This disclosure relates to the achievement of vanilla beany flavor.
The achievement of a desirable vanilla beany flavor has long been a desire of flavorists. Hitherto it has not been possible to achieve by means other than using the natural material.
It has now been discovered that it is possible to provide such a desirable vanilla beany flavor. There is therefore provided a method of providing vanilla beany flavor in an orally-receivable product, comprising adding to a product base at least one of divanillyl succinate or at least one compound according to Formula I or Formula II
in which R′ is selected from the group consisting of hydrogen, methyl and —CHO, and R is selected from the group consisting of hydrogen. C1-C10 linear alkyl. C3-C10 branched alkyl, C2-C10 linear alkenyl, C3-C10 branched alkenyl, C1-C10 hydroxyalkyl, C2-C10 carboxyalkyl, and tetrahydrofuranyl.
Specific examples of R include hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, 1-methylpropyl, 2-methylpropyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-methylbut-2-ene, hydroxyethyl, carboxyethyl, and 2-tetrahydrofuranyl.
By “product base” is meant any combination of two or more materials that are combined with suitable flavor ingredients to produce a product that is orally-receivable, that is taken orally, either for ingesting (such as a foodstuff or a beverage) or for spitting (such as a mouthwash). All the standard materials known to the art may be used, and the skilled person will in every case be able to select suitable materials.
Some of the compounds of Formulae I and II above are novel materials. There is therefore also provided a compound selected from compounds according to Formulae III-VI, in which R has the value shown:
The compounds of Formula I may be prepared by standard methods known to the art, and the skilled person will be able to do so. For example, guaiacol and p-creosol esters may be prepared according to the methods described in the publication by Parish R. C. and Stock L. M. in J. Org. Chem., (1965) 30(3), 927-9, and vanillin and maltol esters may be prepared by the following methods:
Particular examples of compounds that confer beany flavor are shown in the following tables. Table 1 contains particularly efficacious compounds, Table 2 less efficacious compounds and Table 3 still less efficacious compounds.
The compounds may be used in any orally-receivable product. There is therefore additionally provided a vanilla beany-flavored orally-receivable product comprising a product base in which is included at least one compound according to Formula I or Formula II, as hereinabove described.
Examples of such products include, but are not limited to, the following:
Beverages, including soft drinks and alcoholic beverages, tea, coffee and juices.
Sweet goods, including baked products such as cakes, cookies and biscuits, pies, cereals, cereal bars; confectionery, such as hard candy, chewing gum, chocolates, soft candies and jellies.
Dairy products, including milk, ice cream and yogurt.
Savory products, including snack foods, dressings, dips, potato chip snacks.
Medicinal products, such as syrups, chewable tablets.
Dentifrices, including toothpastes, tooth powders, tooth gels, mouthwashes and edible films.
The method will now be further described with reference to the following examples. These describe particular embodiments and are not intended to be in any way limiting.
To a solution of lactic acid methyl ester 1 (25 g, 9.6 mmol) and DMF (50 ml, 2 ml/g solvent) was added tert-butyldimethylsilyl chloride (43.4 g, 288.2 mmol), followed by imidazole (40.8 g, 144.2 mmol). The reaction was stirred at room temperature overnight and then quenched with water. The mixture was extracted with ethyl acetate (3×50 ml). The combined organic layers were washed with 1 N HCl, water and saturated NaCl, dried (Na2SO4), filtered, and concentrated. The crude was purified by flash column chromatography eluting with 100% hexane to obtain 41.8 g (80%) of product (“Product 2”).
To a mixture of Product 2 (3 g, 13.8 mmol) and THF (130 ml) at 0° C. was added 1.13 g (27.5 mmol) of LiOH in 130 ml water. After being stirred at RT for about 4 h, the THF was removed under vacuum. The resulting aqueous mixture was washed with EtOAc (2×50 ml). The EtOAc layers were extracted with saturated NaHCO3. The aqueous layers were combined, acidified to pH=5 with saturated KHSO4, and then extracted with EtOAc. The resulting organic layers were combined, dried and concentrated to afford 2.49 g (89%) of product as clear oil (“Product 3”). Product 3 may be used without further purification.
To a solution of Product 3 (2.49 g, 12.2 mmol) in 50 ml CH2Cl2 was treated DCC at 0° C. After the mixture was stirred for 10 min, guaiacol (2.3 g, 18.5 mmol) and DMAP (0.15 g, 1.2 mmol) were added to the reaction mixture at 0° C. The reaction was stirred at room temperature for over night. More methylene chloride was added to the reaction mixture. The reaction mixture was then washed with 1N HCl and water, dried over Na2SO4 and concentrated in vacuo. The crude product was purified on silica with 5% EtOAc/Hex and gave 1.74 g (46%) of product (“Product 4”).
Product 4 (1.74 g, 5.6 mmol) was dissolved in 20 ml CH3CN, cooled to 0° C. HF/Pyr (2 ml) was added, then the ice bath was removed and the reaction was stirred at room temperature for 2.5 hrs. Water was added into the reaction mixture and extracted back with EtOAc (3×50 ml), washed the organic layers with water, brine, dried and concentrated. Flash chromatography (20% EtOAc/Hex) yielded 0.93 g (86%) of final product as clear oil.
Guaiacol (2.23 g, 17.9 mmol), succinic anhydride (2.7 g, 26.9 mmol), and 4-(dimethylamino)pyridine (50 mg, 0.40 mmol) were dissolved in 10 ml pyridine and left for 2 days at room temperature. After addition of 50 ml of CH2Cl2, the resulting solution was washed with 1 N HCl (3×50 ml), water, brine, dried (Na2SO4), and concentrated. Flash chromatography (20% EtOAc/Hex to 100% EtOAc) on silica gel yielded 1.47 g (37%) of white solid as final product.
2-Tetrahydrofuroic acid (16 g, 137.8 mmol) was dissolved in 70 ml CH2Cl2 and was treated with 200 ml of 2 M solution of oxalyl chloride in CH2Cl2 and 0.2 ml of DMF at room temperature. The reaction was stirred at room temperature for 2.5 h. An excess amount of oxalyl chloride was removed under vacuo. To a solution of guaiacol (5 g, 40.3 mmol) in 50 mL CH2Cl2 was added freshly prepared tetrahydrofuran-2-carbonyl chloride (8.1 g, 60.4 mmol) and 6.6 ml (100.6 mmol) of pyridine at room temperature. The resulting mixture was stirred at room temperature for 15 min, quenched with MeOH. The reaction mixture was poured into 50 mL 1 N HCl. The aqueous layer was back-extracted with CH2Cl2 (3×50 mL), and the organic layers were combined and washed with 1 N HCl, water, saturated NaCl, dried (Na2SO4) and concentrated. Purification via flash chromatography on SiO2 (20% EtOAc/Hex) gave 8.95 g (63%) of product.
To a solution of vanillin (2.75 g, 18.1 mmol) in CH2Cl2 (30 mL) at room temperature was added propyl chloride (3.7 mL, 27.1 mmol) and pyridine (3.7 mL, 45.2 mmol). The resulting mixture was stirred overnight. The reaction mixture was poured into 1 N HCl, and the layer was separated. The aqueous layer was extracted with CH2Cl2 (3×50 mL), and the organic layers were combined. The combined CH2Cl2 extracts were washed with H2O, saturated NaCl, dried with Na2SO4, concentrated, and purified by flash chromatography (20% EtOAc/Hex) to afford 2.06 g (55%) of vanillin propionate.
2-Tetrahydrofuroic acid (16 g, 137.8 mmol) was dissolved in 70 mL CH2Cl2 and was treated with 200 mL of 2M solution of oxalyl chloride in CH2Cl2 and 0.2 mL of DMF at room temperature. The reaction was stirred at room temperature for 2.5 h. An excess amount of oxalyl chloride was removed under vacuo. To a solution of vanillin (5 g, 32.9 mmol) in 50 mL CH2Cl2 was added freshly prepared tetrahydrofuran-2-carbonyl chloride (6.6 g, 49.5 mmol) and 7 mL (82.2 mmol) of pyridine at room temperature. The resulting mixture was stirred at room temperature for 30 min, then reflux for 2 h and quenched with MeOH at room temperature. Poured the reaction mixture to 1 N HCl (50 mL). The aqueous layer was extracted with CH2Cl2 (3×50 mL) and the organic layers combined, washed with 1 N HCl, H2O, saturated NaCl and dried (Na2SO4). The solvent was removed in vacuo and the resulting oil was purified by chromatography on SiO2 to provide 3.2 g (39%) of desired product.
The compounds listed in Table 4 were added to the following alcoholic beverage base at a concentration of 0.5 or 1 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the starting beverage, the vanilla flavor was found to be enhanced and/or improved. The enhancing effects are listed in Table 4.
The compounds listed in Table 5 were added to the following cola beverage base at a concentration of 0.5 or 1 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the starting beverage, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 5:
Compounds listed in Table 6 were added to the following cookie base at a concentration of 200 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the cookie base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 6.
The compounds listed in Table 7 were added to the following chewing gum base at a concentration of 250 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the chewing gum base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 7.
The compounds listed in Table 8 were added to the following milk base at a concentration of 20 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the milk base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 8.
The compounds listed in Table 9 were added to the following yogurt base at a concentration of 20 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the yogurt base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 9.
The compounds listed in Table 10 were added to the following cough syrup base at a concentration of 100 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the cough syrup base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 10.
The compounds listed in Table 11 were added to the following mouthwash base at a concentration of 50 ppm.
The flavor profile was evaluated by three vanilla flavorists. Comparing the resulting composition with the aroma and taste profile of the mouthwash base, the vanilla flavor was enhanced and/or improved. The enhancing effects are listed in Table 11.
It will be understood that the embodiments described herein are merely exemplary and that variations and modifications can be made by one skilled in the art without departing from the spirit and the scope of the invention. It should be understood that the embodiments described above are not only in the alternative, but can be combined.
This application claims the benefit of the filing date of U.S. Provisional Application for Patent Ser. No. 61/011,818, filed Jan. 22, 2008. incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61011818 | Jan 2008 | US |