Method of fabricating polymer optical channel waveguides with multiple types of waveguide core materials

Information

  • Patent Grant
  • 6724969
  • Patent Number
    6,724,969
  • Date Filed
    Tuesday, December 4, 2001
    23 years ago
  • Date Issued
    Tuesday, April 20, 2004
    20 years ago
Abstract
A planar optical waveguide is disclosed. The waveguide includes a substrate, a first cladding disposed on the substrate, and a first core disposed on a first portion of the first cladding. The first core is constructed from a first material. The optical waveguide also includes a second core disposed on a second portion of the first cladding, with the second core being constructed from a second material and a second cladding disposed on the first core, the second core, and a remaining portion of the first cladding. A method of manufacturing the waveguide is also disclosed.
Description




FIELD OF THE INVENTION




The present invention relates to integrated optical waveguide devices and, in particular, polymer optical waveguide devices.




BACKGROUND OF THE INVENTION




Planar optical waveguides can be formed with polymers, using a core polymer and a cladding polymer, with the core polymer having a refractive index slightly higher than that of the cladding polymer. Planar optical waveguides can be used to form various optical devices such as splitters, couplers, wavelength division multiplexers/demultiplexers, electro-optic modulators, thermo-optic switches, variable optical attenuators, optical waveguide amplifiers, etc. These devices operate in the near infrared region of the optical telecommunications wavelength window, and serve as building blocks of modern optical communications networks.




A general approach to making polymer optical waveguides is to dispose several undercladding polymer film layers on a substrate and then a polymer core film layer on top of the undercladding layer. The cladding and core layer formation processes, such as spincoating and vapor deposition, result in uniform cladding and core film layers with homogeneous composition over the entire substrate. The polymer core layer film subsequently undergoes lithography and etching processes from which a rectangular cross-section core is formed. Using a photomask, the subsequent lithography and etching processes result in channel waveguides that follow the photomask pattern. Using these processes, cores with a single material type are fabricated. An overcladding polymer film layer is then put on top of the waveguide core and the undercladding.




In some device applications, such as optical waveguide amplifiers, optical lossless splitters, electro-optic modulators, etc., it is of great benefit to have the ability to fabricate channel waveguide devices with multiple types of core materials, so that integrated devices with multiple functionalities can be formed on the same waveguide substrate. Due to the homogeneous nature of the core layer film, all of the core channels are presently composed of the same core material. However, in devices where multiple functionalities must be built on the same substrate, multiple types of core materials are required. It would be beneficial to provide a planar optical waveguide in which multiple types of cores are present.




BRIEF SUMMARY OF THE INVENTION




Briefly, the present invention provides a planar optical waveguide comprising a substrate, a first cladding disposed on the substrate, and a first core disposed on a first portion of the first cladding. The first core is constructed from a first material. The optical waveguide also comprises a second core disposed on a second portion of the first cladding, with the second core being constructed from a second material and a second cladding disposed on the first core, the second core, and a remaining portion of the first cladding.




Additionally, the present invention provides a method of manufacturing a planar optical waveguide. The method comprises providing a substrate; disposing a first cladding layer over the substrate; disposing a first core material over the first cladding layer; forming a first core from the first core material, the first core being in a plane; disposing a second core material over the first cladding layer; forming a second core from the second core material, the second core being approximately in the plane of the first core; and disposing a top cladding layer over the first core, the second core, and an exposed portion of the first cladding layer.




Further, the present invention provides a method of manufacturing a planar optical waveguide. The method comprises providing a substrate; disposing a first cladding layer over the substrate; forming a first channel in the first cladding layer; disposing a first core material into the first channel; forming a second channel in the first cladding layer; disposing a second core material in the second channel; and disposing a second cladding layer on the first core material, the second core material, and at least a portion of the first cladding layer.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention. In the drawings:





FIG. 1

is a perspective view of an optical waveguide according to a first embodiment of the present invention.





FIG. 2

is a sectional view of a substrate showing mask alignment and wafer dicing marks.





FIG. 3

is a sectional view of the substrate showing lower cladding and first core material disposed on the substrate.





FIG. 4

is a sectional view of the substrate with a metal mask disposed on the first core material.





FIG. 5

is a sectional view of the substrate with the first core material removed according to contours of the metal mask.





FIG. 6

is a sectional view of the substrate with a first top cladding disposed on the first core material and the lower cladding.





FIG. 7

is a sectional view of the substrate with a portion of the first top cladding removed, exposing a portion of the lower cladding.





FIG. 8

is a sectional view of the substrate with a second core material disposed on the first top cladding and the exposed lower cladding.





FIG. 9

is a sectional view of the substrate with the second core material having been formed in a desired shape on the exposed lower cladding.





FIG. 10

is a sectional view of the substrate with a second top cladding disposed on the second core material, the exposed lower cladding, and the first top cladding.





FIG. 11

is a sectional view of the optical waveguide, taken along section lines


11





11


of FIG.


11


.





FIG. 12

is a sectional view of the substrate with the second core material disposed on the first core and the exposed lower cladding.





FIG. 13

is a sectional view of the substrate with the second core material having been formed in a desired shape on the lower cladding.





FIG. 14

is a sectional view of the substrate with the top cladding disposed over the cores and the exposed lower cladding.





FIG. 15

is a perspective view of an optical waveguide according to another embodiment of the present invention.





FIG. 16

is a sectional view of the substrate with the lower cladding disposed on the substrate.





FIG. 17

is a sectional view of the substrate with channels for the first cores formed in the lower cladding.





FIG. 18

is a sectional view of the substrate with first core material disposed on the lower cladding.





FIG. 19

is a sectional view of the substrate with the first cores and channels for the second cores formed in the cladding.





FIG. 20

is a sectional view of the substrate with the second core material disposed on the lower cladding.





FIG. 21

is a sectional view of the optical waveguide, taken along section lines


21





21


of FIG.


15


.











DETAILED DESCRIPTION OF THE INVENTION




In the drawings, like numerals indicate like elements throughout.

FIG. 1

shows a perspective view of a planar optical waveguide


100


according to a preferred embodiment of the present invention. The waveguide


100


includes a substrate


110


, a first lower cladding


120


disposed on the substrate


110


, a plurality of cores comprising a first core


132


and a second core


134


disposed on the lower cladding


120


. An upper cladding is comprised of a first upper cladding


140


and a second upper cladding


150


. The first upper cladding


140


is disposed on the first core


132


and portions of the lower cladding


120


not covered by the first core


132


. The second upper cladding


150


is disposed on the second core


134


and other portions of the lower cladding


120


not covered by the second core


134


.




Preferably, the substrate


110


is a polymer from the group consisting of polycarbonate, acrylic, polymethyl methacrylate, cellulosic, thermoplastic elastomer, ethylene butyl acrylate, ethylene vinyl alcohol, ethylene tetrafluoroethylene, fluorinated ethylene propylene, polyetherimide, polyethersulfone, polyetheretherketone, polyperfluoroalkoxyethylene, nylon, polybenzimidazole, polyester, polyethylene, polynorbornene, polyimide, polystyrene, polysulfone, polyvinyl chloride, polyvinylidene fluoride, an ABS polymer, polyacrylonitrile butadiene styrene, acetal copolymer, poly[2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene] (sold under the trademark TEFLON® AF), poly[2,3-(perfluoroalkenyl) perfluorotetrahydrofuran] (sold under the trademark CYTOP®), poly[2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole-co-tetrafluoroethylene] (sold under the trademark HYFLON® AD), and any other thermoplastic polymers; and thermoset polymers, such as diallyl phthalate, epoxy, furan, phenolic, thermoset polyester, polyurethane, and vinyl ester. However, those skilled in the art will recognize that other polymers and other materials, such as silicon, can be used. Wafer dicing marks


112


and mask alignment marks


114


are disposed on the substrate


110


to provide reference locations for manufacture of the waveguide


100


.




Preferably, the lower cladding


120


is a polymer, more preferably a halogenated polymer such as a fluoropolymer, and most preferably, a perfluoropolymer, including a perfluoropolymer from the group consisting of TEFLON® AF, CYTOP®, and HYFLON® AD, although those skilled in the art will recognize that other polymers or polymer blends can be used for the lower cladding


120


. Also, preferably, the lower cladding


120


is applied in a series of layers


122


,


124


,


126


, although those skilled in the art will recognize that more or less than three layers


122


,


124


,


126


can be used.




Preferably, the first core


132


is constructed from a first core material and the second core


134


is constructed from a second core material, different from the first core material. Also preferably, the cores


132


,


134


are each a polymer, more preferably a halogenated polymer such as a fluoropolymer, and, most preferably, a perfluoropolymer. For optical amplifier applications, at least one of the cores


132


,


134


is preferably a perfluoropolymer containing at least one rare earth element from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Examples of preferred perfluoropolymers are disclosed in U.S. Pat. No. 6,292,292, U.S. patent application Ser. Nos. 09/722,821, filed Nov. 28, 2000; 09/722, 282, filed Nov. 28, 2000; and 60/314,902, filed Aug. 24, 2001, which are all owned by the assignee of the present invention and are all incorporated herein by reference in their entireties. However, those skilled in the art will recognize that other polymers containing at least one rare earth element can also be used. Further, each core


132


,


134


can be a blend of polymers including at least a first polymer containing one of the rare earth elements disclosed above and at least a second polymer, such as the polymer used as the lower cladding


120


. Also, each core


132


,


134


preferably has a vertical cross-section of approximately between 2 and 10 microns high by between 2 and 10 microns wide to facilitate single mode signal transmission, although those skilled in the art will recognize that other dimensions may be used.




As shown in

FIG. 1

, the cores


132


,


134


are approximately co-planar. Although

FIG. 1

shows several of the first core


132


on one side of the waveguide


100


and several of the second core


134


on a distal side of the waveguide


100


, those skilled in the art will recognize that the second core


134


can be interspersed with the first core


132


in any order or combination.




The first upper cladding


140


is preferably a polymer, more preferably a halogenated polymer such as a fluoropolymer, and, most preferably a perfluoropolymer. Also preferably, the first upper cladding


140


is the same polymer or polymer blend as the lower cladding


120


. However, those skilled in the art will recognize that the first upper cladding


140


and the lower cladding


120


need not necessarily be the same polymer, although it is preferred that the first upper cladding


140


have the same, or nearly the same, refractive index as the lower cladding


120


.




The second upper cladding


150


is preferably made from the same material as the first upper cladding


140


. However, those skilled in the art will recognize that a second upper cladding


150


being constructed from a different material, but having the same, or nearly the same, refractive index as the lower cladding


120


and the first upper cladding


140


can be used.




A method of manufacturing the waveguide


100


will now be described. The planar substrate


110


is provided. Preferably, the manufacture of the waveguide


100


is accomplished when the substrate


110


is in a generally circular wafer form, with a plurality of waveguides


100


being formed from a single wafer.




A first metal layer is disposed on the substrate


110


by vapor deposition or other known method. Preferably, the first metal layer is between approximately 0.05 and 0.5 microns thick. Preferably, the metal is aluminum, although those skilled in the art will recognize that other metals can be used. A first etching mask [not shown], composed of developed photoresist which is fabricated by standard photolithographic procedures, is disposed on top of the first metal layer and exposed metal is etched from the substrate according to known metal etching techniques. Remaining metal on the substrate


110


forms the wafer dicing marks


112


and the mask alignment marks


114


, as shown in FIG.


2


. During manufacture, the mask alignment marks


114


are aligned with predetermined locations on the manufacturing apparatus to properly align all of the cores


132


,


134


relative to each other.




The lower cladding


120


is next deposited over the substrate


110


, the wafer dicing marks


112


and the mask alignment marks


114


. Preferably, the lower cladding


120


is deposited by spincoating or other known technique, and is comprised of several layers,


122


,


124


,


126


as shown in

FIG. 3

, although those skilled in the art will recognize that more or less than three layers


122


,


124


,


126


can be used. Preferably, the lower cladding


120


is between approximately 10 and 20 microns thick, although those skilled in the art will recognize that the lower cladding


120


can have a thickness greater or lesser than that amount. After the lower cladding


120


dries, a first core material


130


is deposited over the lower cladding


120


, again, preferably by spincoating or other known technique. Preferably, the first core material


130


is deposited as a single layer, between approximately 2 and 10 microns thick.




A second metal layer is deposited over the first core material


130


, preferably in a manner similar to the deposition of the first metal layer over the substrate


110


. A second etching mask (not shown), composed of developed photoresist which is fabricated by standard photolithographic procedures, is applied over the second metal layer. The second etching mask corresponds to a desired first core pattern. The second metal layer is etched so that only a predetermined mask shape


160


, as shown in

FIG. 4

, remains.




The mask shape


160


acts as a mask for the first core layer


130


, which is then etched so that only the first core


132


, as shown in

FIG. 5

, remains. After the first core


132


is formed, the mask shape


160


is removed by conventional methods. The first top cladding


140


is then deposited over the first core


132


and the lower cladding


120


. Preferably, the first top cladding


140


is spincoated in a plurality of layers


142


,


144


,


146


in a manner similar to the lower cladding


120


as described above, and is shown in FIG.


6


.




A third etching mask (not shown) is applied over the first top cladding


140


. A portion of the first top cladding


140


, distal from the first cores


132


, is then removed from the waveguide


100


, exposing a surface


128


. The lower cladding


120


is preferably exposed where the first upper cladding


140


is removed, as shown in

FIG. 7

, although those skilled in the art will recognize that a portion of the first top cladding


140


may remain, and the surface


128


is thus constructed from the first upper cladding


140


. A second core material


133


is then deposited over the first upper cladding


140


and the exposed surface


128


, preferably by spincoating or other known technique, as shown in FIG.


8


.




A metal (not shown) is disposed over the second core material


133


and a fourth etching mask (not shown), composed of developed photoresist which is fabricated by standard photolithographic procedures, is applied over the metal. The metal and, subsequently, the second core material


133


, are etched according to the pattern of the fourth etching mask to form the second core


134


, preferably in the same manner as the first core


132


, as described above. The second core


134


is shown in FIG.


9


.




The second upper cladding


150


is then deposited over the first upper cladding


140


, exposed lower cladding


120


, and the second core


134


, as shown in FIG.


10


. Preferably, the second upper cladding


150


is deposited in a manner similar to the deposition of the first upper cladding


140


, as described above.




Preferably, although not necessarily, the portion of the second upper cladding


150


deposited on the first upper cladding


140


is removed, preferably by an etching process similar to the etching process described above with respect to the removal of the first upper cladding


140


, as shown in FIG.


11


. After manufacture, the plurality of waveguides


100


are cut along the wafer dicing marks


112


to provide individual waveguides


100


.




An alternative method of manufacturing a waveguide


100


′ similar to the waveguide


100


is described. After the first cores


132


are formed as shown in

FIG. 5

, and after the mask shape


160


is removed, instead of disposing the first top cladding


140


over the first core


132


and the lower cladding


120


, the second core material


133


is disposed over the first core


132


and the lower cladding


120


, as shown in FIG.


12


.




The second core material


133


is then etched to form the second core


134


. The second core material


133


can be etched is several alternative methods, such as by first etching the second core material


133


above the plane of the first core


132


, and then by etching the second core material


133


generally co-planar with the first core


132


, forming each of the second cores


134


. Alternatively, the second core material


133


can be etched generally down to the lower cladding


120


around each of the cores


132


,


134


and then down to the top of each of the cores


132


,


134


. By either method, generally only the cores


132


,


134


remain on top of the lower cladding


120


, as shown in FIG.


13


.




The first upper cladding


140


is then disposed on top of the cores


132


,


134


and exposed lower cladding


120


, as shown in FIG.


14


. Although only one layer of the upper cladding


140


is shown in

FIG. 14

, those skilled in the art will recognize that a plurality of layers of the upper cladding


140


can be applied. The second upper cladding


150


, shown in

FIG. 10

, is not necessary and is thus eliminated.




The waveguides


100


,


100


′ described above are generally described as ribbed waveguides, in which the cores


132


,


134


are formed as ribs on the lower cladding


120


. Alternatively, a channel waveguide


200


, shown in

FIG. 15

is constructed from cores


232


,


234


embedded in channels


228


,


229


, respectively, formed a lower cladding


220


.




The waveguide


200


includes a substrate


210


; the lower cladding


220


, preferably comprised of a plurality of layers


222


,


224


,


226


; a plurality of cores comprising the first core


232


and the second core


234


deposited in channels


228


,


229


formed in the lower cladding


220


; and an upper cladding


240


disposed on the cores


232


,


234


and portions of the lower cladding


220


not covered by the cores


232


,


234


.




Preferably, the materials for the elements comprising the waveguide


200


are the same or similar to respective counterpart elements in the waveguide


100


. For example, the substrate


210


is constructed from the same material as the substrate


110


. Similar to the first embodiment, wafer dicing marks


212


and mask alignment marks


214


are disposed on the substrate


210


to provide reference locations for manufacture of the waveguide


200


.




A method of manufacturing the waveguide


200


will now be described. The substrate


210


, the wafer dicing marks


212


, the mask alignment marks


214


, and the lower cladding


220


are prepared as described above with respect to the waveguide


100


, as shown in FIG.


16


.




A plurality of channels


228


are formed in the top layer


226


of the lower cladding


220


, as shown in FIG.


17


. Preferably, the channels are formed by etching the top layer


226


, although those skilled in the art will recognize that the channels


228


can be formed by other methods, such as by molding. As seen in

FIG. 18

, first core material


230


is disposed on the lower cladding


220


, preferably by spin coating. A portion of the first core material


230


fills the channels


228


. Remaining core material


230


is disposed over the lower cladding


220


.




Preferably, next, excess first core material


230


is etched down to the level of the lower cladding


220


along the entire length of the first core material


230


, forming the first core


232


in the lower cladding


220


. A plurality of channels


229


are then etched in the lower cladding


220


, as shown in FIG.


19


. The second core material


233


is then disposed on top of the first core


232


and the lower cladding


220


, filling in the channels


229


, as shown in FIG.


20


.




Excess second core material


233


is then etched down to the level of the lower cladding


220


along the entire length of the second core material


233


, forming the second cores


234


. The upper cladding


240


is deposited over the cores


232


,


234


and the lower cladding


220


, forming the waveguide


200


, as shown in FIG.


21


. Although only one layer of the upper cladding


240


is shown in

FIG. 21

, those skilled in the art will recognize that a plurality of layers of the upper cladding


240


can be applied.




It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the appended claims.



Claims
  • 1. A planar optical waveguide comprising:a substrate; a first cladding disposed on the substrate; a first core disposed on a first portion of the first cladding, the first core being constructed from a first polymer; a second core disposed on a second portion of the first cladding, the second core being constructed from a second polymer; and a second cladding disposed on the first core, the second core, and a remaining portion of the first cladding.
  • 2. The planar optical waveguide according to claim 1, wherein the substrate is a polymer.
  • 3. The planar optical waveguide according to claim 1, wherein the first polymer contains at least one additional element within the polymer.
  • 4. The planar optical waveguide according to claim 1, wherein the polymer contains a rare earth element.
  • 5. The planar optical waveguide according to claim 1, wherein the first and second cores are sized to transmit single mode light.
  • 6. The planar optical waveguide according to claim 1, further comprising at least one alignment mark disposed on the substrate.
  • 7. The planar optical waveguide according to claim 1, wherein the first and second cores are approximately co-planar.
  • 8. A planar optical waveguide comprising:a substrate; a first cladding disposed on the substrate; a first core disposed on a first portion of the first cladding, the first core being constructed from a first core polymer material; a second core disposed on a second portion of the first cladding, the second core being constructed from a second core polymer material; and a second cladding disposed on the first core, the second core, and a remaining portion of the first cladding;  wherein the waveguide is manufactured by: providing the substrate; disposing the first cladding layer over the substrate; disposing the first core polymer material over the first cladding layer; forming the first core from the first core polymer material, the first core being in a plane; disposing the second polymer material over the first cladding layer; forming the second core from the second core polymer material, the second core being approximately in the plane of the first core; and disposing the second top cladding layer over the first core, the second core, and an exposed portion of the first cladding layer.
  • 9. A method of manufacturing a planar optical waveguide comprising:providing a substrate; disposing a first cladding layer over the substrate; disposing a first core polymer material over the first cladding layer; forming a first core from the first core polymer material, the first core being in a plane; disposing a second core polymer material over the first cladding layer; forming a second core from the second core polymer material, the second core being approximately in the plane of the first core; and disposing a top cladding layer over the first core, the second core, and an exposed portion of the first cladding layer.
  • 10. The method according to claim 9, further comprising, after forming the first core, disposing a second cladding layer over the first core and the first cladding layer.
  • 11. The method according to claim 10, further comprising, after disposing the second cladding layer, removing a portion of the second cladding layer distal from the first core, exposing a surface.
  • 12. The method according to claim 11, wherein disposing the second core polymer material further comprises disposing the second core material over the second cladding layer.
  • 13. The method according to claim 9, further comprising removing a portion of the top cladding layer distal from the second core.
  • 14. The method according to claim 9, wherein providing the substrate comprises providing a polymer substrate.
  • 15. The method according to claim 9, wherein disposing the first core polymer material comprises disposing the first core polymer material containing a rare earth element.
  • 16. The method according to claim 9, further comprising, prior to disposing the first core material, providing alignment marks on the substrate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 60/309,849, filed Aug. 3, 2001.

US Referenced Citations (16)
Number Name Date Kind
4277272 Schneider Jul 1981 A
4436368 Keck Mar 1984 A
5497445 Imoto Mar 1996 A
5546480 Leonard Aug 1996 A
5822488 Terasawa et al. Oct 1998 A
5825525 Harwit Oct 1998 A
5892859 Grote Apr 1999 A
5896484 Borrelli et al. Apr 1999 A
6062046 Terasawa et al. May 2000 A
6243518 Lee et al. Jun 2001 B1
6253015 Ukrainczyk Jun 2001 B1
6310999 Marcuse et al. Oct 2001 B1
6311004 Kenney et al. Oct 2001 B1
6324314 Ukechi et al. Nov 2001 B1
6473551 Norwood et al. Oct 2002 B2
6487354 Ferm et al. Nov 2002 B1
Provisional Applications (1)
Number Date Country
60/309849 Aug 2001 US