The present invention claims the benefit of Korean Patent Application No. 85624/2002 filed in Korea on Dec. 27, 2002, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a method of fabricating a display device, and more particularly, to a method of fabricating a liquid crystal display device.
2. Description of the Related Art
As various portable electronic devices are developed, such as mobile phones, personal digital assistants (PDA), and notebook computers, requirements for small, light weight, and power-efficient flat panel display devices have gradually increased. Presently, liquid crystal display (LCD) devices, plasma display panel (PDP) devices, field emission display (FED) devices, and vacuum fluorescent display (VFD) devices have been developed for implementation as flat panel display devices. However, the LCD devices are currently being fabricated due to their simple mass production technology, easy driving systems, and production of high quality images.
The lower substrate 5 and the upper substrate 3 are attached by a sealing material 9, and the liquid crystal layer 7 is formed therebetween for driving the liquid crystal molecules using the driving devices formed on the lower substrate 5 in order to control light transmitted through the liquid crystal layer. Processes for fabricating the LCD device can be divided into a driving device array substrate process, wherein the driving devices are formed on the lower substrate 5; a color filter substrate process, wherein the color filters are formed on the upper substrate 3; and a cell process.
A step S104 includes formation of a color filter layer of R, G, and B colors and a common electrode on an upper substrate using a color filter process.
Steps S102 and S105 both include formation of alignment layers on the upper and lower substrates, wherein the alignment layers are rubbed in order to provide the liquid crystal molecules of the liquid crystal layer formed between the upper and lower substrates with an initial alignment and surface fixing force (i.e., pre-tilt angle and orientation direction).
Step S103 includes scattering a plurality of spacers onto the lower substrate for maintaining a uniform cell gap between the upper and lower substrates.
Step S106 includes formation of a sealing material along an outer portion of the upper substrate.
Step S107 includes attaching the upper and lower substrates by compressing the upper and lower substrates together.
Step S108 includes dividing the attached upper and lower substrates into a plurality of individual liquid crystal panels.
Step S109 includes injection of the liquid crystal material into the liquid crystal panels through a liquid crystal injection hole, wherein the liquid crystal injection hole is sealed to form the liquid crystal layer.
Step S110 includes testing the injected liquid crystal panel.
Operation of the LCD device makes use of an electro-optical effect of the liquid crystal material, wherein anisotropy of the liquid crystal material aligns liquid crystal molecules along a specific direction. Accordingly, control of the liquid crystal molecules significantly affects image stabilization of the LCD device. Thus, formation of the alignment layer and the spacers are critical for fabricating an LCD device that produces quality images.
However, during the spacer scattering process, the spacers are provided with the pixel area through which the light is to be transmitted. Accordingly, the spacers within the pixel area are similar to an impurity that interrupts orientation of liquid crystal molecules, thereby lowering aperture rate. Thus, a distribution density of the spacers should be controlled and uniformly maintained across a display screen of the LCD device. For example, although the distribution density of the spacers is high and a uniform cell gap may be maintained, displaying functions of a black screen is lowered by light dispersal due to the spacers, and a contrast ratio is reduced.
In order to solve the above problem, patterned column spacers are formed at desired locations by photolithographic processes of depositing (coating), developing, and etching organic polymer material. In addition, a mask process must be added in order to form the column spacers, thereby increasing fabrication costs and complicating the overall fabricating processes. However, formation of the spacers using the scattering method is performed after formation of the alignment layers, whereas using the patterned column spacers means that the formation of the alignment layers is performed after formation of the patterned column spacers. For example, the alignment layer process commonly uses a roller coating method.
However, since the dispenser 1 supplies the alignment material 21 onto the anylox roll 22 using a left-to-right motion along an upper part of the anylox roll 22, uniform thickness of the resulting alignment layer may not be achieved. For example, as a size of the substrate 26 increases, it becomes increasingly more difficult to form the alignment layer having a uniform thickness. Moreover, since all of the alignment material 21 transferred on the rubber plate 25 is not necessarily re-transferred onto the substrate 26, a significant amount of the alignment material 21 is wasted as compared to the amount of alignment material 21 that is re-transferred onto the substrate 26. Accordingly, the amount of wasted alignment material 21 unnecessarily increases production costs.
Accordingly, the present invention is directed to a method of fabricating a liquid crystal display device that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a method of fabricating a liquid crystal display having a uniform alignment layer across an entire surface of a substrate and to reduce material waste.
Another object of the present invention is to provide a method of fabricating a liquid crystal display having a simplified spacer formation process and to form the spacers at precise desired locations.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the method particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method of fabricating a liquid crystal display device includes providing a first substrate, forming an alignment layer on the first substrate using an ink jet method to form a plurality of holes that expose portions of the first substrate, and forming a spacer within each of the plurality of holes using the ink jet method.
In another aspect, a method of fabricating a liquid crystal display device includes providing a lower substrate upon which a thin film transistor is formed and an upper substrate upon which a color filter is formed, forming an alignment layer on one of the lower substrate and the upper substrate using an ink jet method, and forming a plurality of spacers on one of the lower substrate and upper substrate.
In another aspect, a method of fabricating a liquid crystal display device includes providing a lower substrate upon which a thin film transistor is formed and an upper substrate upon which a color filter is formed, applying a first alignment layer along an entire surface of the lower substrate using an ink jet method, applying a second alignment layer along a surface of the upper substrate using the ink jet method, the second alignment layer having a plurality of holes that expose surface portions of the upper substrate, and forming a spacer in each of the plurality of holes formed on the expose surface portions of the upper substrate using the ink jet method.
In another aspect, a method of fabricating a liquid crystal display device includes providing a first substrate and a second substrate, dispensing a first alignment material on first surface portions of the first substrate to expose second surface portions of the first substrate, and dispensing the first alignment material on second surface portions of the second substrate to expose second surface portions of the second substrate.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
In
In
Formation of the alignment layer 240 may be accomplished by moving the nozzle along an entire upper portion of the substrate 200, wherein the alignment layer 240 may be formed having a uniform thickness across an entire surface of the substrate 200. Accordingly, the alignment layer 240 may be formed on the substrate 200 by selectively closing/opening some of the holes formed in the nozzle as the nozzle passes along the substrate 200 as the alignment material 230 is supplied.
In
In
During formation of the spacers 260 using the ink jet method, the nozzle (not shown) of the ink jet system 350 may pass along the areas where the alignment layer 240 is formed, and may selectively drop organic material 270 (i.e., photoresist material) into the holes 220 formed in the alignment layer 240. Then, the organic material 270 may be hardened to form the spacers 260 each having a predetermined height. In addition, the organic material 270 may be injected with a solvent to control viscosity of the organic material 270. Accordingly, amounts of the injected organic material 270 may be selected based upon evaporation amounts of the solvent. Thus, the holes 220 formed in the alignment layer 240 may function to maintain shapes of spacers 260 in order to prevent spreading of the organic material 270 dropped into the holes 220. For example, the spacers 260 may have a certain height (i.e., 3 μm or more) in order to maintain a uniform cell gap between the first and second substrates 100a and 100b (in
However, it may be difficult to form the spacers 260 using the organic material 270 without using barrier ribs (not shown) due to physical properties of the organic material 270. Thus, the holes 220 that expose the portions of the substrate 200 may be formed in advance at positions where the spacers 260 will be formed to function as the barrier ribs. Accordingly, the holes 220 formed in the alignment layer 240 may be formed to have specific shapes if the holes 220 are to maintain the height of the organic material 270 and are not to interrupt injection of the liquid crystal material. For example, barrier ribs for forming the spacers 260 may not have to be formed on the alignment layer 240. However, it may be desirable that the holes 220 may be formed in advance when the alignment layer 240 is formed since an additional mask process is necessary for forming the barrier ribs.
When the spacers 260 have been completed, the liquid crystal material may be dispensed onto liquid crystal panel areas of the first substrate 100a (in
Although the liquid crystal material may be dropped onto either one of the first and second substrates 100a and 100b (in
It will be apparent to those skilled in the art that various modifications and variations can be made in the method of fabricating a liquid crystal display device of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2002-0085624 | Dec 2002 | KR | national |
This application is a Divisional Application of U.S. patent application Ser. No. 10/674,552, filed on Oct. 1, 2003 now U.S. Pat. No. 7,098,988, now allowed, which claims priority to Korean Application No. 10-2002-85624, filed Dec. 27, 2002, all of which are hereby incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4294650 | Werthmann | Oct 1981 | A |
5259926 | Kuwabara et al. | Nov 1993 | A |
5263888 | Ishihara et al. | Nov 1993 | A |
5514503 | Evans et al. | May 1996 | A |
5544582 | Bocko et al. | Aug 1996 | A |
5678483 | Johnson | Oct 1997 | A |
5701815 | Bocko et al. | Dec 1997 | A |
6001515 | Evans et al. | Dec 1999 | A |
6245469 | Shiba et al. | Jun 2001 | B1 |
6356318 | Kawahata | Mar 2002 | B1 |
6515725 | Hattori et al. | Feb 2003 | B1 |
6867840 | Hsieh et al. | Mar 2005 | B2 |
Number | Date | Country |
---|---|---|
1153313 | Jul 1997 | CN |
1321254 | Nov 2001 | CN |
0471628 | Feb 1992 | EP |
63-205608 | Aug 1988 | JP |
3-280416 | Dec 1991 | JP |
4-94115 | Mar 1992 | JP |
4-239684 | Aug 1992 | JP |
4-249189 | Sep 1992 | JP |
4-296724 | Oct 1992 | JP |
5-11270 | Jan 1993 | JP |
6-202314 | Jul 1994 | JP |
7-240523 | Sep 1995 | JP |
2001-083499 | Mar 2001 | JP |
09-138410 | May 2001 | JP |
1020020078517 | Oct 2002 | KR |
Number | Date | Country | |
---|---|---|---|
20060187400 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10674552 | Oct 2003 | US |
Child | 11407948 | US |