The present invention relates generally to acoustic products and more particularly to a method for forming an acoustical product that may be used as an acoustical trap, a duct, a duct liner, or an outer covering for a duct. An acoustical product having reinforced portions is also provided.
Acoustical sound insulators, such as acoustic panels, are used in a variety of settings where it is desired to dampen noise from an external source. For example, acoustic panels are commonly used in office buildings to attenuate sound generated from the workplace, such as from telephone conversations or from the operation of office equipment. Acoustic panels are typically formed of a sound absorbing core material positioned within a frame and covered by a material, such as fabric or a painted surface, to make the front side of the panel aesthetically pleasing. In addition, when a frame is not used, the edges of the core material are coated with an adhesive layer and hardened to give strength and rigidity to the acoustic panel. Often, the fabric material is wrapped around the sides of the core material and fastened to the back side of the panel by an adhesive or staples so that the sides of the panel are also aesthetically pleasing. The fabric material may contain a decorative design or pattern.
Although conventional acoustic panels are able to dampen sound over a wide sound/frequency spectrum and may be aesthetically pleasing, they are costly to manufacture and difficult to assemble. To manufacture the acoustic panel, the core material is first fabricated to the finished panel dimensions. The frame must then be properly sized so that the core material fits securely inside. Next, the fabric material is cut to the shape of the finished panel but with sufficient excess so that the fabric material can be wrapped around the edges and secured to the back side of the panel. This excess of fabric material leads to waste and excess cost.
To assemble the acoustic panel, the core material is placed into the frame, the fabric material is wrapped around the panel, and the fabric material is secured to the backside of the panel. In order to ensure that there are no sags in the fabric material, the fabric material must be pulled tightly across and around the panel before securing the fabric material to the panel. In addition, if the fabric contains a design, the fabric must be placed in the proper orientation so that the finished assembly of acoustic panels achieves the desired design. Therefore, the assembly of the acoustic panel can be time consuming and tedious.
Thus, there exists a need in the art for an acoustic panel that contains a decorative surface on both the front of the panel and the sides of the panel that is easy to manufacture, easy to assemble, and is inexpensive.
An object of the invention is to provide methods for translating a surface on a front side of an acoustical substrate to an edge of a finished acoustical product. In one exemplary method, an acoustical substrate of uncompressed fibrous material having a first density is provided. The acoustical substrate has at least a first surface containing a decorative design, a back surface opposing the first surface, a left edge, and a right edge. The decorative design may be directly applied to the first surface or a decorative veil (e.g., a woven or non-woven fabric) may be applied to the first surface for aesthetic purposes. At least one portion of the acoustical substrate is compressed to form at least one compressed region having a second density that is greater than the first density and at least one groove having a fold point. The compressed region(s) is then rotated about the fold point toward the back surface until the groove is closed. The rotation of the compressed region(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product. Thus, the decorative surface may be translated to any one or all four sides of the final acoustical product. The rotation also places the compressed region at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product. The final acoustical product may be formed of reinforced edges having any linear or non-linear shape.
In another exemplary method, the acoustical substrate is scored along at least one score line to form at least one outer region and an inner region. The outer region(s) is then compressed to form at least a first flange having a density that is higher than the density of the uncompressed inner region. The flange(s) is then rotated toward the back side of the acoustical substrate until the flange(s) is flush with the inner region. The rotation of the flange(s) moves at least a portion of the decorative surface to at least one side of the final acoustical product. This rotation also places the compressed region(s) at the edge(s) of the final acoustical product, which reinforces the side(s) of the final acoustical product. If the flange(s) extends beyond the back surface, the flange(s) may again be folded toward the back surface until the flange is flush with the back surface. The second rotation of the flange(s) toward the back surface places at least a portion of the decorative design on the back surface of the final acoustical product.
In an alternative embodiment, at least one flange is formed of an inner portion and an outer portion. The outer portion of the flange is then rotated toward the back surface until the outer portion of the flange is flush with the inner portion of the flange. The folded flange is then folded toward the back surface until the folded flange is flush with the inner region, thereby placing the decorative surface on a side of the final acoustical product. In addition, because the folded flange contains two layers of compressed, densified material, the side of the final acoustical product that contains the folded flange is highly reinforced.
Another object of the invention is to provide a decorative non-woven acoustic panel. The acoustic panel includes a main body of uncompressed fibrous material that has a first density and at least one peripheral edge formed of compressed fibrous material having a second density that is greater than the first density. The decorative surface extends across a major surface and at least one side of the acoustic panel. The decorative surface may be integral with the acoustic panel or it may be a separate material, such as a decorative fabric or veil.
The acoustic panel may be formed of a self-molding thermoplastic acoustical material that is lightweight, permeable to air, and capable of being compressed or molded. Fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies may be used as the acoustical material. In addition, the acoustic panel may be formed of a matrix of staple and heat fusible fibers such as bicomponent fibers. In a preferred embodiment, the acoustic panel is a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
The present invention further includes an acoustic panel that has reinforced sides formed of compressed acoustic material having a first density surrounding a central core formed of uncompressed acoustic material having a second density. The reinforced sides of the acoustic panel extend beyond the central core. The acoustic panel may be attached to a frame for mounting to a surface.
A further object of the present invention is to provide an acoustical product that may be used as an acoustical trap or as a duct, duct liner, or an outer covering for a duct. The acoustical product may be in the form of a box-like or other parallelepipedic structure or other structure having a polygon cross-sectional configuration. An acoustical substrate of an uncompressed fibrous material having a first surface optionally containing a design, a back surface opposing the first surface, a left edge, and a right edge is provided. In addition, the first surface is formed of a left first surface, a central first surface, and a right first surface. The length of the left first surface is approximately equal to the length of the central first surface plus the right first surface. In at least one exemplary embodiment, the acoustical product is scored to delineate compression regions that are subsequently compressed to form a flange, a first compressed region, a second compressed region, and a third compressed region. First, second, third, and central uncompressed regions are positioned adjacent to the compressed regions. The left first surface and the right first surface of the acoustical substrate are folded toward the back surface until the second compressed region and the third compressed region are folded against the central region. The outer portion of the left first surface (e.g., the region of the left first surface that extends beyond the right first surface) is then folded or rotated towards the back surface until the flange is flush with the right edge, thereby forming a box-like acoustical product. Portions of the compressed regions may be beveled or notched to facilitate the bending or rotation of the left first surface, the right first surface, and the outer portion of the left first surface. By folding the acoustical substrate in such a manner, the decorative design originally located on the first surface is now positioned on all sides of the acoustical product.
The foregoing and other objects, features, and advantages of the invention will appear more fully hereinafter from a consideration of the detailed description that follows, in conjunction with the accompanying sheets of drawings. It is to be expressly understood, however, that the drawings are for illustrative purposes and are not to be construed as defining the limits of the invention.
a-1d are schematic illustrations depicting a method of translating a decorative surface to the edges of a final acoustical product according to one exemplary embodiment of the present invention;
a-2e are schematic illustrations depicting an alternative location for the grooves formed by the method depicted in
a-3d are schematic illustrations depicting a second method for translating a decorative surface to the edges of final acoustical product according to one exemplary embodiment of the present invention;
a-4b are schematic illustrations depicting an alternative embodiment of the method of
a-5e are schematic illustrations depicting an alternate embodiment of the method of
a-6c are schematic illustrations depicting an alternate embodiment of the method of
a-7f are schematic illustrations depicting an alternate embodiment of the method of
a-8g are schematic illustrations depicting a method of forming an acoustical box-like product according to one exemplary embodiment of the invention; and
a and 9b are schematic illustrations depicting an alternative embodiment of the method of
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein. It is to be noted that like numbers found throughout the figures denote like elements.
The present invention relates to methods for translating a decorative surface on a front side of an acoustical substrate to an edge of the finished acoustical product. One exemplary inventive method is illustrated in
The material used to form the acoustical substrate 10 may be a self-molding thermoplastic acoustical material that is lightweight, permeable to air and capable of being compressed or molded, such as by a conventional compression or molding press. For example, the acoustical substrate 10 may be a matrix of polymer fibers, such as, but not limited to, polyethylene fibers, polypropylene fibers, polyester fibers, such as polyethylene terephthalate (PET) fibers, polyamide fibers, polyphenylene sulfide (PPS) fibers, polystyrene fibers, polycarbonate fibers, natural fibers (e.g., cotton and cellulose), inorganic fibers (e.g., glass fibers), or mixtures thereof. Preferably, the polymer fibers are a blend polyethylene terephthalate (PET). Other fiber systems that are heat moldable or which can be repositioned and held in place by ultrasonics, by an adhesive, or by other commonly used fixation technologies easily identifiable by one of skill in the art are considered to be within the purview of this invention. In addition, the acoustical substrate 10 may have a thickness of from approximately 0.1 inch-4.0 inches and a density of from approximately 1 lb/ft3-10 lb/ft3. In the inventive methods discussed below, the compressed regions preferably have a density of from approximately 7 lbs/ft3-30/ft3. In each of the inventive embodiments described below, the compressed regions have a density that is greater than the non-compressed regions.
In a preferred embodiment, the acoustical substrate 10 is formed of a matrix of staple and heat fusible fibers such as bicomponent fibers. Bicomponent fibers may be formed of two polymers combined to form fibers having a core of one polymer and a surrounding sheath of the other polymer. When bicomponent fibers are used as a component of the acoustic material, the bicomponent fibers may be present in an amount of from 10-100% of the total fibers. In the instant invention, the acoustical substrate is preferably a matrix of polyester staple and copolyester/polyester bicomponent fibers where the sheath component fibers have a lower melting point than the core component fibers and the staple fibers.
To translate the decorative design located on the first surface 5 to an edge of the finished acoustical product, at least one region of the acoustical substrate 10 may be compressed in a manner such that at least a portion of the first surface 5 can be folded toward the back surface 6 to place the decorative design located on the first surface 5 on the edge of the finished product. In the embodiment depicted in
As shown in
The left and right portions 24, 25 may be held in this rotated or folded position, and thus the shape of the final acoustical product 30 maintained, through heat molding. For example, when bicomponent fibers having a core component and a sheath component with a melting point less than the melting point of the core component are used in the acoustical substrate 10, the final acoustical product 30 may be heated to a temperature sufficient to soften the sheath but not the core of the fibers. The softened sheath acts as a binder between adjacent fibers that cause the fibers to bond together in the shape of the final acoustical product 30. The final acoustical product 30 is then cooled to set the shape. In an alternate embodiment, ultrasonics may be used to provide the bonding energy required to bond the bicomponent fibers located at the sheath interface together. Alternatively, an adhesive material can be used to hold the left and right portions 24, 25 in their rotated position and maintain the shape of the final acoustical product 30. Other conventional bonding methods may be used to hold the left and right portions 24, 25 in their folded positions, and would be identifiable by one of ordinary skill in the art. Due to the compression of the fibers in the acoustical substrate 10, portions of the acoustical substrate 10 adjacent to grooves 20, 21 have an increased density. Thus, once the left portion 24 and the right portion 25 are rotated or folded as shown in
Various other locations for compressing the acoustical substrate 10 and forming a groove or multiple grooves in the acoustical substrate 10 such that collapsing the groove(s) would place the decorative surface on at least a portion of a side of the final acoustical product would be easily identified by one of skill in the art, and are considered to be within the purview of this invention. For example, in an alternate embodiment shown in
Once the first and second grooves 31, 32 are completely collapsed, the decorative design that was positioned on the left first surface 2 on the first surface 5 of the acoustical substrate 10 is now positioned on the left side of the final acoustical product 37 and the decorative design that was positioned on the right first surface 4 on the first surface 5 of the acoustical substrate 10 is now positioned on the right side of the final acoustical product 37. It is to be noted that in this embodiment, the compressed regions (e.g., the areas surrounding first and second sides 35, 36) are not located at the edges of the final acoustical product 37. Instead, the compressed regions are positioned along the back surface 6 of the final acoustical product 37. These compressed regions have a density that is greater than the density of the uncompressed regions, which results in greater strength and/or stiffness of the final acoustical product 37.
The decorative design on the acoustical substrate 10 may be applied in a planar fashion to the first surface 5 of the acoustical substrate 10, and may include colors, geometric or abstract designs or shapes, or other patterns or images. It is to be understood that the decorative design or the decorative veil may be added prior to or after the compression and densification of the acoustical substrate. In addition, the decorative design can be embossed, such as in a texturizing mold, to give a textured feel to the acoustical substrate 10. If the decorative design is embossed prior to the application of the decorative design or after the application of the design to the acoustical substrate 10 but before translating the decorative design to the edge of the final acoustical product, the texturing can be accomplished on a single plane with a single texturing roll or other similar texturing device known to those of skill in the art. Moreover, when the texturing is accomplished on a single plane, the image or design can be aligned with the texture so that the changes in shape match with the image changes. On the other hand, if the decorative design is embossed after the design has been translated to the edges of the finished acoustical product, each surface containing the design may be individually embossed.
Turning now to
Initially, the acoustical substrate 10 is scored along first and second score lines 40, 41 respectively to delineate a left outer region 42, a right outer region 43, and a central region 44 as is shown in
The length of the left outer region 42 (e.g., the distance extending from left edge 7 to the first score line 40) and the length of the right outer region 43 (e.g., the distance extending from the right edge 8 to the second score line 41) may be equal to or greater than the width of the central region 44 (e.g., the distance from the first surface 5 to the back surface 6) to place the decorative design on the entire side of the final acoustical product 50. However, if only a portion of the side of the final acoustical product 50 is to contain the decorative design, then the length of the left outer region 42 and the right outer region 43 may be shorter than the width of the central region 44.
As illustrated in
Alternatively, portions of the first and second flanges 45, 46 may be removed or compressed to provide fold points about which the first and second flanges 45, 46 can rotate or fold. Such an alternative embodiment is illustrated in
Turning back to
As illustrated in
In an alternate embodiment illustrated in
The folded flange 53 is then folded (rotated) toward the back surface 6 (
In a further alternative embodiment of the method described in
Unlike the embodiment described above in which the backside of the decorative design may be scored to ensure a crisp folding of the first and second flanges 45, 46, this inventive embodiment uses the thicknesses of the first and second flanges 45, 46 and the nesting areas to force the location of the fold point. However, it is to be understood that the abrasion wheel may also be used to score a fold point in the first and second flanges 45, 46. In addition, the abrasion wheel may be used to remove some of the fibrous material on the left outer region 42 (e.g., fibrous material located at the left edge 7 and at the region of the intersection of the left outer region 42 and the central region 44) and some of the fibrous material located on the right outer region 43 (e.g., fibrous material located at the right edge 8 and at the intersection of the right outer region 43 and the central region 44) to compensate for the lateral expansion of the fibrous material when the left outer portion 42 and the right outer portion 43 are compressed to form the first and second flanges 45, 46.
It is sometimes desirable to form an acoustical product that does not have a decorated surface that ends flush with the back of the acoustical substrate or the acoustical panel. Acoustic panels of varying thicknesses ranging from approximately 0.25 inches to approximately 4.0 inches may be needed to meet the acoustical requirements, wall or ceiling thickness requirements, or both. In this regard,
Turning to
The left outer region 42 and the right outer region 43 are then compressed, such as by heating the acoustical substrate 10 and concurrently applying pressure, to form the first flange 45 and the second flange 46 respectively. Next, the first flange 45 and the second flange 46 are folded or rotated toward the back surface 6 (shown in
The final acoustical product 70 shown in
Although the methods depicted in
One such example of translating the decorative surface to all of the sides of the final acoustical product is illustrated in
Portions 76, 77, 78, 79 of the compressed material 71 positioned around the perimeter are then removed to form the first flange 45, the second flange 46, a front flange 72, and a rear flange 73, as illustrated in
The final acoustical product 90 may optionally be attached to a frame 95 having a base 96 and flanges 97 for mounting the final acoustical product 90 to a surface, such as a wall. The frame 95 may be positioned such that the flanges 97 are placed into the void 80. The flanges 97 are then affixed to the first, second, front, and rear flanges 45, 46, 72, 73, and/or the back surface 6 such as by an adhesive or mechanical fastener. The frame 95 may then be mounted on a surface by affixing the base 96 to the surface. The frame 95 may also have an extended region (not shown) for attaching hardware or securing the frame to a larger structure. If the extended region is present on the frame 95, a notch (not shown) is then cut into one or more of the first, second, front, and rear flanges 45, 46, 72, 73 to accommodate the extended region. It is to be understood that the frame 95 is depicted for illustrative purposes and that any suitable frame may be used so long as the frame 95 is attached to at least one of the first, second, front, or rear flanges 45, 46, 72, 73 or to the back surface 6.
In an alternate embodiment (not shown), two acoustical products may be attached to a frame. In such an embodiment, a first acoustical product may be placed over the frame at a first half so that one half of the frame is covered by the first acoustical product. A second acoustical product may then be placed over the second half of the frame such that the two acoustical product abut each other. The acoustical products may be attached to the frame by an adhesive or by mechanical fasteners. This embodiment forms a two-sided final acoustical substrate.
a-8g illustrate an example of translating the decorative surface to all of the sides of the final acoustical product using multiple score lines and multiple compressed regions to place the decorative surface and compressed regions on multiple sides of the final acoustical product. As with the embodiments discussed above, the acoustical substrate 10 includes a first surface 5 having a decorative design (not shown) to make the acoustical substrate 10 aesthetically pleasing, a back surface 6 opposing the first surface 5, a left edge 7, and a right edge 8. In addition, the first surface 5 is formed of a left first surface 2, a central first surface 3, and a right first surface 4.
Initially, the acoustical substrate 10 is scored along score lines 101, 102, 103, 104, 105, 106, and 107 to delineate a first compression region 110, a second compression region 112, a third compression region 114, and a fourth compression 116, as is shown in
The first, second, third, and fourth compression regions 110, 112, 114, and 116 are compressed, such as by heat, to form a flange 120, a first compressed region 122, a second compressed region 124, and a third compressed region 126 respectively as illustrated in
A heated and/or shaped tip may be used to melt a portion of the fibers in the central region 132 where the second compressed region 124 intersects with the central region 132 and/or where the third compressed region 125 intersects with the central region 132 (not shown) so that the second and third compressed regions 124, 126 may be folded against the central region 132. Alternatively, heat may be applied to soften the fibers at the intersection of the second compressed region 124 and the third compressed region 126 with the central region 132 to facilitate bending the left first surface 2 and the right first surface 4.
To retain the left first surface 2 and the right first surface 4 in a folded configuration (i.e., intermediate product 131) as depicted in
Because the left first surface 2 is greater in length than the right first surface 4, the left first surface 2 extends beyond the right first surface 4 in the partially folded configuration illustrated in
The outer portion 2b of the left first surface 2 may be held in a folded configuration by heat molding or by an adhesive. In addition, when the outer portion 2b is completely rotated, a void 138 surrounded by the uncompressed regions 121, 123, 132, and 125 is formed. As illustrated in
To facilitate the rotation of the left first surface 2, the right first surface 4, and the outer portion 2b of the left first surface 2, portions of the acoustical substrate 10 may be removed or compressed to provide fold points about which the rotating regions can fold. Such an alternate embodiment is depicted in
The final acoustical product 140 shown in
Due to the compression and folding of the fibers in the acoustical substrate during the formation of sides of the final acoustical products, the sides or peripheral edges of the final acoustical products are reinforced, have increased strength and/or stiffness, and have densities that are greater than the non-compressed regions. As a result, the final acoustical products do not have to have an adhesive applied to the edges or sides to strengthen and harden the edge; the compressed fibers provide the requisite strength and/or stiffness for each of the final acoustical products. Additionally, unlike many conventional acoustic products, the inventive acoustical products do not need to be placed into a frame. The final acoustical products may be placed directly onto a mounting surface. Furthermore, the final acoustical products may have varying densities throughout its structures due to the compression and folding of the various portion of the acoustical substrate. In addition, by compressing the acoustical substrate and not excising material, thereby minimizing waste disposal.
Although the inventive methods described above form final acoustical products that have substantially square corners, other shapes may be molded by conventional methods from the final acoustical products, such as by heat molding. Alternatively, the acoustical substrate 10 may be scored or cut in locations that result in edges that have a geometric shape other than square or rectangular. Such locations are considered to be within the purview of this invention.
The invention of this application has been described above both generically and with regard to specific embodiments. Although the invention has been set forth in what is believed to be the preferred embodiments, a wide variety of alternatives known to those of skill in the art can be selected within the generic disclosure. The invention is not otherwise limited, except for the recitation of the claims set forth below.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/749,087 filed on Dec. 30, 2003, the content of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3078880 | Stephens | Feb 1963 | A |
3092529 | Pearson | Jun 1963 | A |
3529516 | Pullen et al. | Sep 1970 | A |
3605534 | Barr | Sep 1971 | A |
3687170 | Malone | Aug 1972 | A |
3907193 | Heller | Sep 1975 | A |
3980005 | Buonaiuto | Sep 1976 | A |
4122911 | Croup | Oct 1978 | A |
5032443 | Rietdijk et al. | Jul 1991 | A |
5310594 | Holland et al. | May 1994 | A |
5567504 | Schakel et al. | Oct 1996 | A |
5707327 | Carbone | Jan 1998 | A |
5783268 | Noonan et al. | Jul 1998 | A |
6270865 | Noonan et al. | Aug 2001 | B1 |
6321871 | Russell | Nov 2001 | B1 |
20010031336 | Born | Oct 2001 | A1 |
20020025404 | Taber et al. | Feb 2002 | A1 |
20020159610 | Bank et al. | Oct 2002 | A1 |
20030068943 | Fay | Apr 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20050139415 A1 | Jun 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10749087 | Dec 2003 | US |
Child | 10936082 | US |