The present invention relates to manufacturing electrodes; more particularly, relates to directly passing electrons to a conductive carbon material through carbon nanotubes (CNT) and then to an external electronic load for improving power density of flow cell, making a cell pack more compact and reducing energy consumption on charging and discharging without using noble metal material.
Traditionally, for making electrodes of flow cell, finished conductive carbon nanotubes (CNT) are mixed with graphite, which thereby are used as electrodes for transferring electrons in the flow cell.
However, since the conductive CNTs are finished in advance, they cannot be directly formed on the surface of the graphite. As a result, conductive CNTs have bad contact with the graphite, where electrical conductivity, corrosion resistance, mechanical strength, specific surface area and electrochemical surface area are all poor. In addition, during the electrons are transferred through the electrodes, more energy may be needed.
Hence, the prior art does not fulfill all users' requests on actual use.
The main purpose of the present invention is to use CNT electrodes with advantages of their conductive properties, corrosion resistance, excellent mechanical strength, high specific surface area and electrochemical surface area to be used in vanadium redox flow-cell electrodes to directly pass electrons to a conductive carbon material through CNTs and then to an external electronic load for improving power density of flow cell, making cell pack more compact and reducing energy consumption on charging and discharging without using noble metal material.
To achieve the above purpose, the present invention is a method of fabricating electrodes of high power-density flow cell, comprising steps of: (a) pre-treatment: processing a high-temperature treatment to a conductive carbon material; (b) seed settlement: distributing a plurality of seeds on a surface of the conductive carbon material; (c) etching: etching each of the seeds on the surface of the conductive carbon material into a plurality of nanoparticles; and (d) microwave molding: forming a plurality of CNT electrodes on said surface of said conductive carbon material by directly microwaving said nanoparticles. Accordingly, a novel method of fabricating electrodes of high power-density flow cell is obtained.
The present invention will be better understood from the following detailed description of the preferred embodiment according to the present invention, taken in conjunction with the accompanying drawings, in which
The following description of the preferred embodiment is provided to understand the features and the structures of the present invention.
Please refer to
(a) Pre-treatment 1: In
(b) Seed settlement 2: In
(c) Etching 3: In
(d) Microwave molding 4: In
To sum up, the present invention is a method of fabricating electrodes of high power-density flow cell, where the present invention can be applied to vanadium redox flow cell with advantages of CNT electrodes, such as conductivity, corrosion resistance, mechanical strength and specific and electrochemical surface areas; and where electrons are directly passed to a conductive carbon material through CNTs and then to an external electronic load for improving power density of flow cell, making a cell pack more compact and reducing energy consumption on charging and discharging without using noble metal material.
The preferred embodiment herein disclosed is not intended to unnecessarily limit the scope of the invention. Therefore, simple modifications or variations belonging to the equivalent of the scope of the claims and the instructions disclosed herein for a patent are all within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
102138977 A | Oct 2013 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6509119 | Kobayashi | Jan 2003 | B1 |
20020085968 | Smalley et al. | Jul 2002 | A1 |
20120220106 | Matsumoto et al. | Aug 2012 | A1 |
20140065447 | Liu et al. | Mar 2014 | A1 |
20150140436 | Gohier | May 2015 | A1 |
Entry |
---|
Kim et al. (“The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries”, Materials Chemistry and Physics 131 (2011), p. 547-553). |
Chakrabarti et al. (“Application of carbon materials in redox flow batteries”, Journal of Power Sciences 253 (2014), p. 150-166.). |
Number | Date | Country | |
---|---|---|---|
20150114924 A1 | Apr 2015 | US |