The present invention relates to a method of manufacturing a liquid container, and a liquid container.
As a liquid jet apparatus which jets liquid to a target, an ink jet type recording apparatus has been known widely. Specifically, this ink jet type recording apparatus includes a carriage, a recording head mounted on the carriage, and an ink cartridge which contains ink as liquid therein. While the carriage is being moved in relation to a recording medium, the ink is supplied from the ink cartridge to the recording head, and the ink is ejected from a nozzle formed in the recording head, whereby printing is performed on the recording medium.
In such the ink jet type recording apparatuses, there is an apparatus in which an ink cartridge is not mounted on a carriage in order to reduce load onto the carriage or to reduce size/thickness of the apparatus (so-called Off-carriage type).
Such the ink cartridge includes usually an ink pack which contains ink therein, and a case which houses the ink pack.
As such the ink pack, an ink pack having a valve unit at an outlet part has been known (refer to, for example, Patent Reference 1). Specifically, this outlet part is provided so as to be interposed in an opening constituting a bag part of the ink pack, and discharges the ink contained in the bag part to the outside. The valve mechanism provided for this outlet part functions as a check valve that permits only the outflow from the inside of the ink pack to the outside.
In case that the ink is supplied from the ink pack provided with this outlet part to the recording head, firstly, into the outlet part, an ink introducing pipe is inserted, which is provided for one end of an ink supply tube of which the other end is coupled to the recording head. Thereafter, by crushing the bag part, the pressure of the ink in the ink pack is increased. In result, the ink in the ink pack is supplied through the outlet part and the ink supply tube to the recording head.
In the ink pack provided with this outlet part, even if a user opens forcedly a leading-end-side opening part of the outlet part with a screw driver, the valve unit functions as the check valve. Therefore, it is prevented that the ink in the ink pack leaks out to the outside or the external air flows into the ink pack. In result, deaeration and clean levels of ink in the ink pack can be improved.
Patent Reference 1: JP-A-2002-192739
However, since in the ink pack disclosed in the Patent Reference 1, the valve unit provided for the outlet part functions as the check valve, the ink cannot be poured through the outlet part.
Further, when the ink pack filled with ink is housed in the ink cartridge, there is fear that four corners of the ink pack are caught in the ink cartridge. Therefore, the maximum amount of ink cannot be filled for internal volume of the ink cartridge.
The invention has been made in view of the above problems, and its object is to provide a method of manufacturing a liquid container, and a liquid container, in which liquid can be poured from an outlet member provided with a check valve to a liquid containing part, and the amount of liquid that can filled for internal volume of a housing can be increased.
In order to solve the above problems, in a method of manufacturing a liquid container provided with a liquid storing member in which an outlet member is attached to a liquid containing part that contains liquid therein, and the liquid contained in the liquid containing part is supplied from the outlet member to the outside, and a housing which comprises a housing body and a lid member that closes the housing body, and houses the liquid storing member in the housing body, the outlet member includes a liquid flowing passage which communicates the outside and the inside of the liquid containing part, a check valve which permits only the flow of the liquid from the inside to the outside, on the liquid flowing passage, and a bypass flowing passage which bypasses the check valve and communicates the outside and the inside of the liquid containing part, on the liquid flowing passage. Further, the method comprises the steps of: housing the liquid storing member in the housing body; filling the liquid from the outside into the liquid containing part through the liquid flowing passage of the outlet member and the bypass flowing passage; and blocking, after filling the liquid into the liquid containing part, the bypass flowing passage by a blocking means.
According to the invention, by bypassing the check valve, that is, through the bypass flowing passage, the outside of the liquid containing part and the inside thereof can be communicated. Therefore, in a state where the liquid storing member is housed in the housing body, liquid can be filled into the liquid containing part. Accordingly, by filling the liquid into the liquid containing part through the outlet part after the liquid storing member has been housed in the housing body, the liquid storing body before filling is not bulky, so that the liquid containing part can be housed without sticking from the housing body, and the amount of liquid filled into the liquid containing part for the volume of the housing body can be increased. Further, since the bypass flowing passage is blocked after liquid filling, it is possible to prevent deaeration and cleaning levels of liquid from lowering due to contamination of air bubbles into the liquid containing part.
In the liquid container manufacturing method of the invention, an airtightly closing step of closing the housing body by a seal member airtightly after the step of housing the liquid storing member into the housing body is further included, the seal member has flexibility at least at its portion opposed to a blocking position where the bypass flowing passage is blocked, and the blocking means is the liquid containing part.
According to the invention, after the housing step, the housing body is closed airtightly by the seal member. Since this seal member has flexibility at least at its portion opposed to the blocking position where the bypass flowing passage is blocked, the bypass flowing passage can be blocked by the liquid containing part while the seal member is being flexed.
In the liquid container manufacturing method of the invention, regarding the seal member and the liquid containing parts, at least their surfaces opposed to each other are formed of materials which are different from each other.
According to the invention, regarding the seal member and the liquid containing parts, at least their surfaces opposed to each other are formed of materials which are different from each other. In result, for example, in case that the part of the seal member opposed to the bypass flowing passage is heated thereby to close the bypass flowing passage by the liquid containing part from the upside of the seal member, the seal member is not bonded to the liquid containing part. Therefore, by a simple method, and without adding a member for blocking, the bypass flowing passage can be blocked.
In the liquid container manufacturing method of the invention, blocking of the bypass flowing passage is performed by heat welding.
According to the invention, since blocking of the bypass flowing passage is performed by heat welding, for example, compared with blocking by vibration welding, it is possible to prevent foreign material from entering into the liquid container, and also time necessary for blocking can be reduced.
In the liquid container manufacturing method of the invention, the blocking means is a stopper fitted and fixed into the bypass flowing passage. According to the invention, since the blocking means is formed of the stopper, the bypass flowing passage can be easily blocked.
A liquid container of the invention is provided with a liquid storing member in which an outlet member is attached to a liquid containing part that contains liquid therein, and the liquid contained in the liquid containing part is supplied from the outlet member to the outside; and a housing which comprises a housing body and a lid member that closes the housing body, and houses the liquid storing member in the housing body. In the liquid container, the outlet member includes a liquid flowing passage which communicates the outside and the inside of the liquid containing part; a check valve which permits only the flow of the liquid from the inside to the outside, on the liquid flowing passage; and a bypass flowing passage which bypasses the check valve and communicates the outside and the inside of the liquid containing part, on the liquid flowing passage.
According to the invention, by bypassing the check valve, that is, through the bypass flowing passage, the outside of the liquid containing part and the inside thereof can be communicated. Therefore, in the state where the liquid storing member is housed into the housing body, the liquid can be filled into the liquid containing part. By blocking the bypass flowing passage after liquid filling, contamination of the air bubbles in the liquid containing part is prevented.
The present disclosure relates to the subject matter contained in Japanese patent application No. 2004-038021 (filed on Feb. 16, 2004), which is expressly incorporated herein by reference in its entirety.
A first embodiment of the invention will be described below with reference to
As shown in
The guide member 3, as shown in
On the other hand, the recording head 5 is arranged on a lower surface of the carriage 4, and includes plural nozzles (not shown) for jetting ink as liquid. The valve unit 6 is mounted on the carriage 4, and supplies temporarily stored ink to the recording head 5 in a state where the pressure is regulated.
In the embodiment, each valve unit 6 can supply, in the state where the pressure is regulated, two kinds of ink individually to the recording head 5. In the embodiment, three valve units 6 are provided in total, and they correspond to six colors (black, yellow, magenta, cyan, light magenta, and light cyan) of ink.
Further, below the recording head 5, a platen (not shown) is provided, and supports a recording medium P fed in a sub-scanning direction that is orthogonal to the main scanning direction.
As shown in
This ink cartridge 7, as shown in
On the other hand, the outlet part 12 of the ink pack 10 is connected through an ink supply tube 14 (refer to
Further, as shown in
By such the constitution, the air pressurized by the air pressure pump 8 is introduced through each air tube into the space S of the ink cartridge 7.
Consequently, when the pressure air is caused to flow into the space S from the air pressure pump 8, and the ink pack 10 of each ink cartridge 7 is pressurized, ink in the ink pack 10 is supplied to the valve unit 6. Next, the ink temporarily stored in the valve unit 6, in a state where the pressure is regulated, is supplied to the recording head 5. Then, the printer 1, on the basis of image data, while moving the recording medium P in the sub-scanning direction by the paper feeding unit, moves the carriage 4 in the main scanning direction, and ejects ink from the .recording head 5, whereby printing is performed on the recording medium P.
Next, the detailed constitution of the above ink cartridge 7 will be described with reference to
As shown in
The ink pack 10 includes the bag part 11, and the outlet part 12. The bag part 11, in the embodiment, comprises two rectangular film members 11a and 11b as shown in
Next, the outlet part 12 will be described. As shown in
The first pipe body 20, as shown in
The cylindrical part 28 is generally formed in the shape of a cylinder. In these fitting part 24, welding part 26, and cylindrical part 28, from the fitting part 24 toward the cylindrical part 28, a first communication hole 36, a second communication hole 38, and a third communication hole 40 penetrate as liquid flowing passages. The ink contained in the bag part 11 is taken out through the first communication hole 36, the second communication hole 38, and the third communication hole 40. The first communication hole 36 communicates with the bypass flowing passage 32. The second communication hole 38 has larger diameter than the first communication hole, and comprises a center hole 38a and plural communication grooves 38b formed in the center hole 38a. The center hole 38a is so formed that its section is generally circular. The communication grooves 38b are recessed on the inner surface of the center hole 38a in the axial direction. Herein, the communication grooves 38b are formed at two portions on the inner surface of the center hole 38a. The third communication hole 40 is formed in the cylindrical part 28.
Further, as shown in
The seal member 52 is made of flexible material such as elastomer, and generally formed in the shape of a cylinder. An insertion hole 52a penetrating a center of the seal member 52 has the inner diameter on the valve body 50 side into which a hollow needle (not shown) provided for the ink supply tube 14 is tightly fitted, and is formed larger toward the discharge side. On a base end surface 52b of the seal member 52, a valve seat 54 is protrusively provided so as to surround an opening of the insertion hole 52a. The valve body 50 sits on this valve seat 54, whereby the insertion hole 52a of the seal member 52 is blocked by the valve body 50. The hollow needle is formed hollowly, and ink flows through its hole to the inside.
Further, the first valve mechanism V1 includes a coil spring 56 for energizing the valve body 50. The coil spring 56 is provided in the center hole 38a so as to energize the valve body 50 to the seal member 52 side. In case that power is not applied from the outside, as shown in
The second pipe body 22 fitted and fixed into the fitting recess part 30 formed at the base end part of the first pipe body 20 has a fourth communication hole 42 and a fifth communication hole 44, which continue from a base end surface 22a of the second pipe body 22 toward a leading end surface 22b thereof as liquid flowing passages. The inner diameter of the fourth communication hole 42 is formed larger than that of the fifth communication hole, 44.
In the first communication hole 36 on the first valve mechanism V1 side from the leading surface 22b of the second pipe body 22, a second valve mechanism V2 is provided as a check valve. The second valve mechanism V2 comprises a valve body 80 and a valve seat 82. The valve body 80 is generally disc-shaped, which has such size that an opening of the fifth communication hole 44 of the second pipe body 22 can be blocked. The valve seat 82 is formed independent of the valve body 80, and is annularly protruded, on the leading end surface 22b of the second pipe body 22, around the opening part of the fifth communication hole 44. Therefore, when the valve body 80 comes into contact with the valve seat 82, it closes the fifth communication hole 44.
Further, by welding the whole of the welding part 26 of the first pipe body 20 with the film members 11a and 11b, the bypass flowing passage 32 formed on the upper surface 26a is blocked by the film member 11a as a blocking means. By blocking the bypass flowing passage 32, in the first communication hole 36 which communicates with the bypass flowing passage 32 and houses the valve body 80 therein, a valve body housing room 84 is formed. In result, in the valve body housing room 84, the valve body 80 reciprocates in the axial direction by pressure difference between the fluid in the fifth communication hole 44 and the fluid in the first communication hole 36. Specifically, when the fluid (for example, ink or air) moves from the first communication hole 36 to the fifth communication hole 44 (in a direction where the ink is poured in the bag part 11), or when the pressure of the fluid in the fifth the communication hole 44 becomes lower than the pressure of the fluid in the first communication hole 36, the valve body 80 moves toward the valve seat 82. Then, the valve body 80 comes into contact with the valve seat 82, and shuts off the flow of the fluid from the first communication hole 36 to the fifth communication hole 44.
In the ink pack 10 of the embodiment, the film member 11a is welded to the welding part 26 so that the bypass flowing passage 32 is not blocked by the film member 11a till ink is filled into the bag part 11. Hereby, the ink supplied to the first communication hole 36 through the first valve mechanism V1 is filled through the bypass flowing passage 32 into the bag part 11. When the ink is filled into the bag part 11, the film member 11a is welded to the welding part 26 so that the bypass flowing passage 32 is blocked.
On the other hand, in case that the ink is discharged from the bag part 11, the pressure of the ink in the fifth communication hole 44 becomes larger than the pressure of the ink in the first communication hole 36, and the valve body 80 separates from the valve seat 82. In result, the ink can flow from the fifth the communication hole 44 to the first communication hole 36. Namely, the second valve mechanism V2 permits the flow of the fluid from the fifth the communication hole 44 to the first communication hole 36, and functions as a check valve which shuts off the reverse flow. Accordingly, when the ink pack 10 is pressed from the outside by the pressure air, the pressure of the ink in the fifth communication hole 44 becomes higher than the pressure of the ink in the first communication hole 36, the valve body 80 of the second valve mechanism V2 separates from the valve seat 82, and the inside of the bag part 11 communicates with the hole of the hollow needle. Further, when the user pushes the valve body 50 of the first valve mechanism V1 into the inside using a jig, the air flows through the seal member 52, so that the pressure in the first communication hole 36 becomes high. Then, the valve body 80 is brought into pressure contact with the valve seat 82, and it is possible to prevent the air from flowing into the bag part 11.
Next, the cartridge case 9 comprising the body case 16 and the upper case 18 will be described. As shown in
In the center of a front surface 94 of the body case 16 (outer case 90), a square outlet part-attaching part 96 is formed. For the outlet part-attaching part 96, an opening part 98 communicating with the inner case 92 is provided. On one side of the outlet part-attaching part 96, an air inlet H is formed. The air inlet H communicates the outside of the body case 16 (outer case 90) and the inside of the inner case 92. Further, on a front inner side of the inner case 92., a pair of left and right outlet part fixing ribs 100 between which the outlet part 12 is interposed are formed. An end part 102 of the outlet part fixing rib 100 is fitted to an annular projection 104 formed at the periphery of the outlet part 12 (cylindrical part 28) in the shape of a disc thereby to fix the outlet part 12 of the ink pack 10 to the body case 16.
At the bottom of the inner case 92, and between a pair of left and right outlet part fixing ribs 100, a turn preventing member 106 is formed. The turn preventing member 106 is a projection which fits to a recess part (not shown) formed at the cylindrical part 28 of the outlet part 12, and regulates the movement in the turn direction of the ink pack thereby to position the ink pack 10 in the predetermined position. When the ink pack 10 is housed in the cartridge case 9, it is housed in the inner case 92 so that the outlet part 12 of the ink pack 10 is exposed from the inside of the opening part 98 to the outside.
In the embodiment, in case that the ink pack 10 is housed and fixed into the inner case 92, it is housed in a state where ink is not filled into the bag part 11. Accordingly, the ink pack 10 is housed in the inner case 92 in a state where the bypass flowing passage 32 of the outlet part 12 is not blocked by the film member 11a.
When the ink pack 10 into which ink has not been filled yet is housed in the inner case 92, a first seal film F1 as a seal member made of polypropylene and having flexibility is heat-welded to the inner case 92. Hereby, the opening part of the inner case 92 is blocked by the first seal film F1 in the state where the ink pack 10 is housed in the inner case 92. Further, to the outlet part attaching part 96 on the front surface of the outer case 90, after the ink has been filled into the ink pack 10, a second seal film F2 made of polypropylene is heat-welded. Accordingly, the opening part 98 and the opening part of the outlet part 12 are closed airtightly by the second seal film F2. Further, by the second seal film F2, a gap between the opening part 98 and the outlet part 12 is sealed. In result, space S formed by the inner case 92 in which the ink pack 10 is housed, and the first and second seal films F1 and F2, is in an airtight state except for the air inlet H. Therefore, air supplied from the air inlet H into the inner case 92 by the air pressure pump 8 (refer to
The upper case 18 is composed of a generally square plate-shaped member which is put on the upper surface of the body case 16, and it is formed of, for example, polypropylene. The upper case 18 has fixing pieces K1 at the predetermined portions. When the upper case 18 is put on the upper surface of the body case 16, the fixing piece K1 is fitted to a fitting member K2 formed between the outer case 90 and the inner case 92. The opening part of the body case 16 is blocked by the upper case 18, whereby the cartridge case 9 is formed.
Next, a method of manufacturing the thus constructed ink pack 10 will be described with reference to
As shown in
Next, into the insertion hole 52a of the seal member 52 provided for the first pipe body 20 of the outlet part 12, the hollow needle provided for the leading end of the ink filling tube (not shown) is inserted. Then, by the hollow needle, the valve body 50 moves against the energizing power of the coil spring 56 in the direction separating from the seal member 52. Therefore, the hole of the hollow needle and the center hole 38a on the opposite side with the valve body 50 between are connected through the communication groove 38b. In this state, ink is introduced from the ink filling tube (not shown) to the outlet part 12. The filling ink flows through the communication groove 38b into the center hole 38a on the coil spring 56 side. The filling ink that has flown into the center hole 38a on the coil spring 56 side is supplied through the first communication hole 36 and the bypass flowing passage 32 into the bag part 11 (filling step).
After the bag part 11 has been full of the ink, when the hollow needle of the ink filling tube is pulled out from the seal member 52, the ink filling work into the ink pack 10 is completed, and a next work proceeds to a blocking step. In the blocking step, as shown in
When the blocking step ends, the upper case is put on the upper surface of the body case 16. At this time, the fixing piece K1 provided for the upper case 18 and the fitting member K2 formed between the outer case 90 and the inner case 92 are fitted. Lastly, the opening part 98 of the body case 16 is sealed by the second seal film F2, whereby the ink cartridge 7 in which the ink pack 10 is housed in the cartridge case 9 is finished.
According to the embodiment, the following advantages can be obtained.
(1) According to the embodiment, after the ink pack 10 in which ink has not been yet filled into the bag part 11 has been housed in the inner case 92 (body case 16), the ink is filled into the ink pack 10. Therefore, the following problem like that in the conventional case is not produced: in case that the first seal film F1 is welded after the ink pack filled with the ink has been housed in the case, the bag part filled with the ink is bulky, so that the ends of the bag part 11 stick from the cartridge case 9 and are caught in the cartridge case 9. Further, since there is no fear that the ends of the bag part 11 stick from the cartridge case 9, the maximum amount of ink for the inside volume of the cartridge case 9 can be filled.
(2) According to the embodiment, after the ink pack 10 into which ink has not been yet filled has been housed in the inner case 92, the ink is filled into the ink pack 10. In result, in assembly of the printer 1, it is not necessary to previously prepare the ink pack 10 filled with each color of ink. Therefore, the number of assembly steps of the printer 1 can be reduced.
(3) According to the embodiment, after the ink pack 10 into which ink has not been yet filled has been housed in the inner case 92, the ink is filled into the ink pack 10. In result, in assembly of the printer 1, it is not necessary for a worker to deal with the ink pack 10 filled with the ink. Therefore, in assembly of the printer 1, it is prevented that the worker breaks the ink pack 10 filled with the ink erroneously.
(4) According to the embodiment, after the ink pack 10 into which ink has not been yet filled has been housed in the inner case 92, the ink is filled into the ink pack 10. In result, the kind of color of the ink cartridge 7 can be determined when the ink is filled into the ink pack 10. Therefore, it is possible to prevent the kind of color of the ink cartridge 7 shown on the ink cartridge 7 from differing from the kind of color of the ink actually filled into the ink pack 10 housed in the ink cartridge 7.
(5) According to the embodiment, the bypass flowing passage 32 is provided for the outlet part 12. Therefore, though the second valve mechanism V2 exists, the ink can be poured from the outlet part 12 to the bag part 11.
(6) According to the embodiment, the bypass flowing passage 32 is blocked after the ink has been filled into the ink pack 19. Therefore, contamination of air bubbles into the bag part 11 due to the erroneous operation by the user can be prevented.
(7) According to the embodiment, the bag part 11 and the outlet part 12 (bypass flowing passage 32) are heat-welded. Therefore, for example, compared with the case of vibration welding, it is possible to prevent cleaning level of ink from lowering due to contamination of dust in the bag part 11. Further, for example, compared with the case of vibration welding, time necessary for welding can be reduced.
(8) According to the embodiment, the outlet part 12 and the inside of the bag part 11 are formed of the same materials, while the outside of the bag part 11 and the first seal film F1 are formed of the different materials. In result, even in case that heat-welding is performed form the upside of the first seal film F1, the bag part 11 and the first seal film F1 are not bonded, but the bag part 11 and the outlet part 12 are bonded. Therefore, by the simple method, without adding a blocking member, the bypass flowing passage 32 can be blocked.
Next, a second embodiment of the invention will be described with reference to
As shown in
When ink is filled into the ink pack 10, as shown in
After the ink has been filled into the ink pack 10, the next work proceeds to a blocking step. In the blocking step, using a pressing jig or a finger, as shown in
The fixing piece K1 provided for the upper case 18 and the fitting member K2 formed between the outer case 90 and the inner case 92 are fitted. Hereby, the ink cartridge 7 in which the ink pack 10 is housed in the cartridge case 9 is finished.
According to the embodiment, in addition to the advantages in the first embodiment, the following advantages can be obtained.
(1) According to the embodiment, before ink filling, the blocking member 110 is in the open position, and the bypass flowing passage 32 of the ink pack 10 is opened. After the ink has been filled into the ink pack 10, the blocking member 110 is fitted and fixed to the bypass flowing passage 32 thereby to close the bypass flowing passage 32. Therefore, in the embodiment, since the bypass flowing passage 32 can be blocked without performing heat welding, the blocking work can be performed more easily and with the reduced number of steps.
Further, the above each embodiment may be changed as follows:
Number | Date | Country | Kind |
---|---|---|---|
P2004-038021 | Feb 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2076668 | Read | Apr 1937 | A |
3550616 | Graham et al. | Dec 1970 | A |
4020978 | Szczepanski | May 1977 | A |
6017332 | Urrutia | Jan 2000 | A |
6172694 | Droege et al. | Jan 2001 | B1 |
6843558 | Seino | Jan 2005 | B2 |
20020196312 | Ishizawa et al. | Dec 2002 | A1 |
20040056934 | Seino | Mar 2004 | A1 |
20040217127 | Kimura et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
1 380 428 | Jan 2004 | EP |
2002-192739 | Jul 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20050179751 A1 | Aug 2005 | US |