190814 | Yamada et al. | Dec 2002 | A1 |
20030001251 | Cheever et al. | Jan 2003 | A1 |
20030006502 | Karpman | Jan 2003 | A1 |
20030011285 | Ossmann | Jan 2003 | A1 |
20030011446 | Bradley | Jan 2003 | A1 |
20030051550 | Nguyen et al. | Mar 2003 | A1 |
20030087469 | Ma | May 2003 | A1 |
20030102776 | Takeda et al. | Jun 2003 | A1 |
20030111439 | Fetter et al. | Jun 2003 | A1 |
20030128081 | Ella et al. | Jul 2003 | A1 |
20030132493 | Kang et al. | Jul 2003 | A1 |
20030132809 | Senthilkumar et al. | Jul 2003 | A1 |
20030141946 | Ruby et al. | Jul 2003 | A1 |
20030179053 | Aigner et al. | Sep 2003 | A1 |
20030205948 | Lin et al. | Nov 2003 | A1 |
20040016995 | Kuo et al. | Jan 2004 | A1 |
20040017130 | Wang et al. | Jan 2004 | A1 |
20040056735 | Nomura et al. | Mar 2004 | A1 |
20040092234 | Pohjonen | May 2004 | A1 |
20040124952 | Tikka | Jul 2004 | A1 |
20040129079 | Kato et al. | Jul 2004 | A1 |
20040150293 | Unterberger | Aug 2004 | A1 |
20040150296 | Park et al. | Aug 2004 | A1 |
20040166603 | Carley | Aug 2004 | A1 |
20040195937 | Matsubara et al. | Oct 2004 | A1 |
20040212458 | Lee | Oct 2004 | A1 |
20040257171 | Park et al. | Dec 2004 | A1 |
20040257172 | Schmidhammer et al. | Dec 2004 | A1 |
20040263287 | Ginsburg et al. | Dec 2004 | A1 |
20050012570 | Korden et al. | Jan 2005 | A1 |
20050012716 | Mikulin et al. | Jan 2005 | A1 |
20050023931 | Bouche et al. | Feb 2005 | A1 |
20050030126 | Inoue et al. | Feb 2005 | A1 |
20050036604 | Scott et al. | Feb 2005 | A1 |
20050057117 | Nakatsuka et al. | Mar 2005 | A1 |
20050057324 | Onishi et al. | Mar 2005 | A1 |
20050068124 | Stoemmer | Mar 2005 | A1 |
20050093396 | Larson et al. | May 2005 | A1 |
20050093653 | Larson, III | May 2005 | A1 |
20050093654 | Larson et al. | May 2005 | A1 |
20050093655 | Larson et al. | May 2005 | A1 |
20050093657 | Larson et al. | May 2005 | A1 |
20050093658 | Larson et al. | May 2005 | A1 |
20050093659 | Larson et al. | May 2005 | A1 |
20050104690 | Larson | May 2005 | A1 |
20050110598 | Larson, III | May 2005 | A1 |
20050128030 | Larson et al. | Jun 2005 | A1 |
20050140466 | Larson, III et al. | Jun 2005 | A1 |
20050167795 | Higashi | Aug 2005 | A1 |
20050193507 | Ludwiczak | Sep 2005 | A1 |
20050206271 | Higuchi et al. | Sep 2005 | A1 |
20050206483 | Pashby et al. | Sep 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20060071736 | Ruby et al. | Apr 2006 | A1 |
20060081048 | Mikado et al. | Apr 2006 | A1 |
20060087199 | Larson et al. | Apr 2006 | A1 |
20060103492 | Feng et al. | May 2006 | A1 |
20060119453 | Fattinger et al. | Jun 2006 | A1 |
20060125489 | Feucht et al. | Jun 2006 | A1 |
20060132262 | Fazzio et al. | Jun 2006 | A1 |
20060164183 | Tikka et al. | Jul 2006 | A1 |
20060185139 | Larson, III et al. | Aug 2006 | A1 |
20060197411 | Hoen et al. | Sep 2006 | A1 |
20060238070 | Costa et al. | Oct 2006 | A1 |
20060284707 | Larson et al. | Dec 2006 | A1 |
20060290446 | Aigner et al. | Dec 2006 | A1 |
20070037311 | Izumi et al. | Feb 2007 | A1 |
20070080759 | Jamneala et al. | Apr 2007 | A1 |
20070084964 | John et al. | Apr 2007 | A1 |
20070085447 | Larson | Apr 2007 | A1 |
20070085631 | Larson et al. | Apr 2007 | A1 |
20070085632 | Larson et al. | Apr 2007 | A1 |
20070086080 | Larson et al. | Apr 2007 | A1 |
20070086274 | Nishimura et al. | Apr 2007 | A1 |
20070090892 | Larson | Apr 2007 | A1 |
20070170815 | Unkrich | Jul 2007 | A1 |
20070171002 | Unkrich | Jul 2007 | A1 |
20070176710 | Jamneala et al. | Aug 2007 | A1 |
20070205850 | Jamneala et al. | Sep 2007 | A1 |
20070279153 | Ruby | Dec 2007 | A1 |
20080055020 | Handtmann et al. | Mar 2008 | A1 |
20080297279 | Thalhammer et al. | Dec 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
10160617 | Jun 2003 | DE |
0231892 | Aug 1987 | EP |
0637875 | Feb 1995 | EP |
0689254 | Jun 1995 | EP |
0865157 | Sep 1998 | EP |
0880227 | Nov 1998 | EP |
0973256 | Jan 2000 | EP |
1047189 | Oct 2000 | EP |
1100196 | Nov 2000 | EP |
1 096 259 | May 2001 | EP |
1 180 494 | Feb 2002 | EP |
1100196 | Feb 2002 | EP |
1249932 | Oct 2002 | EP |
1 258 990 | Nov 2002 | EP |
1258989 | Nov 2002 | EP |
1542362 | Jun 2003 | EP |
1 517 443 | Mar 2005 | EP |
1517444 | Mar 2005 | EP |
1528674 | May 2005 | EP |
1528675 | May 2005 | EP |
1528676 | May 2005 | EP |
1528677 | May 2005 | EP |
1557945 | Jul 2005 | EP |
1 575 165 | Sep 2005 | EP |
1207974 | Oct 1970 | GB |
2013343 | Aug 1979 | GB |
2411239 | Aug 2005 | GB |
2418791 | Apr 2006 | GB |
2427773 | Jan 2007 | GB |
59023612 | Feb 1984 | JP |
61054686 | Mar 1986 | JP |
1-157108 | Jun 1989 | JP |
06005944 | Jan 1994 | JP |
2001-257560 | Sep 2001 | JP |
2002-515667 | May 2002 | JP |
2002217676 | Aug 2002 | JP |
2003124779 | Apr 2003 | JP |
WO-9816957 | Apr 1998 | WO |
WO 0106647 | Jan 2001 | WO |
WO-0199276 | Dec 2001 | WO |
WO 02103900 | Dec 2002 | WO |
WO-03030358 | Apr 2003 | WO |
WO 03043188 | May 2003 | WO |
WO-03050950 | Jun 2003 | WO |
WO-03058809 | Jul 2003 | WO |
WO-2004034579 | Apr 2004 | WO |
WO 2004051744 | Jun 2004 | WO |
WO 2004102688 | Nov 2004 | WO |
WO-2005043752 | May 2005 | WO |
WO-2005043753 | May 2005 | WO |
WO-2005043756 | May 2005 | WO |
WO-2006018788 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080060181 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11100311 | Apr 2005 | US |
Child | 11938078 | US |