1. Field of the Invention
The present invention relates to a method of fabricating an image sensor and an image sensor thereof, and more particularly, to a method of fabricating an image sensor and an image sensor comprising micro-lenses having different heights for improving quantum efficiency and avoiding cross talk.
2. Description of the Prior Art
Please refer to
It is therefore one of the objectives of the present invention to provide a method of fabricating an image sensor and an image sensor comprising micro-lenses having different heights for improving quantum efficiency and avoiding cross talk, so as to solve the above problem.
According to an embodiment of the present invention, a method of fabricating an image sensor is disclosed. The method comprises: providing a mask; utilizing the mask at a first position to form a first group of micro-lenses having a first height on a first group of color filters of a color filter array on a pixel array; shifting the mask from the first position to a second position, wherein a distance between the first position and the second position is substantially equal to a width of a pixel of the pixel array; and utilizing the mask at the second position to form a second group of micro-lenses having a second height, different from the first height, on a second group of color filters of the color filter array.
According to an embodiment of the present invention, an image sensor is disclosed. The image sensor comprises: a pixel array, a color filter array, a first group of micro-lenses and a second group of micro-lens. The color filter array comprises a first group of color filters and a second group of color filters on the pixel array. The first group of micro-lenses has a first height on the first group of color filters. The second group of micro-lenses has a second height, different from the first height, on the second group of color filters.
Briefly summarized, the method of fabricating the image sensor and the image sensor of the present invention are capable of improving quantum efficiency and avoiding cross talk because the image sensor comprises micro-lenses having different heights.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, hardware manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but in function. In the following discussion and in the claims, the terms “include”, “including”, “comprise”, and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”.
Please refer to
In one embodiment, the first group of color filters 340 comprises a plurality of green monochromatic color filters, and the second group of color filters 350 comprises a plurality of red monochromatic color filters and a plurality of blue monochromatic color filters. In another embodiment, the second group of color filters 350 comprises a plurality of green monochromatic color filters, and the first group of color filters 340 comprises a plurality of red monochromatic color filters and a plurality of blue monochromatic color filters.
Additionally, the first group of color filters 340 and the second group of color filters 350 are arranged in a checkerboard pattern. The first group of micro-lenses 320 can be formed by utilizing a mask having the checkerboard pattern at a first position at first, as shown in
Please refer to
Step 710: Provide a mask having a checkerboard pattern.
Step 720: Utilize the mask at a first position to form a first group of micro-lenses having a first height on a first group of color filters of a color filter array on a pixel array.
Step 730: Shift the mask from the first position to a second position, wherein a distance between the first position and the second position is substantially equal to a width of a pixel of the pixel array.
Step 740: Utilize the mask at the second position to form a second group of micro-lenses having a second height, different from the first height, on a second group of color filters of the color filter array.
Briefly summarized, the method of fabricating the image sensor and the image sensor of the present invention are capable of improving quantum efficiency and avoiding cross talk because the image sensor comprises micro-lenses having different heights.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.